考試科目

微積为

所 别界辽考文学的见土在考 試 時間 >月为6日民第3節

- 1. Assume that f is continuous on [0,2] and f(0)=f(2)=0. Show that there exists $c \in [0,1)$ such that f(c+1) = f(c).
- 2. Suppose that f and g are differentiable functions in [0,1] and f(0)=5, f(1) = 0, g(0) = 2, g(1) = -3. Show that there exists a point $x_0 \in (0,1)$ such that $f'(x_0) = g'(x_0)$.
- 3. Find the maximum and minimum values of the function f(x, y, z) = x + 2y + zon the sphere $x^{2} + y^{2} + z^{2} = 24$. (15%)
- 4. Show that $(1+x)^{\alpha} < 1 + \alpha x$ for all x > 0 and $0 < \alpha < 1$. (15%)
- 5. Compute the volume of the solid enclosed by the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, (15%)where a, b, c are positive constants.
- 6. Evaluate the following integrals:

(a)
$$\int \ln x \, dx$$
 (b) $\int \frac{1}{x^2 + 1} \, dx$ (c) $\int \frac{1}{x^2 - 1} \, dx$ (15%)

7. Does the series $\sum_{n=1}^{\infty} \left(\frac{2n}{2n+1} - \frac{2n-1}{2n} \right)$ converge? Explain. (10%) 考試科目線性代數

斤 別

歌學教學過士 在職事班

芳試時間

2月26日於第四節

- 1. (15 points) Let A be an $n \times n$ invertible real matrix. Is A diagonalizable? Justify your answer.
- 2. (15 points) Let $\mathcal{F} = \{f \colon \mathbb{R} \to \mathbb{R}\}$ be the vector space of all real-valued functions defined on \mathbb{R} . Let $f(x) = \cos(x)$ and $g(x) = \sin(x)$. Clearly, f and g belong to \mathcal{F} . Are f, g linearly independent? Justify your answer.
- 3. (15 points) Show that any linear transformation $T: \mathbb{R}^3 \to \mathbb{R}$ is of the form T(x, y, z) = ax + by + cz for some real number $a, b, c \in \mathbb{R}$.
- 4. (15 points) Let W be the subspace of \mathbb{R}^3 spanned by two vectors (1,1,0) and (1,0,1). Find a basis for W^{\perp} . $(W^{\perp} = \{ \mathbf{v} \in \mathbb{R}^3 | \mathbf{v} \cdot \mathbf{u} = 0 \text{ for all } \mathbf{u} \in \mathbb{R}^3 \})$
- 5. (20 points) Let $\beta_1 = \{(1,1), (1,0)\}$ and $\beta_2 = \{(-1,1), (0,1)\}$ be two bases of \mathbb{R}^2 .
 - (a) For any vector \mathbf{v} in \mathbb{R}^2 , the coordinate of \mathbf{v} corresponding to the basis $\boldsymbol{\beta}$ is denoted by $[\mathbf{v}]_{\boldsymbol{\beta}}$. Let \mathbf{v} be a vector in \mathbb{R}^2 such that $[\mathbf{v}]_{\beta_1} = (2,3)$. Find $[\mathbf{v}]_{\beta_2}$.
 - (b) Find the matrix B such that $B[u]_{\beta_1} = [u]_{\beta_2}$, for all u in \mathbb{R}^2 .
- 6. (20 points) Let V be a finite-dimensional vector space over \mathbb{R} . Let T be a linear operator on V. Suppose that $T^2 = T$. Show that $V = \ker T + \operatorname{im} T$.