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Abstract

HodgeRank is a method of ranking that is new in recent years. In most of modern
datasets, the amount of data is very large, some also need the internet connection,
and plenty of them have the feature that incomplete or imbalanced. We use the
method of HodgeRank to deal with these difficulties.

This thesis is primary using elementary linear algebra to survey HodgeRank and
deduce the combinatorial Hodge Theorem.

Keywords: HodgeRank, combinatorial Hodge theorem, combinatorial Hodge

decomposition,
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Chapter 1

Introduction

The technique of solving ranking problems has many applications. For instance, recommen-
dation systems of restaurants, movies, books, and so on. It is difficult to apply traditional ranking
methods to many modern datasets, since these datasets usually are incomplete and imbalanced.

In [6], Jiang, Lim, Yao, and Ye developed a method called HodgeRank to deal with these
difficulties.

We use a simple example to elaborate the idea of HodgeRank. Suppose that we have four

candidates A, B, C, D to rank, and we have the following pairwise comparisons:
» A is better than C by 1 point,
* B is better than C by 1 point,
 Cis better than D by 1 point, and

* D is better than B by 2 points.

We can represent the relations by a graph, as shown in the Figure 1.1.



Figure 1.1: Draw the result on the graph.

The same relations can also be presented by a matrix

A0 O -1 0

B0 O -1 2
Y =

Cl 1 1 0 -1

D\NO -2 1 0

Note that Y is a skew-symmetric matrix. The goal is to find a score function

s: {A,B,C,D} - R.

If this can be done, then we get a global ranking of A, B,C, D.
Usually the task is not trivial, for we might have some kind of inconsistency in our datasets.

In our example, we can see

B>C>D>B

which is a contradiction.
The HodgeRank approach is to apply so called combinatorial Hodge decomposition to the
matrix Y

Y =X+ Xy+ Xr,

and the matrix X will give us the score function in desire.



In this thesis, we survey the HodgeRank and use elementary linear algebra to deduce the
combinatorial Hodge theorem. The structure of this thesis is organized as follows. In chapter 2,
we explain the main application we have in mind, which is the pairwise ranking problems; In
chapter 3, we prove all important theorems we need from elementary linear algebra; In chapter
4 we introduce the combinatorial Hodge theory; In chapter 5, we apply the combinatorial Hodge

theory to graphs; and finally we give the conclusion in the final Chapter.



Chapter 2

Pairwise Ranking

2.1 Pairwise Ranking Problems

Let V = {vy,vy,...,0,} be a collection of alternatives (or canditates). We would like to
give the set of alternatives a global ranking. For instance, V can be a collection of sport teams,
movies, books, or students from a class, and so on. Suppose that we can do some pairwise
ranking. For example, team A is better than team B by 5 points; book C is 2.3 points better
than D. However, these datasets usually unbalanced, incomplete, even inconsistence. In this
chapter, we will describe the type of ranking problems we consider and discuss the difficulties

we will encounter. For more details we refer to [2,3,9-14].

2.2 Introduction to HodgeRank

In this thesis, we use the method HodgeRank [6] to deal with pairwise ranking. To elab-
orate the idea of HodgeRank, we give an example. Support we have four sport teams V =

{A,B,C,D}. Four games was held and the results are as follows
» A beats C for 1 point,

* B beats C by 1 point,

* C beats D by 1 point, and



* D beats B by 2 points.

Then we can present the results on a graph, as figure 2.1 shows.

Figure 2.1: The graph of pairwise ranking.

One problem is that we can’t intuitively determine which team is the best for the results are
inconsistent. For example, C beats D and D beats B. However, B beats C by 1 points.

We can also present the results by the corresponding skew-symmetric matrix,

9 0 =W »
-
-
e}
L

Thus a pairwise ranking can be represented by a skew-symmetric matrix. The observation

gives us the following definition.

Definition 2.2.1 (Pairwise Ranking). A pairwise ranking of n alternatives is an n X n skew-

symmetric matrix.

Many different methods of dealing pairwise ranking have been used in many fields, like
psychology, management science, social choice theory, and statistics [1,4,5,7, 14]. Our goal is
to get a global ranking from a pairwise ranking. For our example, that means that we want to

find a function

s: {A,B,C,D} - R.

5



We call the function s a score function.

Applying so called the combinatorial Hodge decomposition to Y, we get

Y =X+ Xyg+ X,

where X is exactly what we want:

0 -133 -1 -0.67
1.33 0 033  0.66
1 -033 0 0.33

0.67 —0.66 —0.33 0

Remember that we have an inconsistent pairwise ranking, but now X is consistent. Set a
score for A then we can get the function s in desire. For example, let s(A) = 0.75. From the

matrix X, we get the score function

2.3 Possible Applications of Pairwise Rankings

Suppose we want to rank 7 items vq, vy, ..., Uy, the key of our approach is to model our

problem into a pairwise ranking. We give some possible examples as follows.

2.3.1 Ranking Students in a Class

Many pairwise rankings raised from grading or voting from some voters. We denote all
voters by A = {aq,ap,..., &y }. For example, the peer assessment in MOOCs, students will

give other’s homework scores online with the criterion. For most people, rating 100 alternatives



at a time is harder than rating only 2 alternatives at a time. In fact, it has been observed that
most people can rank only between 5 and 9 alternatives at a time. [8] And pairwise ranking has
fewer values missing. Take the Netflix problem in the [6] for an example, there is almost 99%
of its values missing but only 0.22% of the pairwise comparison values are missing. Moreover,

in certain things, such as a badminton tournament, only pairwise comparison is possible.

2.3.2 Movie Recommendation Systems

Suppose the movie recommendation system wants to rank the movies in 2016, candidates are
all movies that be released in the movie theaters in 2016 and voters are all viewers that had ever
seen some of these movies. The dataset is all the movies, and then the movie recommendation
system wants to globally rank all the movies. Now for simplicity, suppose we only want to rank
these three movies, “Me Before You,” “Independence Day: Resurgence,” and “The Conjuring
2,” which we denote by M7, My and M3. Each time the voters answer that “preferring My or
My?”, “preferring My or M3?”, or "preferring My or M3”?” But there may be a case: if voter
A thinks M is better than My, voter B prefers My to M3 and voter C votes M3 is better than

M. It results an inconsistent cyclic preference relation

My > My > M3 > M. (2.3.1)

2.3.3 Ranking Sports Team

We can use a graph to represent the dataset: the vertices are all candidates we have to rank
and the edges means that the end points of each edge have been compared. In other words, if
we want to rank football teams, the vertex set is all the football teams and if two teams have a
match to each other then there is an edge between these two vertices. In pairwise comparison,
we can assign the edge a direction and weight, as edge flows, on a diagraph. There are many
different ways to define the weight, for instance, we can let the weight to represent the scores
difference, the score of winning candidate subtracts the score of the losing candidate, and use

an arrow to represent the direction from the winning candidate to the losing one.



2.4 Pairwise Ranking from Voting

Let V = {v1,vs,...,0,} be the set of candidates to be ranked and A = {ay,ap,...,an}
be the set of voters. For each & € A, the pairwise comparisons of voter « is a skew-symmetric
matrix X* € R"*". For each ordered paired (i,j) € V x V, we have Xf; = —Xﬁ In matrix
X", X;’; means that how much the degree of ath voter preferring jth candidate to i-th candidate.
If ath voter does not compare ith and jth candidate, Xf; is a missing value and we let X;’; be
zero. The diagonal entries on the corresponding matrix X are all zero since when we compare
someone and itself, there is no one of them is better than the other. There are several ways to
define the degree of preference, like the score difference. For a game, if one wins by a majority
of 1, it is clearly that there is another one losses for 1 point. So we can construct a corresponding
skew-symmetric matrix and we can apply the combinatorial Hodge Theory to obtain a global

ranking.

2.5 Problems of Pairwise Ranking

As we have seen, many problems can be transferred into a pairwise ranking. However, there
are three major problems in raw pairwise ranking datasets. The pairwise rankings raised from

real-world problems usually are
inconsistent: As we have seen in 2.3.1.
incomplete: In most cases, not all voters will vote (grade) all candidates.

imbalanced: As in the movie recommendation system, one movie might be scored by many

voter, but another might be scored by just one or two persons.

Use the method of HodgeRank, we can solve all these problems.



Chapter 3

Background

3.1 Some Simple Facts in Linear Algebra

In this chapter, the definition of inner product space is an inner product space over the filed

R or C (Hermitian product space).

Lemma 3.1.1. Let V be a finite dimensional inner product space over IR, and let ¢: V' — IR be
a linear transformation.Then there exists a unique vector v’ € V such that g(v) = (v,v’) for

allv e V.

Theorem 3.1.2. Let V, W be two finite dimensional inner product space. Let T: V — W bea

linear transformation. Then there is unique linear transformation T*: W — V such that
(T(v), wyw = (o, T"(w))v.

We call T* the adjoint linear transformation of T.

Proof. Letw € W, and define g: W — R by (T(v), w)w forall T(v) € W.



Let T(v1), T(v2) € Wandc € R.

g(cv1 +v2) = (T(cv1 + v2), w)w
= (cT(v1) + T(v2), w)w
= c(T(v1), w)w + (T (v2), w)w

= cg(v1) + g(v2).

Hence, g is linear.
By Lemma 3.1.1, there exists v/ € V such that ¢(v) = (v,0')y ,i.e (T(v), w)w = (v,v')y.
Define T*: W — V by T*(w) = v/, we have (T(v), w)w = (v, T*(w))y .

To show T* is linear. Let w1, w, € Wandc € R.Forallv € V,

<U, T*(cw1 aF ZU2)>V = <T(U), cwy + w2>W
=c(T(v), w)w + (T(v), w2)w
=c(v, T*(w1))y + (v, T*(wy))v

= (v,cT*(wy) + T (wz))v.

Since v is arbitrary , T*(cwy + wy) = ¢T*(wy) + T*(wy).

Finally, we show T* is unique.

Given U: W — V is linear and (T (v), w)w = (v,U(w))y ,forallv € Vandw € W.

Then (v, T*(w))y = (T(v), w)w = (v, U(w))y, forallv € Vandw € W.

SowegetT* =U . [

Theorem 3.1.3. Let V, W be two finite dimensional inner product space. Let T: V — W
be a linear transformation. If B,y be arbitrary orthonormal bases for V, W, respectively, and
A = [T]y, then
*1B __ ax
T ]7 =A".

10



Proof. Let B = {v1,v,...,0n} and v = {wy, wy, ..., Wy } . Then

and we get

A =

Let B = [T*]g, then

(T(v1), w1)w
(T(v1), w2)w

11




]

Theorem 3.1.4. Let V, W be two finite dimensional inner product space. Let T: V' — W be a
linear transformation. Then

V =ker(T) @im(T"),

and

W =im(T) & ker(T").

Proof. We just prove V = ker(T) & im(T*), for the arguments for W = im(T) & ker(T*)
are exactly the same.
Since we have V = im(T*) @ im(T*)". We only need to show that ker(T) = im(T*)" .

Let x € ker(T). We have T(x) = 0. Then

(T(x), w)w =0, forallw € W.

The definition of T gives us

(x, T"(w))y =0, forallw € W.

We conclude that x € im(T*)". The proof in the reverse direction is similar. []

Lemma 3.1.5. Let V, W be two finite dimensional inner product space. Let T: V — W be a

linear transformation. Then
1. ker(T*) = im(T)*,and
2. ker(T*T) = ker(T).

Proof. 1. Letx € ker(T*). We have T*(x) = 0. Then

(v, T*(x))y =0, forallv € V.

12



The definition of T* gives us
(T(v),x)w =0, forallv € V.

We conclude that x € im(T)*.
So we get ker(T*) C im(T)* .
And it is similar to proof im(T)* C ker(T*).

Beside, we can prove it using the proof in Theorem3.1.4 by (T*)* = T.

2. Clearly, ker(T) C ker(T*T) .
Given x € ker(T*T), T*T(x) = 0.
It impies

T(x) € ker(T*) = im(T)".

But we have

T(x) € im(T).

So T(x) = 0. Then x € ker(T) .
Therefore, ker(T*T) = ker(T) .

3.2 The First Isomorphism Theorem

Theorem 3.2.1. (The First Isomorphism Theorem). Let T: V — W be a linear transformation

between two vector spaces over field R. Then
V/ker(T) =im(T).

Proof. Define ¢: V/ ker(T) — im(T); that is, ¢(v + ker(T)) = T(v) forallv € V.

13



For all v € V, there exists

¢(v+ker(T)) = T(v) € im(T).

And for all v1 + ker(T), v, + ker(T) € V + ker(T) with v; + ker(T) = v, + ker(T), it

implies
01— 0y € ker(T).
Then
T(v1 —vy) = 0.
So we have

T(v1) = T(vy).

Therefore, ¢ is well-defined.

Second, we show that ¢ is linear. For all ¢(v1 +ker(T)), ¢(v2 +ker(T)) € im(T) andc € R,

¢(v1 + ker(T) + vp + ker(T)) = ¢((v1 + v2) + ker(T))

=T(v1+v2) = T(v1) + T(v2).

And

p(c(v+ker(T))) = ¢p(cv+ker(T))
= T(cv) = cT(v)

= cp(v + ker(T)).

So ¢ is linear.
Then, for all ¢(v1 + ker(T)), p(va + ker(T)) € im(T) with ¢(v1 + ker(T)) = ¢(v2 +
ker(T)), we have T(vy) = T(v2). So

T(v1) — T(v2) =0,

14



and we get

T(Ul — Uz) = O,

which implies

01— 0y € ker(T).

Then we obtain

U1+ ker(T) =0y + ker(T).

Hence, ¢ is one-to-one.

Last, for all w € T(v), there exists v € V such that T(v) = w. We get

$(v+ker(T)) = T(v) = w.

Therefore, ¢ is onto.

15



Chapter 4

Combinatorial Hodge Theory

In this thesis, we only focus on combinatorial Hodge theory. More information of classical

Hodge theory we refer to [15, 16].

4.1 Cochain Complex
Let (Ca, ds) be a cochain complex of inner product spaces:

9, %

0
Co !

d2

C1 @)

such that d’s are linear transformations and dy, 19y = 0.
Let 9] be the adjoint of the linear transformation di. That is, d; is the unique linear trans-

formation from Cy 1 to Cy such that

{0k (%), Y k1 = (%, 05 (V) ks

for all x € Cx and y € Cy;1. We now have the following maps:

Ok-1 ok
3
—> G Ck Cr1 —
G 9%

16



Definition 4.1.1. Let (C,,ds) be a cochain complex of inner product spaces. Define the k-th

combinatorial Laplacian Ay : Cp — Cj by
Ay = ak,18;_1 + aiak

An element u in Cy is harmonic if Ag(u) = 0.

4.2 Combinatorial Hodge Theory

Lemma 4.2.1. Let (C,, ds) be a cochain complex of inner product spaces.
1. Cp =im(0g—1) ® ker(9;_,) = im(dy) @ ker(0y)
It is not hard to prove the following theorem.

Theorem 4.2.2 (Combinatorial Hodge Theorem). Let (C,,de) be a cochain complex of inner

product spaces. Then we have
1. H*(C) = ker(9;)/ im(d_1) =~ ker(Ay),
2. Cp =1im(dk_1) ® ker(Ay) @ im(9;), and
3. ker(Ay) = ker(dy) Nker(d;_4).
We call (2) the combinatorial Hodge decomposition on Cj.

Proof. We first prove (3).

Clearly, ker(0;) Nker(df_;) C ker(Ay).

Let x € ker(Ay) = ker(dx_10;_; + 0;9x) , which means dj_10;_;(x) + 9;9x(x) = 0.
Then

919} (x) = — oy (x).

Multiplying 9y ,
k0191 (x) = =0k (x) = 0.

17



We get 979k (x) € ker(dy) , but we have 99k (x) € im(9}) = ker(dy)* .
So 90k (x) = 0.
We have x € ker(d;dy) = ker () .
Multiplying 0;_1 ,
O _19k-105_1(x) = —9;_19;9k(x) = 0.

We get 919} _(x) € ker(9;_,) , but we have 9y _19;_,(x) € im(9y_;) = ker(d} ;)= .
S0 0105 _4(x) =0.
We have x € ker(dy_19f_;) = ker(d;_,).
Then x € ker(dx) Nker(d; ;).
We obtaine ker(9;) Nker(df ;) = ker(A).
Second,we prove (2).
Ok - Ok—1 = 0, then (9 - 9_1)* = 9_; -9 = 0.
We obtain im(d}) C ker(d;_;) .
ker(d;_;) = Cx Nker(9;_;)
= [im(0f) @ ker(dx)] Nker(d;_;)
= [im(dx) Nker(9;_,)] @ [ker(dy) Nker(dy_;)]

= im(9;) @ [ker(9;) Nker(9f_;)]
Now,

Ck = im(ak,l) D ker(af_l)

= im(ak,l) S%; 1m(8;) SP) [ker(ak) N ker(az_l)].

And by (3), ker(dy) Nker(9;_;) = ker(Ay).

18



Therefore,

Cy = im(dg—1) ® ker(dg_)
= im(dy—1) B im(dy) & [ker () Nker(dy_;)]

= im(dx_1) ® im(0y) & ker(Ag).

Last, we prove (1) .
Since 9y - dx_1 = 0, we get im(dx_1) C ker(dy).
Let¢: C — im(d;_1)" be the projection onto the subspace im (d;_1)=.
C = im (1) ®im(d 1)
Sox =¢(x)+ (1 —¢)(x),forallx € C.

And

ker(dx) = C Nker (o)
= [im(3—1)" @ im(dg_1)] N ker(d)
= [im(9;_1)" Nker(d)] @ [im(d_1) Nker(d)]

= [im(0)_1) " Nker(9)] @ im (91 ).

We can restrict ¢ to the subspace ker(dy) , denoted ¢ .
Then

x = ¢p(x) + (1 — ) (x), for all x € ker(dy) .

¢ is surjective , S0 is .
Then im(¢p) = ker(9y) Nim(d_q)*.

By the first isomorphism theorem,

ker(dy)/ ker () ~ im(¢y) = ker(d;) Nim(df_q)T.

19



And
Vx € ker(¢x), pr(x) = 0. = x € im(d_1),

also same in the reverse. So we get ker(¢) = im(d;_1).
Then
ker(d;)/im(9x_1) ~ ker(d;) Nim(d;_q)*.

By (3), ker(Ay) = ker(d;) Nker(d;_,), and (1) in Lemma 3.1.5 ,im(d;_1)* = ker(d;_,),
we finally get
ker(dx)/im(dx_1) ~ ker(dx) Nker(9;_;) = ker(Ay).

4.3 Finding the Best Solution

Let (Ce,de) be a cochain complex of inner product spaces:

do 1
e )
Co C Co.
~_ ~_
9 0]

such that for k = 0, 1, dy are linear transformations and 0 be the adjoint of the linear transfor-

mation di. That is, d) is the unique linear transformation from C; to Cy such that
(90(x),y)1 = (x,95(y))o, forallx € Cyandy € C;.

And 07 is the unique linear transformation from C to C; such that
(01(x),y)2 = (x,01(y))1, forallx € C; and y € Cy.

Fix y in Cq, we want to find

in || 9px — v || .
gg;“ ox —y |

20



That is, let V = {dox | x € Cp} and given y € Cy, we want to find the unique dpx € V,
where X is in Cp, which is closest to y.

We know that dpx — y € V-+. So forall x € Cy,

(8()} -V, 80x>1 =0.

We get
(95(d0x —y),x)p =0, forall x € C.
It implies
9p(9ox —y) =0.
Then
dpdox — dyy = 0.
Therefore,

X = (9590) “0oy.

21



Chapter 5

Combinatorial Hodge Theory on Graphs

5.1 Graphs and Functions on Graphs

In this section, we introduce some terminologies in graph theory. The basic definitions are

referred to [17]. For representing our data, we introduce special functions called flows.

Definition 5.1.1. A graph G is a triple consisting of a vertex set V, an edge set E, and a relation
that associates with each edge two vertices (not necessarily distinct) called its endpoints. We
write G = (V, E) to present a graph G with vertex set V and edge set E.

Note that the vertex set and the edge set are finite in general. The vertex set V having n elements
means that G have n vertices, denoted by |G| = n; thatis V = {vq,vp,...,0,} and writing

v;v; for an edge with its endpoints v;, v; € V.

Definition 5.1.2. A loop is an edge whose endpoints are equal and multiple edges are edges
having the same pair of endpoints.

A simple graph is a graph having no loops or multiple edges.

A graph G = (V,E) is called a subgraph of G = (V,E) if V. C Vand E C E.

Moreover, if the vertices of a simple graph are pairwise adjacent, it is a complete graph. And
a clique is a set of pairwise adjacent vertices in a graph. That is, a complete graph is each distinct
pair of vertices (v;, vj) in V, the edge v;v; is in E and a clique of G is a nonempty complete

subgraph of G. A k-clique of G is a clique of G that containing k vertices.

22



For an example, figure 5.1 is a simple graph because it does not have loop and multiple
edges. The vertex setis {A, B, C, D} and the edge setis { AD, BC,CD, BD}. There is no edge

between vertex A and vertex B, so it isn’t a complete graph.

“w (B

Figure 5.1: A simple graph.

Definition 5.1.3. A path is a simple graph whose vertices can be ordered so that two vertices
are adjacent if they are consecutive in the list. A v;, vj-path, v;, v; € V, means that we can travel
from v; to v; and the vertices in the path are not repeated.

A cycle is a graph with an equal number of vertices and edges whose vertices can be placed
around a circle so that two vertices are adjacent if and only if they appear consecutively along
the circle. We can think that a cycle is a path that the start vertex and the end vertex are the

same.

On figure 5.1, there is a cycle: B— C — D — B; there is an A, B-path: A — D — C — B.
There is another A, B-path, A — D — B.

Definition 5.1.4. A directed graph G (or diagraph) is a triple consisting of a vertex set V, an
edge set E, and a function assigning each edge an ordered pair of vertices. In the ordered pair
(vj, ;) in V, the first vertex is called the tail of the edge and the second is the head. And when
drawing a diagraph, we draw an arrow from its tail to its head. The vertex set is written by
V = v1,03,...,0, and an edge in E is written as ZTU] by its tail v; and head v;. But in our
pairwise ranking problems, all is diagraph. So we only simply write an edge as v;v; by its tail

v; and head v;.
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Definition 5.1.5. An edge flow X on a simple graph G = (V, E) is a real valued function on
the edge set E and X: V x V — IR satisfies

X(vivj) = —X(U]'ZJZ'), for all 414 € E
X(vivj) = 0, for all v;v; ¢ E.

Let C; = { all edge flows }.

We define X is zero for all pairs of vertices that are not adjacent, and X (v;v;) = 0 since we
have defined edges does not self-adjacent; if there had self-adjacent edges, there are multiple
edges and G is not a simple graph.

The edge flow function can be represented by a skew-symmetric matrix [Xl-]-] by Xj; =
X(v;,v;), and we still define X;; = 0 if v;,v; ¢ E. If there is a n x n skew-symmetric matrix
and a graph G with |G| = n, we can define an edge flow of G by letting X (v;v;) = X;j. So the
set of edge flows on G is ono-to-one corresponding to the set of 7 X n skew-symmetric matrices,

that is satisfying
{X € Myxn(R)|XT = —X and X;; = 0if v;0; ¢ E}.

From now on, it is not important to distinguish edges flows and skew-symmetric matrices.
The reason is we can induce one of them if we have another. As figure 5.2, there is a graph
with 4 vertices whose edge flows can be corresponding to the following 4 x 4 skew-symmetric

matrix, and vice versa.

g 0O W x
-
-
e}
L
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Figure 5.2: A graph with 4 vertices.

Define

be the set of k-elements subset of V.

It is obvious that the edge set

Definition 5.1.6. Let V' = {v1,v;,...,0,} be the set of candidates to be ranked and A =

{a1,az,...,a,} be the set of voters. Define the weight function w: A x V x V by

. o 1 ,if voter « made a comparison for v;, v; € V
wij = w(a,i,j) = ' . '
0, if voter « didn’t make a comparison for v;, v; € V.

The weight matrix W is defined by

wi]- = Z wf;

aEN

It is clear that W is a symmetric matrix whose entries are nonnegative values.

In a simple graph G = (V, E), we can find the sets of the collections of 1-clique, 2-cliques

and 3-cliques respectively. Obviously, the collection of 1-clique is just the vertex set V. The
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collection of 2-cliques is the edge set E:
1%
E = 0;0; {’01', ’0]} € s Wij >0,
2
where w;j =}, a)f; The collection of 3-cliques is the set T':
1%
T = { vvjor|[{vi, v}, vk} € , and ;0,0 V4V; € E 5 (5.1.1)
3

The 3-cliques on the graph is triangles, so we denote T. The set of k-cliques, denoted K (G), is
defined by

{vi,...,vi,} € Kk(G) < 03,0, €EVI<p<q<k

We get
Ki(G) =V,Ky(G) = Eand K3(G) = T.

On page 23 figure 5.1, the triple (B,C,D) is a 3-cliques and the only one.

Definition 5.1.7. A score function s € R" is a real-valued function on the set of all candidates;
that is,

s: V—1R.
Let Cy = {all score functions s }.

A score function assign every candidate a score : s(v;) = s;, for all v; € V. Every score

function induces a global ranking.

Definition 5.1.8. The combinatorial gradient or simply gradient, denoted grad, is a mapping

on the vertices to an edge flow. Define grad: Cy — C; by
Forall s € Cy, (grads)(v;v;) =s; —s;, forall v;,v; € V.

It is obvious that gradient is an edge flow.
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Theorem 5.1.9. Gradient flow is independent with path. In other words, if X is an gradient
flow, then X;; = s; —s; for v;,v; € V for some s is only depending on v;, v; no matter what

v;, vj-path is. In other words, gradient flow is independent with path.
Proof. Let vy — vy — -+ - — v be a path on a graph G with |G| = n, and X be a gradient flow.
Then the flow of X along the path is

X(v102) + X(vpv3) + - - - + X(vk_20k 1) + X(vk_10k)

Since a gradient flow is X(v;0;) = s; — s; for some s, we get

X(v107) + X(vpv3) 4+« 4+ X(vp_205_1) + X(0vk_10k)
=(s2—81) +(s3 —82) + - + (Sk—1 — Sk—2) + (5k — Sk-1)

=S — 51

O

If we get a globally consistent(see Definition 5.1.14) pairwise ranking X, it is easy to deter-
mine a score function s (up to adding a scalar) by solving grad(s) = X. And we can obtain a

global ranking of candidates. For example,
Theorem 5.1.10. A gradient is a linear transformation.

Proof. Let grad: Cy — C; be a gradient flow by

Forall s € Cy, (grads)(v;v;) = s; —s;, forall v;,v; € V.

Givens, t € Co, (grads)(v;vj) = s; — s; and (grad t)(v;v;) = t; — t;.
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For all v;,v; € V, we have

grad(s +1)(vjvj) = (s +1); — (s +1);
= (S] + t]) — (Si + ti)
:S]'—Si—i-t]'—ti

= (grad s)(viv]') + (grad t)(vivj).

And forall c € R,

grad(cs)(v;v;) = (cs); — (cs);
= CS]' — CS;
= c(sj — ;)

= c(grads)(v;v;).

[
Definition 5.1.11. The triangular flow on G = (V,E) is the function ®: V x V x V — R

that satisfies

ik = D(vivjvr) = P(vjvrv;) = P(Vkvv))

= —®(vjv;0r) = —P(vivgv;) = —P(vkvjv;),

We define C, = {all triangle flows}.

Definition 5.1.12. Let X be an edge flow and T in page 26(5.1.1). A curl is a map from edge

flows to triangle flows. Define curl: C; — C; by

Xii + Xix + Xy, if vjojop € T
For all X € Cy, (curl X)(vjvjvx) = ij j i, 11 0;0;
0, ifvivjvk ZgT.

Theorem 5.1.13. A curl is a linear transformation.
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Proof. Let ®: C; — C; be a curl by

X;i + X + Xy, if oo, € T
For all X € Cy, (curl X)(v;vjvx) = ij ik kir 1L 000
0,if vvjv, ¢ T.

1%
Given A, B € C and for all v;, vj, vy € ,

Ifvvjoe €T,

curl(A + B)(vivjvk) =(A+ B)l']' + (A + B)]'k + (A+ B)y
= Ai]' + Bi]' + A]'k + B]'k + Ay; + By
= (Ajj + Ajx + Axi) + (Bij + Bjx + Byi)

= curl(A)(v;vjox) + curl(B)(v;v;v).

If Z)I'U]'Uk ¢ T,

curl(A + B)(vvjvx) = 0,
curl(A)(v;vjvr) = 0, and

Curl(B)(UinZ)k) =0.
So, we get
curl(A + B)(vjvjvg) = curl(A)(vivjvx) + curl(B)(v;vjv).
And forall c € R,
curl(cA)(vivjvx) = (cA)ij + (cA)jx + (cA)ki
= CAjj + cAjk + cAy

= c(Ajj + Aj + Aki)

= ccurl(A)(v;vjvy).
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]

Definition 5.1.14. Let X: V X V — IR be a edge flow on a pairwise comparison graph G =
(V,E).

1. X is called consistent on v;v;v € T if it is curl-free on v;v;vy. That s,

(curl X) (vjvjvy) = Xj + Xijk + Xki = 0.

2. X is called globally consistent if it is a gradient of a score function. That is,

X = grads forsomes: V. — R.

3. X is called locally consistent or triangular consistent if it is curl-free on every triangle in

T.

4. X is called a cyclic ranking if it contains any inconsistencies. That is,

there exists v;,0j, . .., vp, 0g € V such that Xj; + Xjx + - -+ Xpg + X4 # 0

Global consistency implies local consistence but the inverse may not be true. There is may
be a case that is globally consistent but not locally consistent, as figure 5.3 shown. There is a
closed path, A - B — C — D — A, adding all edge flows along the path is X 45 + Xpc +
Xep+ Xpr+ Xpa =1+1+1+1+4+1 =5 # 0. We get a nonzero net weight along the
path, so figure 5.3 is globally inconsistent. On the other hand, we look at the only triangle in
the graph, A — B — C — A. Since curl(A,B,C) = Xup+ Xpc+Xca=1+1-2=0,

figure 5.3 is locally consistent.

Lemma 5.1.15.

curlograd =0
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Figure 5.3: An example of globally inconsistent but locally consisitent.

Proof. Let X = grad(s) for some s € R", and v;0;v; € T. Then

curl(X)jjx = Xij + Xjg + X
= (sj = si) + (sk = 8j) + (si — sx)

=0

]

From the lemma, we know that global consistency implies local consistency. Then a curl-

free on a complete graph must be a gradient.

Definition 5.1.16. A divergence div € IR" is a real-valued function on the set of all candidates;

that is, div: V — RR. Define div: C; — R" by

forall X € Cy, divX(v;) = ) X

Uj,(Z)l'Z)]'GE)

And if div X(v;) = 0 on each vertex v; € V, the graph G is called divergence-free.

We also take page 25 figure 5.2 for an example:
div(A) = —1,div(B) = 1,div(C) = 1,div(D) = —1,

and figure 5.2 is not divergence-free.
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Definition 5.1.17. Let X be an edge flow on the graph G. The flow X is a harmonic flow if it

both curl-free and divergence-free.

5.2 Matrices

We can use skew-symmetric matrices to represent edge flows, gradient flows, harmonic
flows, and curl flows.

Let A be the set of all skew-symmetric matrices:
A={X € Myu(R) | X" ==X}
Define the set of gradient matrices:
Mg ={X € A | X;j=s; s, forsome s € R"}, (5.2.1)
and the set of triangular consistent matrices :
Mr ={X € A| Xjj + Xj) + X} = 0 for all v;v;v, € T}.

Bylemma5.1.15, every X € Mg isin Mr; thatis, Mg C Mr. With the usual inner product

(-,-) in vector space My, »,(R):
<A,B> — tr(A*B) = Zaijbij forall A,B € Mnxn(IR)/
i

we let M the orthogonal complement of M in MT; that is,
My = My N M.

It is equivalent to

Mt = Mg © Mp. (5.2.2)
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The elements in My is harmonic, which are curl-free and divergence-free. Since Mg and Mt

are subspaces of A, we can get

A= Mg ® M;

A= M@ Mz (5.2.3)
So we can obtain

A = M7 @ M7 by equation(5.2.3)

= Mg @ My ® M7 by equation(5.2.2) (5.2.4)

5.3 Inner Product

We define the weighted inner product in C; by

(X, Y)w = ) wiixijyij, (5.3.1)
i,j
for all edge flows X, Y in Cy. And equation( 5.2.4) is still hold.
C; is all the set of all n x n skew-symmetric matrices, the inner product in C; defined in
(5.3.1) is referred to [6]. But there is a little problem, we need to be careful of it.
If we have a pairwise ranking problem, we obtained the weighted matrix and define the inner

product in Cy in the function (5.3.1). If we give the weight matrix W and A € C; as following:

0111 00 0 0
1000 00 1 1
W = JA = (5.3.2)
1000 0 -1 0 1
1000 0 -1 -1 0
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Then

(A, Ay = Zwijafj =0
L]

but A is not O. It is not a inner product.

We try to give some constraints to let it be a inner product. First, all candidates must be
voted at least once. So all our graphs are connected. But it is clear that the graph related the
matrix X = O is not a connected graph. So the set of all weighted adjacency matrices induced

by connected graphs is not a vector space. So we consider the set
S = span{X € M;,x,(R) | X is a weighted adjacency matrix induced by a connected graph}.

We want (5.3.1) defined in S to be a inner product. But if we take

0 0 0 1 0O 0 0 -1
0 0 1 1 0O 0 1 1
B = P —
0 -1 0 1 0O -1 0 1
-1 -1 -1 0 1 -1 -1 0
Clearly, B and C are skew-symmetric matrices.
0O 0 0 1 0 0 0 -1 0 0 0 O
0O 0 1 1 0O 0 1 1 0 0 1 1
B+C= + = =A
0 -1 0 1 0 -1 0 1 0 -1 0 1
-1 -1 -1 0 1 -1 -1 0 0 -1 -1 0

Aisin S. And it is the same as the example in (5.3.2). We still check that it is not a inner product
in S. We failed to let the definition in (5.3.1) be a inner product in the subspace of the set of all
skew-symmetric matrices.

Therefore, we need to give more constraints to get the subspace of C; and let our definition

in (5.3.1) be a inner product .
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5.4 Find the Global Ranking

Our approach to ranking is to minimize a weighted sum of pairwise loss of a global ranking.

Our problem is ordinary least squares:
: o a2
min wii(Xii — Y55
XeMGD;,j HET

,where Mg is the set that is defined in (5.2.1) and wf‘]- is defined in definition 5.1.6.
The optimization problem can be written as

in || X—Y|[2,= mi (i = i), 5.4.1
Xnelll\?c | 12, gﬁc;jwu(%] Yij) ( )

where w;j =}, w;?‘]- and y;; is the average scores; that is, y;; = )4 wf‘].y;?} /Y wf;

5.5 Applying Combinatorial Hodge Theory

If we represent functions on vertices by n vectors, edge flows by n x n skew-symmetric
matrices, and triangular flows by n X n X n skew-symmetric matrices. That is,
Co = {s e R"},
C ={X € Myxu(R) | Xjj = —Xj;}, and
Co ={P € Muxnxn(R) | Pjjp = Pjgi = Prij = —Pjix = —Digj = —DPyji -

Then, by the theorem 4.2.2, we have

b
()
=
Q)

=4

I
b
()
pay
Q.
=
=
I
]
)
=
o,
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By definition 4.1.1: Ay = 0dy_19;_; + 9} 0%, and in particular

Ao = 8380 = —divo grad,

A1 = 9dpd + 9701 = curl” o curl — grad o div .
Then the optimal solution can be written to
Jin || X-Y 2= min || os — Y [|3,= min || grads = ¥ [[3,, (5.5.1)
Theorem 5.5.1. The solution of 5.5.1 satisfy
Ags = —divY,

and the minimum solution is

s = —AbdivY,

where the A(J)r is the Moore-Penrose inverse (pseudo-inverse), the divergence is

div Y(UZ') = Z winl-]-,
jAviv Y EE
and
Z] wl']', ifi = ]
Ay = —Wwij, if?)ﬂ)j € E

0, otherwise.

5.6 Practical Example

Suppose there are five students, A, B, C, D, and E, we want to rank their homework and
know which is the best. Each time teacher compares two homework, and gives his preference

by scores:

A is better than B by 2 points,
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A is better than E by 8 points,

B is better than C by 6 points,

L]

B is better than D by 1 point,

» C is better than A by 2 points, and

* D is better than E by 6 points.

Then we can have the pairwise comparison graph.

Figure 5.4: Pairwise comparison result.

We can also use the skew-symmetric matrix to represent the relations.

>.<
I
m g O W »
|
N
(@)
(@]
(@)
(@)
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The weight matrix is aaand the

We can get the matrix

Then

We can get the score function

0.500
0.500
0.500
0.500
0.500

§ = —Agdiv =

divY=| 4

3 -1
-1 3

-1

-1 0

0.318
0.864
0.591
0.682
0.500

—1l

—1
-1
2

0.409
0.682
1.045
0.591
0.500
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0.045
0.409
0.227
0.955
0.500

7.36
8.27
5.81
6.64

—0.227

—0.045

-0.136
0.227
0.500




And we can get the consistent skew-symmetric matrix

0 827 —-736 581—-736 6.64—-736 0—7.36
7.36 — 8.27 0 581 —-8.27 6.64 -827 0-8.27
X =1736-581 827—5.81 0 6.64 —5.81 0—5.81
7.36 —6.64 827 —6.64 5.81 —6.64 0 0—6.64

7.36 — 0 827 -0 581 -0 6.64 — 0 0

0 091 —-155 -0.72 -7.36
-091 0 -246 —-1.63 —-827
= | 155 246 0 0.83 -5.81
072 1.63 —-0.83 0 —6.64

736 827 581 6.64 0
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Chapter 6

Conclusion

In this thesis, we primarily show the elementary linear algebra that is used to survey HodgeR-
ank and deduce combinatorial Hodge theorem. In the original paper, Jiang, Lim, Yao and Ye,
proposed that HodgeRank is a suitable method for ranking datasets which are incomplete or
imbalanced. In other words, most values are missing or some candidates are popular that they
received a great quantity of scores. These difficulties usually happened in the modern ranking
problems. We use HodgeRank to deal with these troubles and each time we only compare two
candidate. Then we can get a global ranking so that we can give every candidate a score.

Pairwise comparison is practical in today’s ranking problems. For example, the teacher uses
MOOC:s for the course this semester, and students will hand in their homework on the internet.
Teacher use Peer assessment that students will give scores to a few classmates’ homework after
the homework deadline. Online courses is popular and have more people to sign up now. It
is not possible for a teacher to score all homework. In the end of the course, teacher can use
HodgeRank and obtain the ranking of all students’ performance.

There are a lot of applications of HodgeRank still can try : combine HodgeRank with other
method to ranking or think about how to rank when adding a new candidate or there is a candidate
have no scores.

Also in this thesis, we mention that there is some little problem when we define the inner
product. So in the following research, we can try to give more constraints to find the inner

product space. To let the method be more perfect.

40



Bibliography

[1] Kenneth J. Arrow. A difficulty in the concept of social welfare. Journal of Political

Economy, 58(4):328-346, 1950.

[2] Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs. 1.

The method of paired comparisons. Biometrika, 39:324-345, 1952.

[3] Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. Magnitude-preserving ranking algo-
rithms. In Proceedings of the 24th International Conference on Machine Learning, ICML

’07, pages 169—176, New York, NY, USA, 2007. ACM.

[4] H. A. David. The method of paired comparisons, volume 41 of Griffin s Statistical Mono-
graphs & Courses. Charles Griffin & Co., Ltd., London; The Clarendon Press, Oxford

University Press, New York, second edition, 1988.

[5] Dorit S. Hochbaum and Asaf Levin. Methodologies and algorithms for group-rankings
decision. Manage. Sci., 52(9):1394-1408, September 2006.

[6] Xiaoye Jiang, Lek-Heng Lim, Yuan Yao, and Yinyu Ye. Statistical ranking and combina-
torial Hodge theory. Math. Program., 127(1, Ser. B):203-244, 2011.

[7] M. G. Kendall and B. Babington Smith. On the method of paired comparisons. Biometrika,
31:324-345, 1940.

[8] George Miller. The magical number seven, plus or minus two: Some limits on our capacity
for processing information, 1956. One of the 100 most influential papers in cognitive

science: http://cogsci.umn.edu/millennium/final.html.

41



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Frederick Mosteller. Remarks on the method of paired comparisons: I. the least squares
solution assuming equal standard deviations and equal correlations. Psychometrika, 16(1):

3-9, 1951.

Frederick Mosteller. Remarks on the method of paired comparisons: Ii. the effect of an
aberrant standard deviation when equal standard deviations and equal correlations are as-

sumed. Psychometrika, 16(2):203-206, 1951.

Frederick Mosteller. Remarks on the method of paired comparisons: lii. a test of signif-
icance for paired comparisons when equal standard deviations and equal correlations are

assumed. Psychometrika, 16(2):207-218, 1951.

Gottfried E. Noether. Remarks about a paired comparison model. Psychometrika,25:357—

367, 1960.

Donald G. Saari and Vincent R. Merlin. A geometric examination of Kemeny’s rule. Soc.

Choice Welf., 17(3):403—438, 2000.

Thomas L. Saaty. A scaling method for priorities in hierarchical structures. J. Mathemat-

ical Psychology, 15(3):234-281, 1977.

Claire Voisin. Hodge theory and complex algebraic geometry. I, volume 76 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, english edi-

tion, 2007. Translated from the French by Leila Schneps.

Claire Voisin. Hodge theory and complex algebraic geometry. 11, volume 77 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, english edi-

tion, 2007. Translated from the French by Leila Schneps.

Douglas B. West. Introduction to graph theory. Prentice Hall, Inc., Upper Saddle River,
NJ, 1996.

42



	口試委員會審定書
	致謝
	中文摘要
	Abstract
	Contents
	List of Figures
	Introduction
	Pairwise Ranking
	Pairwise Ranking Problems
	Introduction to HodgeRank
	Possible Applications of Pairwise Rankings
	Ranking Students in a Class
	Movie Recommendation Systems
	Ranking Sports Team

	Pairwise Ranking from Voting
	Problems of Pairwise Ranking

	Background
	Some Simple Facts in Linear Algebra
	The First Isomorphism Theorem

	Combinatorial Hodge Theory
	Cochain Complex
	Combinatorial Hodge Theory
	Finding the Best Solution

	Combinatorial Hodge Theory on Graphs
	Graphs and Functions on Graphs
	Matrices
	Inner Product
	Find the Global Ranking
	Applying Combinatorial Hodge Theory
	Practical Example

	Conclusion
	Bibliography

