PhD entrance exam 90 MathStat Dept of Statistics

1. (30 points) Let $X_1,...,X_n$ be a random sample from $N(\mu,\sigma^2)$ population, where μ and σ are unknown parameters. Define

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

and

$$S^{2} = \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}.$$

Show that

- (a) \bar{X}_n and S^2 are independent.
- (b) S^2 is distributed as χ^2_{n-1} .
- 2. (10 points) Let $X_1, ..., X_n$ be a random sample from N(0, 1) population. Define

$$T_n = \frac{(1/k)\sum_{i=1}^k X_i^2}{[1/(n-k)]\sum_{j=k+1}^n X_j^2}.$$

Suppose that k is fixed. Find the limiting distribution of T_n as $n \to \infty$.

3. (30 points) Let $X_1, ..., X_n$ be normally distributed random variables satisfying the following model

$$X_i = \theta X_{i-1} + e_i, \quad i = 1, ..., n,$$

where $X_0 = 0$ and $e_1, ..., e_n$ are independent $N(0, \sigma^2)$ random variables.

- (a) Find the joint density of $X_1, ..., X_n$.
- (b) Derive the likelihood ratio statistic of $H_0: \theta = 0$ v.s. $H_1: \theta \neq 0$.
- 4. (30 points) Let $X_{(1)} < ... < X_{(n)}$ be the order statistics of a sample of size n from an Exponential(1) population. Show that $nX_{(1)}$, $(n-1)(X_{(2)}-X_{(1)})$, $(n-2)(X_{(3)}-X_{(2)})$,..., $(X_{(n)}-X_{(n-1)})$ are i.i.d. random variables according to Exponential(1).

- 1. (30%) Consider the model $y_{ij} = \mu_i + \gamma_1 z_{ij} + \gamma_2 w_{ij} + \epsilon_{ij}$, where $i = 1, 2, \dots, I$; $j = 1, 2, \dots, J$; and $\epsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$. Let $\gamma = (\gamma_1 \ \gamma_2)^T$.
- (1) Please derive the least squares estimate (LSE) of γ and also show that it is unbiased. (10%)
- (2) Find the variance-covariance matrix of the LSE $\hat{\gamma}$ of γ . (5%)
- (3) Under what conditions are $\hat{\gamma}_1$ and $\hat{\gamma}_2$ statistically independent? (5%)
- (4) Obtain a test statistic for testing the hypothesis $H_0: \gamma_i = \gamma_0$, where i = 1, 2. (10%)
- 2. (20%) Given the model $y_i = \beta x_i + \epsilon_i$ $(i = 1, \dots, n)$. Let us suppose that $Var(Y) = diag(1/\omega_1, 1/\omega_2, \dots, 1/\omega_n)\sigma^2$, where $\omega_i > 0$ for all i.
- (1) Please find the estimate of β , $\hat{\beta}$, and $Var(\hat{\beta})$. (10%)
- (2) Show how to predict y_* for a given value x_* of x and also construct the confidence interval for it. (5%)
- (3) What would the estimate of β be if $Var(y_i) = kx_i$? (5%)
- **3.** (30%) Suppose $y_t = \beta + \epsilon_t$, where $\epsilon_t = \rho \epsilon_{t-1} + a_t$, $t = 1, 2, \dots, T$, $0 \le \rho \le 1$, $a_0 = 0$, and $a_t \stackrel{iid}{\sim} N(0, \sigma^2)$.
- (1) Show that the sample mean of $\{y_t; t = 1, \dots, T\}, \bar{Y}$, is still unbiased for β . (10%)
- (2) Let

$$\hat{\beta} = \frac{y_1 + (1 - \rho) \sum_{t=2}^{T} (y_t - \rho y_{t-1})}{(T - 1)(1 - \rho)^2 + 1}.$$

Show that $\hat{\beta}$ is unbiased. (10%)

- (3) Show that $Var(\bar{Y}) \geq Var(\hat{\beta})$ with strict inequality unless $\rho = 0$. (10%)
- 4. (20%) Consider the model $Y = X\beta + \epsilon$ with X and β partitioned as

$$m{X} = [m{X}_1 \mid m{X}_2] \ ext{ and } \ m{eta} = \left[egin{array}{c} m{\gamma}_1 \ -- \ m{\gamma}_2 \end{array}
ight]$$

where X_1 is an $n \times r$ matrix of rank r, X_2 is an $n \times (p-r)$ matrix of rank p-r, γ_1 is an $r \times 1$ vector, and γ_2 is a $(p-r) \times 1$ vector. Suppose $\epsilon \sim N(\mathbf{0}, \sigma^2 I)$. Please obtain a test statistic for testing $H_0: \gamma_2 = \mathbf{0}$.