* 战科 目線性代數

別應用數學系

鲜 試 時

5月28日上午第一節 星期 六

I.(25 points) Prove or disprove the following statements:

(i) Let $T \in L(V, V)$ be a linear transformation of a finite-dimensional F-vector space V into itself with $T^2 = T$, then KerT + ImT = V

(ii) For arbitrary $T \in L(V, V)$:

$$KerT + ImT \iff KerT = KerT^2 \iff ImT = ImT^2$$

- (iii) Let $A \in M_{n \times m}(F)$ and $B \in M_{m \times n}(F)$ with m < n, then AB is not invertible.
- (iv) Let $A \in M_{n \times m}(F)$. Then AA^T is invertible $\iff rankA = n$.
- (v) For arbitrary $A \in M_{n \times m}(F)$, AA^T and A^TA have the same eigenvalues.

II.(20 points) Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2\times 2}(\mathbb{R})$$
.

(i) Show that $\begin{pmatrix} 1 \\ m \end{pmatrix} \in \mathbb{R}^2$ is an eigenvector to eigenvalue $a+bm \in \mathbb{R} \iff$

 $m \in \mathbb{R}$ is a root of the quadratic equation $bx^2 + (a-d)x - c$ with $b \neq 0$.

- (ii) Show that if A has two distinct eigenvalues $\lambda_1, \lambda_2 \in \mathbb{R}$, then the eigenspace E_{λ_1} = The column space of $A \lambda_2 I$ and E_{λ_2} = The column space of $A \lambda_1 I$. (iii) Show that if a = d = 0 and $bc \neq 0$, then A is diagonalizable $\iff bc = y^2$,
- (iii) Show that if a = d = 0 and $bc \neq 0$, then A is diagonalizable $\iff bc = y^2$, for some $y \in \mathbb{R}$.
- (iv) Let $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be defined by T(X) := AX XA. Show that T is an \mathbb{R} -linear transformation, and calculate the matrix $[T]^{\mathbb{B}}$ with respect to the basis

$$\mathbb{B} = \{E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}; E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\}.$$
What are rank T and nullity T, if $A \neq tI_2$?

III.(15 points) Let $A \in M_{n \times n}(\mathbb{R})$.

- (i) Give definition of the adjugate the adjoint of A) adj(A) of A, and show that $A adj(A) = adj(A)A = det(A)I_n$.
- (ii) Use (i) to prove CAYLEY-HAMILTON Theorem.
- (iii) Use (i) to show that if $\lambda \neq 0$ is an eigenvalue of A of algebraic multiplicity 1, then the eigenspace E_{λ} = The column space of $A \lambda I_n$.

考 战 科 目 線性代數 所 別應用數學系 考 战 時 間 5月28日上午第一節

IV.(20 points) (i) Give definition of a row-stochastic (Markov matrix) $A \in M_{n \times n}(\mathbb{R})$, and show that all eigenvalues $\lambda \in \mathbb{C}$ of A has absolute values $|\lambda| \leq 1$.

(ii) Does the matrix limit $\lim_{m\to\infty} A^m$ always exist? Explain your answers.

V.(20 points) Find an invertible matrix $P \in M_{4\times 4}(\mathbb{R})$ such that $P^{-1}AP = J(A)$ the Jordan canonical form of the following matrix $A \in M_{4\times 4}(\mathbb{R})$:

$$A = \left(\begin{array}{cccc} 4 & 0 & 1 & 0 \\ 2 & 2 & 3 & 0 \\ -1 & 0 & 2 & 0 \\ 4 & 0 & 1 & 2 \end{array}\right).$$

考試科目 分析概論 所別 應用數學系 考試時期 5月28日 星期六 13:20~15:00

- 1. Let $\{f_n\}$ be a sequence of measurable functions on [a,b] satisfying the following conditions:
 - (a) $\{f_n\}$ is decreasing on [a,b], i.e., $f_n(x) \ge f_{n+1}(x)$ for all $x \in [a,b]$.
 - (b) There exists an integrable function g on [a,b] such that $f_n \leq g$ on [a,b], for all $n=1,2,\cdots$.
 - (c) $f_n \to f$ on [a, b].

Show that $\lim_{n\to\infty} \int_a^b f_n dx = \int_a^b f dx$. (20%)

- 2. Show that an absolutely continuous function on [a, b] is of bounded variation on [a, b]. (20%)
- 3. Let $S = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$ and $f: S \to \mathbb{R}$ be a nonnegative continuous function. (20%)
 - (a) Prove that f has the absolute maximum value on S.
 - (b) Let M be the absolute maximum value of f on S. Show that

$$\lim_{k \to \infty} \left(\int_{S} (f(x))^{k} dx_{1} dx_{2} \cdots dx_{n} \right)^{\frac{1}{k}} = M$$

4. Let $\omega = \frac{xdy - ydx}{x^2 + y^2}$, $(x, y) \in \mathbb{R}^2 - \{0\}$. Show that ω is a closed 1-form, but not exact on

$$R^2 - \{0\}$$
. (20%)

5. Let X = C[a, b] be the space of continuous real-valued function on [a, b]. Define, for $f \in X$, (20%)

$$|| f || = \left(\int_a^b |f(x)|^2 dx \right)^{\frac{1}{2}}$$

- (a) Show that $(X, \|\cdot\|)$ is a normed linear space.
- (b) Is $(X, \|\cdot\|)$ complete?
- (c) What is the completion of $(X, \|\cdot\|)$?

國立政治大學圖書館