## 國立政治大學 (0↓ 學年度博士班招生考試試題

第1頁,共1頁

考 試 科 目數理統計 所 別統計學系 考試 時間 5月9日(六)第一節

1. (15pts) Let X be a random variable on the probability space  $(\Omega, A, P)$ . Prove Chebyshev's inequality: for any a > 0,

$$P(|X| \ge a) \le \frac{1}{a^2} E(X^2)$$

- 2. (30pts) Let  $X_1, X_2, \ldots$  be i.i.d. Uniform  $[0, \theta]$ , for  $\theta > 0$ . Show that
  - (a) (15pts)  $X_{(n)}$  is the MLE of  $\theta$ .
  - (b) (15pts)  $n(\theta X_{(n)})$  converges in distribution to the Exponential distribution with mean  $\theta$ .
- 3. (55pts) The Poisson distribution  $P(\lambda)$  with parameter  $\lambda > 0$  is

$$p_{\lambda}(\kappa) = \frac{e^{-\lambda} \lambda^{\kappa}}{\kappa!}$$
, for  $\kappa = 0, 1, 2, \dots$ 

- (a) (10pts) Show that the gamma family of distributions constitutes a conjugate family of priors for  $\lambda$ .
- (b) (10pts)  $X \sim P(\lambda)$ . Find the risk function of  $\delta(X) = X$  under the loss function

$$\ell(\lambda, d) = \frac{(\lambda - d)^2}{\lambda}$$

(c) (5pts) Show that  $P(\lambda)$  has moment generating function

$$M(t) = exp\{\lambda(e^t - 1)\}$$

- (d) (10pts) Show that for 0 < x < 1,  $x \frac{x^2}{2} < log(1+x) < x$ . (Hint: use Taylor expansion of log(1+x) around x = 0)
- (e) (10pts) Let  $X_1, X_2, \ldots$  be i.i.d.  $P(\lambda), \lambda > 0$ . Let  $S_n = \sum_{i=1}^n X_i$ . Show that, for t > 0,

$$P(S_n > n(\lambda + \epsilon)) \le exp\{n\lambda(e^t - 1) - nt(\lambda + \epsilon)\}.$$

(f) (10pts) Show that for  $0 < \epsilon < \lambda/2$ ,  $P(S_n > n(\lambda + \epsilon)) \le exp\{-\frac{n\epsilon^2}{4\lambda}\}$ 

二、試題請隨卷繳交。