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1. Let f' be a nonnegative and continuous function on [a,b] such that fa f(x)dx =

0. Prove that f(x) = 0 forall x € [a,b]. (20%)

1

2. Letf(x) = e™" Find lim ( I e T (20%)
n—oo

3. Evaluate the definite intgggals

P el (20%)

(x=1)2x%1)

(a) fon/zxsmxdx (b) f;

4. Let E= {(x, y) € R?| :—z + %‘ = 1} where*a/B>> 0. Evaluate the linc integral

¢ —ydx + xdy. (20%)

5. Discuss the convergeneeof the series | Y.>_, = . wherg' pl€ IR\ (Justify your

answer!) (20%)
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Please show all your work.

1. Let T be a linear operator on a vector space V, let v be a nonzero vector in V', and let W be the
T —cyclic subspace of /' generated by v. Prove that

(a) (8%) W is T -invariant.
(b) (10%) Any T -invariant subspace of V' containing v also contains W .

19

Let C[-1,1] denote the inner product spacesof real comtintous functions defined on [-1,1]. For any
f,g € C[—-1.1], the inner product is defined as

<f.g> L F)ge)da

(a) (5%) Show that u (x)= —\/% and i, (x) = —_,—()—x form an orthonormal set of vectors.

(b) (10%) Let W be the subspace of CT=1.1}"spanned by u () and #,(x). Find w(x)eW such
that w(x) minimizes Hw(x)~h(fx)ﬁ where

h(x) =x" +x7*,

!

|

E 1s the morm /induced” by the inner product and

!
e
|

3. (10%)Let 4 bean nxn matrix and let, B=J 24+ 4> Show thatif 4 =1 is an eigenvalue of 4,
then the matrix B will be singular.

4. Let O bea 3x3 orthogonal matrieyhose determinamt s cqual tosl.

(a) (10%) If the eigenvalues of Q are all real and if they are ordered so that A, > 4, = 4,, determine the
values of all possible triples of eigenvalues (4,,4,,4;).

(b) (10%) In the case that the eigenvalues A4, and A, are complex, what are the possible values for 4 ?
Explain.
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5. (10%) Let A= [a,.,j] be an nxn matrix with eigenvalues 4,...,4, . Show that

A=a,,+Y.(a,-2) for j=l...n.

1#]

6. A linear operator I' on a finite-dimensional inner product space with inner product (e is called
positive definite if 7 is self-adjoint and (T (x),x) >0 forall x=0.

(a) (15%) Let V bea finite-dimenSiofial inner produet Space with inner product (s,*), and let 7 be
a positive definite linear opcrdtor on ¥ . Prove that (x,1) =(T(x),y) forall x and y in V

defines another inner product.on: V.
(b) (15%) Prove the gonverse of (a): Let_Jwbe-a. finite-dimensional iner product space with inner
product(s,*) and/let (a9 be any6ther inner producton ¥ Then, there exists a unique linear

operator ' on V such that (x)) =(7'(x),y) forall % and y in .
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1. Let f be a nonnegative and continuous function on [a,b] such that fab f(x)dx =
0. Prove that f(x) = 0 forall x € [a,b]. (20%)
2. Letf(x) = e Find lim (/g T (20%)
3. Evaluate the definite integrals

i (20%)

1) 3%+ 1)

(a) fon/zxsmxdx (b) f;

Let E= {(x y) € R?| :—f ' }; = J} wheré™a, b, >'0. Evaluate the linclintegral

¢ —ydx + xdy. (20%)

Discuss the convergenee f'the series Y.>> =5 , whepe p€IR. (ustify your

ni

answer!) (20%)
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Please show all your work.

1.

19

Let T be a linear operator on a vector space V', let v be a nonzero vector in V', and let W be the
T —cyclic subspace of V' generated by v. Prove that

(a) (8%) W 1is T -invariant.
(b) (10%) Any T -invariant subspace of ¥ containing v also contains W .

Let C[-1,1] denote the inner product spaCeqof real €ontintious functions defined on [-1,1]. For any
f>g € C[-1.1], the inner product is defined'as

g | )5

(a) (5%) Show that u, (x)= 71—2* and #,(x)= -;lx form an orthonormal set of vectors.

s

(b) (10%) Let W be the subspace of C[=i,1} spanned by u (x) and u,(x). Find w(x)eW such
W(x)=h(x)| where

that w(x) minimizes «| is the"norm induced by the inner product and

h(x)=x"* + x¥*,

(10%) Let 4 bean nxn matrix and lét, B=/ 24+ 4°~Show thatif 4 =1 is an eigenvalue of 4,
then the matrix B will be singular.

Let O bea 3x3 orthogonal matrixwhose detenminant iS equal tod#

(a) (10%) If the eigenvalues of ( are all real and if they are ordered so that A >4, 2 4,, determine the
values of all possible triples of eigenvalues (4,,4,,4,).

(b) (10%) In the case that the eigenvalues A, and A, are complex, what are the possible values for A ?
Explain.
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5. (10%) Let A= [aw:‘ bean nxn matrix with eigenvalues A,...,4, . Show that

A=a,,+ (a,~4) for j=l...n.

i1#]

6. A linear operator T on a finite-dimensional inner product space with inner product (s,+) is called
positive definite if 7 is self-adjoint and (T'(x),x) >0 for all x#0.

(a) (15%) Let V bea finite-dimexnSiofial inner product Space with inner product (s,»),and let 7" be
a positive definite linear operator on V. Prove that. (x,1) =(T'(x),y) for all x and y in V

defines another inner producton: V.
(b) (15%) Prove the gonverse L AR finite-dimensional inner product space with inner
product(s,») and/lct (s,»)" be any6ther inner product on V. Then, there exists a unique linear

operator 7 on V] such that (xf 1)’ =XT(x). ) forall and y in V.

H (X M OE B R




