考試科目數理統計所別統計 考試時間 - 5月/6日 第/節 星期 テ、 - 1. (20 pts, 10 pts for each part) Let $X_1, X_2, ..., X_n$ be i.i.d. random variables having the uniform distribution U[0, θ]. - (a) Show that when $\theta \in \Theta = (0, \infty)$, the UMVUE of θ is $\frac{n+1}{n}X_{(n)}$. - (b) Suppose that $\Theta=(1, \infty)$, show that the UMVUE for θ is $I_{[0,1]}(x_{(n)})+\frac{n+1}{n}x_{(n)}I_{(1,\infty)}(x_{(n)}).$ - (32 pts, 8 pts for each part) Suppose that X₁, X₂, ..., X_n are i.i.d. N(μ, σ²), where μ∈ R and σ²∈ R⁺. We are interested in testing the null hypothesis H₀: not H₁, against the alternative hypothesis H₁: μ>0, σ²<1. - (a) Find the Likelihood ratio test for the above null and alternative hypotheses. - (b) Can the above hypotheses use intersection-union method? - (c) Find the intersection-union test. - (d) What is the difference between part (a) and (c)? - 3. (48 pts, 12 pts for each part) Suppose that we have a random sample $(X_1, X_2, ..., X_n)$ form a distribution with a Lebesgue probability density function f, which is given by $f(x) = \frac{\beta^{\lambda}}{\Gamma(\lambda)} \exp(\lambda x \beta e^x)$ for all $x \in (-\infty, \infty)$, where β and λ are positive parameters and $\Gamma(\cdot)$ is the gamma function. Suppose that α is a constant in (0,1). - (a) Suppose that $\lambda = 1$. Find a statistic V that is complete and sufficient for β . - (b) Suppose that $\lambda = 1$. Let $Y_i = e^{X_i}$ for $i = 1, ..., n . \overline{Y} = n^{-1} \sum_{i=1}^n Y_i$ and $W = \prod_{i=1}^n (Y_i / \overline{Y})$. Show that W is independent of the statistic V in part (a). - (c) Suppose that φ is a test for testing $H_0: \lambda \leq 1$ vs. $H_1: \lambda > 1$, such that $\beta_{\varphi} \leq \alpha$ under H_0 and $\beta_{\varphi} \geq \alpha$ under H_1 , where β_{φ} is the power function of φ . Show that $E(\varphi \mid V) = \alpha$ almost everywhere when $\lambda = 1$, where V is the statistic in part (a). - (d) Find a UMPU level α test for the $H_0: \lambda \le 1$ vs. $H_1: \lambda > 1$. Also, express the rejection region of the UMPU test using the statistic W in part (b), if possible. 考