1. (15%) Suppose there are two multivariate normal populations, say, Π_1 that is $N_p(\mu_1, \Sigma)$ and Π_2 that is $N_p(\mu_2, \Sigma)$, where p is the number of variables. Suppose a new observation vector x is known to come from either Π_1 or Π_2 . Let

$$U = (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T \boldsymbol{\Sigma}^{-1} \boldsymbol{x} - \frac{1}{2} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2).$$

Please verify the distribution of U.

2. (20%) Let X_1, X_2, \dots, X_{2n} be iid N(0, 1) rv's. Define

$$U_n = \left\{ \frac{X_1}{X_2} + \frac{X_3}{X_2} + \dots + \frac{X_{2n-1}}{X_{2n}} \right\},$$

$$V_n = X_1^2 + X_2^2 + \dots + X_n^2,$$

and

$$Z_n = \frac{U_n}{V_n}$$
.

Please find the limiting distribution of Z_n .

- (25%) From a box containing N identical balls marked 1 through N, M balls are drawn one after another without replacement. Let X_i denote the number on the *i*th ball drawn, i = 1 $1, 2, \dots, M, 1 \leq M \leq N$. Suppose that we wish to estimate N on the basis of observations X_1, X_2, \cdots, X_M .
- Find the UMVUE of N.
- (2) Find the MLE of N.
- (3) Compare the MSE's of the UMVUE and the MLE.
- 4. (20%) Let X_1, X_2, \dots, X_n be a sample of size n from $U(0, \theta), \theta > 0$, Show that

$$\phi_1(x_1, x_2, \dots, x_n) = \begin{cases} 1 & \text{if } \max(x_1, x_2, \dots, x_n) > \theta_0 \\ \alpha & \text{if } \max(x_1, x_2, \dots, x_n) \le \theta_0 \end{cases}$$

is a uniformly most powerful (UMP) test of size α for testing $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$ and that the test

$$\phi_2(x_1, x_2, \cdots, x_n) = \begin{cases} 1 & \text{if } \max(x_1, x_2, \cdots, x_n) > \theta_0 \text{ or } \\ & \max(x_1, x_2, \cdots, x_n) \leq \theta_0 \alpha^{1/n} \\ \alpha & \text{otherwise} \end{cases}$$

is UMP size α for testing $H'_0: \theta = \theta_0$ against $H'_1: \theta \neq \theta_0$.

- 5. (20%) Let X takes on the specified values v_1, \dots, v_{k+1} with probabilities $\theta_1, \dots, \theta_{k+1}$ respectively. Suppose that X_1, X_2, \dots, X_n are independently and identically distributed as X. Suppose that $\theta = (\theta_1, \dots, \theta_{k+1})$ is unknown and may range over the set $\Theta = \{(\theta_1, \dots, \theta_{k+1}) : \theta_i \geq 0, 1 \leq i \leq k+1, \sum_{k=1}^{k+1} \theta_i = 1\}$. Let N_j be the number of X_i which equal v_j .

 (1) Show that $\mathbf{N} = (N_1, N_2, \dots, N_k)$ is sufficient for θ .
- (2) What is the distribution of (N₁, N₂, · · · , N_{k+1})?

1. Consider a linear model

$$Y = X\beta + e$$
,

where the X is a known $n \times p$ matrix with rank p, $\beta = (\beta_1, \beta_2, ... \beta_p)'$ is an unknown vector of interest, and $c = (c_1, c_2, ..., c_n)'$ is a normally distributed random vector with mean vectors (0, ..., 0)' and covariance matrix $\sigma^2 I_n$.

- (a) Find UMVU estimates for β and σ^2 . (15 points)
- (b) Find the least squares estimates for β . (5 points)
- (c) Derive the sampling distributions of the estimates that you obtained in parts (a) and (b). (15 points)
- 2. (Continued) Now remove the normality assumption in Problem 1. Assume that the Gauss-Markov conditions hold; that is,

$$E(e_i) = 0$$
, for all i ,

$$Var(e_i) = \sigma^2$$
, for all i ,

and

$$E(e_ie_j) = 0$$
, for all $i \neq j$.

- (a) State and prove Gauss-Markov theorem. (20 points)
- (b) How do the assumptions impact the answers to parts (a) and (b) of Problem 1? Explain. (10 points)
- (c) How do the assumptions impact the answer to part (c) of Problem 1? Explain. (10 points)
- Consider the one-way layout model,

$$Y_{ij} = \beta_i + e_{ij}, \ j = 1,...,m, \ i = 1,...,p.$$

Let $\bar{\beta} = \sum_{i=1}^{p} \beta_j / p$ and $\alpha_j = \beta_j - \bar{\beta}$.

- (a) Show that if $\phi = \sum_{i=1}^{p} c_i \beta_i$ with the c_i satisfying $\sum_{i=1}^{p} c_i = 0$, then there are constants w_i such that $\phi = \sum_{i=1}^{p} w_i \alpha_i$. Conversely, show that if $\phi = \sum_{i=1}^{p} w_i \alpha_i$, then there are constants c_i satisfying $\sum_{i=1}^{p} c_i = 0$ such that $\phi = \sum_{i=1}^{p} c_i \beta_i$. (10 points)
- (b) What is Scheffe idea for simultaneous confidence intervals of $\phi = \sum_{i=1}^{p} w_i \alpha_i$, $(w_1, ..., w_p)' \in \mathbb{R}^p$? (10 points)
- (c) Give the Scheffe-intervals of $\phi = \sum_{i=1}^p w_i \alpha_i$, $(w_1, ..., w_p)' \in \mathbb{R}^p$. (5 points)