考試科目線性代數

所別應用數學系

考試時間

5月27日第一節星期大

Problem. 1. Prove or give an explicit counterexample for each of the following statements.

- (a) (5 pts) Two square matrices are similar if they have the same Jordan canonical form.
- (b) (5 pts) Let V be a finite-dimensional vector space and $T:V\to V$ a linear operator. V is the direct sum of the null space of T and the range of T.
- (c) (5 pts) Let A and B be real $n \times n$ matrices. If A and B are positive definite, then A + B is positive definite.

Problem. 2. Let **H** be the vector space of continuous complex-vauled functions defined on $[0, 2\pi]$. Define an inner product on **H** by

$$\langle f, g \rangle = \int_0^{2\pi} f(t) \overline{g(t)} dt.$$

Let $S = \{ f_n : f_n(t) = e^{int}, t \in [0, 2\pi], n \in \mathbb{Z} \}.$

- (a) (10 pts) Prove S is an orthogonal set in H.
- (b) (5 pts) Define a new inner product on **H** to make S an orthonormal set in **H** with respect to this inner product.
- (c) (10 pts) Let $S' = \{f_1, f_2, \dots, f_7\} \subset S$ and $W = \operatorname{span}(S')$. Let f(t) = t, find $f_1(t) \in W$ such that $||f(t) f_1(t)||$ is the smallest, where $||\cdot||$ is the norm introduced by the inner product you find in part (b).

Problem. 3. (15 pts) Let W be a subspace of a finite-dimensional inner product space V. Prove

$$V = W \oplus W^{\perp}$$
.

Problem. 4. (15 pts) Let A be a real 3×3 matrix. Suppose A has three distinct positive eigenvalues. Show that

$$A^3 - \operatorname{tr} A \cdot A^2 + \det A \cdot I$$

is invertible.

考

Problem. 5. (15 pts) Let A and B be real $n \times n$ matrices. Suppose A + B = I and rank(A) + rank(B) = n. Show that both A and B are projections.

Problem. 6. (15 pts) Let A be a complex $m \times n$ matrix. Show that $\operatorname{rank}(A^*A) = \operatorname{rank}(A)$, where $A^* = \overline{A^t}$.

備

試題隨卷繳交

187

命題委員:

(簽章)

年

月

日

- 1. Let $\Omega = \{x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid x_j > 0, 1 \le j \le n\}$ and $f(x) = -(x_1 x_2 \dots x_n)^{1/n}$ for $x \in \Omega$. Compute the Hessian $H(x) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right)$, $x \in \Omega$ and show that it (20%)is positive-semidefinite.
- 2. Let $\{E_k\}$ be a sequence of Lebesque measurable sets in \Re^n and $\sum_{k=1}^n \lambda_n(E_k)$ converge, where λ_n is the Lebesque measure on \Re^n . Show that the set $E = \limsup E_k$ is Lebesque measurable and has Lebesque measure zero. (20%)
- 3. Evaluate the limit

$$\lim_{k\to\infty} \left(\int_{\|x\|\le 1} e^{-\|x\|^{2k}} \right)^{1/k}$$

if exists, where ||x|| denotes the Euclidean norm in \Re^n .

(20%)

(20%)

- State and prove the Lebesque dominated convergence theorem.
- 5. Let H be a Hilbert space and M be a closed subspace of H. Show that each $x \in H$ can be written uniquely in the form x = y + z with $y \in M$ and $z \in M^{\perp}$. Moreover, $||x||^2 = ||y||^2 + ||z||^2$. (20%)