考試科目 數理統計 所 别 統計學系 考試時間 5月21日(六)第一節

1. (15 pts) Suppose that we observe independent and identically distributed random variables X_1, \ldots, X_n , and X_1 has a probability density function f, where

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\log(x) - \log(1 - x) - \mu)^2}{2}\right) \left(\frac{1}{x} + \frac{1}{1 - x}\right)$$

for 0 < x < 1. Here μ is an unknown parameter and log is the natural logarithm.

- (a) Find the maximum likelihood estimator for μ .
- (b) Find the likelihood ratio test of size α for testing

$$H_0: \mu = 0 \text{ versus } H_1: \mu \neq 0.$$

Express the rejection region in terms of a test statistic and give the distribution of the test statistic under H_0 .

2. (35 pts) Suppose that (X_1, \ldots, X_n) is a random sample from the uniform distribution on $[0, \theta]$, where $\theta > 0$ is an unknown parameter. Let

$$X_{(n)} = \max_{1 \le i \le n} X$$

and

$$X_{(1)} = \min_{1 \le i \le n} X,$$

- (a) Show that $X_{(n)}$ is a consistent estimator for θ .
- (b) Find an UMVUE (uniformly minimum variance unbiased estimator) for θ .
- (c) Can we conclude that $X_{(n)}$ is a better estimator for θ than the UMVUE in Part (b) based on their mean squared errors?
- (d) Determine whether $X_{(n)}$ and $X_{(n)}/X_{(1)}$ are independent.
- (e) Construct a 95% confidence interval for θ based on $X_{(n)}$.

考試科目 數理統計 所別 統計學系 考試時間 5月21日(六)第一節

3. (15 pts) Suppose that (X_1, \ldots, X_n) is a random sample from $N(\mu, 1)$, where μ is an unknown parameter. Consider the problem of estimating μ . Suppose that the loss of estimation when μ is estimated by a and the true value for μ is μ_0 is given by

$$\ell(a,\mu_0) = \left\{ egin{array}{ll} (a-\mu_0)^2, & ext{if } |a-\mu_0| > 1; \\ 0, & ext{otherwise.} \end{array}
ight.$$

- (a) Find the Bayes rule for this estimation problem when the prior for μ is N(0,1).
- (b) Find the Bayes rule for this estimation problem when the prior for μ puts probabilities 0.6 and 0.4 at -1 and 1 respectively.
- 4. (35 pts) Suppose that we observe independent and identically distributed pairs $(X_1, Y_1), \ldots, (X_n, Y_n)$. Suppose that

$$P(X_1 = 1) = p = 1 - P(X_1 = 0),$$

$$P(Y_1 = y | X_1 = 1) = p^y (1 - p)^{1 - y} \text{ for } y \in \{0, 1\},$$

and

$$P(Y_1 = y | X_1 = 0) = (1 - p)^y p^{1-y} \text{ for } y \in \{0, 1\},$$

where p is an unknown parameter and 0 .

- (a) Find all value(s) of p such that X_1 and Y_1 are independent.
- (b) Find a sufficient statistic for p. The dimension of the sufficient statistic should be no more than 4.
- (c) Express the maximum likelihood estimate of p in terms of the sufficient statistic found in Part (b).
- (d) Suppose that n = 3 and the observed (X_1, Y_1) , (X_2, Y_2) , (X_3, Y_3) are (1,0), (0,1) and (0,0) respectively. Find the maximum likelihood estimate of p.
- (e) Suppose that n=2 but X_1 and X_2 are missing. The observed values for Y_1 and Y_2 are 0 and 1 respectively. Find the maximum likelihood estimate of p.