- 1. (20 points) Let $G_j \sim \Gamma(\lambda_j, \alpha)$, j = 1, ..., r + 1, be independent Gamma random variables, where λ and α are shape and scale parameters, respectively. Define $X_j = G_j / \sum_{i=1}^{r+1} G_i$, for j = 1, ..., r.
 - (a) Derive the distribution of X_j . (5 points)
 - (b) Derive the joint distribution of $(X_1, ..., X_r)$. (15 points)
- 2. (20 points) Let $X_1, ..., X_n$ be a random sample from Bernoulli(p), where p has a prior distribution $Beta(\alpha, \beta)$.
 - (a) Calculate $P(X_{n+1} = 1 | \sum_{i=1}^{n} X_i = r)$. (10 points)
 - (b) Calculate $P(X_{n+1} = X_{n+2} = 1 | \sum_{i=1}^{n} X_i = r)$. (10 points)
- 3. (40 points) Consider the linear regression model

$$Z = \theta_1 + \theta_2 Y + e,$$

where $e \sim N(0, \sigma^2)$ (σ is known). Suppose that we have observed data $\{(y_i, z_i), i = 1, ..., n.\}$

- (a) Find a sufficient statistic for $\theta = (\theta_1, \theta_2)$. (10 points)
- (b) Suppose that θ has a non-informative prior $\pi(\theta) \propto 1$. Derive the posterior distribution of θ given the data. (10 points)
- (c) (continued from part (b)) Suppose that one wants to predict a future Z at a given y. Derive $p(z|\mathrm{data})$, the predictive distribution based on the data. (20 points)
- 4. (20 points) Consider a sample from a population in which there are three different genotypes. Suppose that the frequencies of the three genotypes are

$$p_1 = \theta^2, p_2 = 2\theta(1-\theta), p_3 = (1-\theta)^2, 0 < \theta < 1.$$

Let N_i denote the number of individuals of type i in the sample of size n, then (N_1, N_2, N_3) has a multinomial distribution with parameters (n, p_1, p_2, p_3) .

- (a) Give two different method of moments estimators for θ . (10 points)
- (b) Suppose we observe a sample of three individuals and obtain $x_1 = 1$, $x_2 = 2$, $x_3 = 1$ (x_i denote the genotype of the *i*th individual). Write down the likelihood function and derive the MLE for θ . (10 points)