線性代數

N應用數學系* * * * *

- (i) Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2\times 2}(\mathbb{R})$. Show that $\begin{pmatrix} 1 \\ m \end{pmatrix} \in \mathbb{R}^2$ is an eigenvector eigenvalue $a + bm \in \mathbb{R} \iff m \in \mathbb{R}$ is a root of the quadratic equation $a + bm \in \mathbb{R} + (a d)x c$ with $b \neq 0$.
-) Let $A \in M_{n \times n}(\mathbb{C})$. Show that A is Hermitian, i.e. $A = A^* = \overline{A}^T = \text{The}$ mplex conjugate transpose of $A \iff A^2 = AA^*$. (20 points)

Let $A \in M_{n \times n}(\mathbb{F})$ be an invertible matrix, and J the $n \times n$ -matrix all of ose entries are 1. (i) Prove that $A^{-1}J$ has rank 1 and nullity n-1, and it s two distinct eigenvalues 0 and s= The sum of all the n^2 entries of A^{-1} , d of multiplicities n-1 and 1, respectively.

-) Show that det(A + J) = det A.(1 + s).(15 points)
- I. Let $A_n = (a_{ij})_{1 \leq i,j \leq n} \in M_{n \times n}(\mathbb{N})$ defined by

$$a_{ij} = \begin{cases} n & \text{if } n \text{ divides } ij \\ ij \pmod{n} & \text{otherwise.} \end{cases}$$

Determine $det(A_3)$, $det(A_4)$ and $det(A_5)$.

-) Show that for $n \geq 6$, $det(A_n) = 0$.(Hint: For $n \geq 6$, there are at least ir distinct integers 1, k, n k, n 1 which are relatively prime to n.(15 ints)
- Let $M_1, M_2 \in M_{n \times n}(F)$ with $M_1 M_2 = M_2 M_1$. (i) Suppose the minimal polynomials of M_1 and M_2 are of the forms $\chi_{M_1}(t) = (t \lambda_1)(t \lambda_2)$, d $\chi_{M_2}(t) = (t \alpha_1)(t \alpha_2)$ with $\alpha_1 \neq \alpha_2$ and $\lambda_1 \neq \lambda_2$, respectively. Show at M_1 and M_2 are simultaneously diagonalizable.
- Suppose M_1 and M_2 have a common eigenvector v, i.e. $M_1v = \lambda_1v$ and $v = \lambda_2v$. Show that their transposes also have a common eigenvector w that the same eigenvalues, i.e. $M_1^Tw = \lambda_1w$ and $M_2^Tw = \lambda_2w$. (20 points)
- (i) Let $L \subset \mathbb{R}^2$ be the line $y = mx, m \neq 0$, P the projection of \mathbb{R}^2 on L, d R the reflection about L. Write down the expressions P(a, b), R(a, b) for $b \in \mathbb{R}^2$.
- For $m, n \in \mathbb{N}$, $m \leq n$, let I_n be the identity matrix and $D_m = (d_{ij})_{1 \leq i,j \leq n} \in I_{i \times n}(\mathbb{R})$ be an upper triangular matrix defined as follows: The entries $I_m = d_{2,m+1} = d_{3,m+2} = \dots = d_{n-m+1,n} = \alpha \neq 0$, and all other entries $I_m = 0$. (a) Find the Jordan canonical form of $I_m = 0$, and determine minimal polynomial.

Write down the Jordan canonical form of $aI_n + D_{m+}a \neq 0$ for arbitrary

I. Prove or disprove the following statements

1. The series

$$\sum_{n=2}^{\infty} \frac{\left(\ln n\right)^{\beta} \cos n^{p}}{n^{\alpha}}$$

converges for every $\alpha > 1, \, \beta \geq 1$ and $p \geq 1.$ (10%)

- 2. Suppose that $f_n(x) = (x^2 1)^n$, $g_n(x) = \frac{1}{2^n n!} f_n^{(n)}(x)$ $(n \in \mathbb{N})$ and $g_0(x) = 1$, then
- 2a. $f_n(x)$ converges uniformly in $[-\sqrt{2},0]$. (5%)
- 2b. $g_n(x)$ converges uniformly in $[-\sqrt{2},0]$. (10%)

II. Prove the results

3. If f is continuous differentiable in \mathbb{R} and the integral $\int_{1}^{\infty} f(t)/t dt$ exists, then for positive a and b we have

$$\int_0^\infty \frac{f(ax) - f(bx)}{x} dx = f(0) \ln \frac{b}{a}. (10\%)$$

4. If $T:C\left[0,1\right]\to\mathbb{R}$ is defined by $Tf=f\left(0\right)$, then $\|T\|=1.\left(10\%\right)$

Definition: Suppose that $(X,\|\cdot\|_X)$ and $(Y,\|\cdot\|_Y)$ are normed spaces and $S\subset$ $(X,\|\cdot\|_X)$ is an open set in $(X,\|\cdot\|_X)$. Then the map $f:S\to (Y,\|\cdot\|_Y)$ is called differentiable in S, if for every point $s \in S$ there exists a bounded linear map L_s : $(X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$ such that

$$f(s+h) = f(s) + L_s(h) + \varepsilon(h),$$

where $\varepsilon(h)$ satisfies $\lim_{\|h\|\to 0} \frac{\|\varepsilon(h)\|_{Y}}{\|h\|_{X}} = 0$. For a $n \times n$ matrix $A = (a_{ij})_{n \times n}$ we set $\|A\| = \sum_{i,j=1}^{n} |a_{i,j}|$, then $\|\cdot\| : M_n \to \mathbb{R}^+$ is a norm, where M_n is the collection of all $n \times n$ real matrices.

III. Prove the following statements

- 5. The set $M = \{A \in M_n : ||A I_n|| < 1\}$ is open in $(M_n, ||\cdot||)$, where $I_n =$ $(a_{ij})_{n \times n}, a_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$ (5%)
 - 6. The function $f(A) = A^2$ is differentiable in M. (20%)

IV. Are the following statements true? If yes, prove them; if no, disprove them.

7. Let $f_n(x)$ be an increasing sequence of measurable functions in (a, b), and let $f = \lim_{n \to \infty} f_n$. Then

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx. (15\%)$$

8. The set (0,1) is uncountable (15%)