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A Bayesian Approach to Dynamic Panel Models with
Endogenous Rarely Changing Variables*

TSUNG-HAN TSAI

Whether democratic and non-democratic regimes perform differently in social provision
policy is an important issue to social scientists and policy makers. As political regimes
are rarely changing, their long-term or dynamic effects on the outcome are of concern to

researchers when they evaluate how political regimes affect social policy. However, estimating the
dynamic effects of rarely changing variables in the analysis of time-series cross-sectional data by
conventional estimators may be problematic when the unit effects are included in the model
specification. This article proposes a model to account for and estimate the correlation between
the unit effects and explanatory variables. Applying the proposed model to 18 Latin American
countries, this article finds evidence that democracy has a positive effect on social spending both
in the short and long term.

In national-level studies of public social spending, many efforts have been made to explain
why some countries consistently pursue more welfare-enhancing policies than others. From
the perspective of institutional scholars, democratic institutions enable politicians to make

credible policy commitments to the electorate through competitive elections, so citizens who
prefer redistributive policies are able to influence policy decisions by electing their repre-
sentatives, compared with non-democratic ones (Meltzer and Richard 1981; Persson and
Tabellini 2000). The realization of redistributive policies in democracies, however, may only be
observed in the long term (Huber et al. 2008; Keefer and Vlaicu 2008). This raises one
empirical question: Does democracy matter for social welfare programs in the short term, in the
long term, or both?

This article addresses this question by focusing on the estimation issues of dynamics of rarely
changing variables such as political regimes in time-series cross-sectional (TSCS).1 In the
analysis of TSCS data or panel data, which have both intertemporal and cross-sectional
variations, researchers are able to control for unobserved heterogeneity across units to eliminate
omitted variable bias in estimation by including unit-specific effects.2 However, it is
problematic to estimate a panel model with a lagged dependent variable (LDV), time-invariant
and/or rarely changing variables, and unit effects by two conventional approaches: fixed-effects
(FE) models and random-effects (RE) models (Wooldridge 2002; Hsiao 2003; Baltagi 2005).
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1 Generally speaking, a rarely/slowly changing variable refers to a variable that does not change often or has
very low within variation (Plümper and Troeger 2007), e.g., the level of democracy in the empirical example.

2 TSCS data have a small number of units over a reasonable-sized time period while panel data have a large
number of units for a short time period (Beck and Katz 1996). Although the discussion in this article focuses
mainly on TSCS data, the proposed model can be applied to analyzing panel data as well.
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Building on the structure of simultaneous equation modeling and error-component formulations,
a Bayesian simultaneous equation model (hereafter, BSEM) is developed here with hierarchical
features that accommodate the correlation between the unit effects and explanatory variables, for
which I focus on time-varying and rarely changing variables. Unlike conventional approaches, the
BSEM provides additional information on the degree of the correlation. The complexity of this
specification requires estimation with Markov chain Monte Carlo (MCMC) methods. A Bayesian
approach offers flexibility for complex model specifications and resolves the inferential problems
that arise in non-Bayesian multilevel models (MLMs) (Carlin and Louis 2000; Gill 2008a).

To assess the performance of the BSEM presented in this article, I employ a Monte Carlo
study, in which I compare the proposed model with alternative estimators in estimating the
coefficients of correlated time-varying and rarely changing variables. The simulation results
show that the proposed model not only performs as well as, or better than alternative estimators
in terms of unbiasedness and efficiency, but also can estimate the correlation between covariates
and the unit effects. The proposed model is applied to analyze the effects of political regimes on
social spending in Latin America, where countries have different democratic experiences and
different social welfare systems. This article finds evidence that democracy has a positive effect
on social spending both in the short and long term.

This article has two primary contributions. First, methodologically, the proposed model in
this article can deal with the problem of the correlation between the unit effects and covariates
under the framework of multilevel modeling. Doing so, the proposed model is more efficient
than the FE models and less biased than the RE models. Second, substantively, this article
contributes to our understanding of the effects of political regimes on social spending in general.
The evidence of positive democratic effects on social spending in Latin American countries
support existing theories of comparative political economy that predict more redistributive
policies in democracies.

The remainder of this article proceeds as follows. The A Model for Endogenous Rarely
Changing Variables section discusses modeling dynamics of a endogenous, rarely changing
variable, and a Bayesian approach to the model specification, followed by a Monte Carlo study
in the Monte Carlo Simulations section. The Application: Social Spending in Latin America
section presents the application of the proposed model to social security and welfare spending
(SSW) in Latin America, and the Concluding Remarks section concludes.

A MODEL FOR ENDOGENOUS RARELY CHANGING VARIABLES

Suppose that there exist TSCS data with a continuous outcome variable, yjt, and a rarely
changing variable, wjt, for unit j = 1,… , J measured at time t = 1,… , T, which indicates a
balanced TSCS data structure. A major advantage of TSCS data is that researchers are able to
control for unobserved heterogeneity across units and/or through time to avoid omitted variable
bias by including unit-specific and/or time-specific effects (Wooldridge 2002; Hsiao 2003;
Baltagi 2005). For simplicity, I consider only unit heterogeneity in the model specification.
Furthermore, to model dynamics, one standard approach is to include an LDV, yj(t − 1), into the
model. Thus, the model is specified as

yjt = μ +ϕyjðt�1Þ + βwjt + δj + εjt; (1)

where μ denotes the intercept, ϕ the autoregressive coefficient, β the coefficient parameter, δj the
unit-specific effects, and εjt the error term. It is assumed that the error term is independently,
identically distributed with mean 0 and finite variance σ2ε .
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When the inclusion of the LDV appropriately captures the dynamics of explanatory variables,
autocorrelation can be eliminated (Beck and Katz 1996, 2011; Keele and Kelly 2006). This
works particularly well when covariates are rarely changing and their effects decay over time.
To represent the decaying effects of covariates, it is assumed that the process {yjt} is stationary
for individual units, i.e., formally, |ϕ| < 1, which means that there is no unit roots. With the
stationary assumption, the dynamic effects of a rarely changing variable on the outcome can be
obtained by the dynamic multiplier, also referred to as the impulse response function in time-
series analysis (see e.g., Hamilton 1994; Enders 2004).3

When researchers are interested in the dynamics of slowly changing variables and specify a
dynamic panel model, e.g., Equation 1, as my motivation stated in the first section, they face a
quandary between FE and RE models. For those who prefer FE models, FE models not only
provide inefficient estimates for rarely changing variables (Plümper and Troeger 2007), but also
give biased and inconsistent coefficient estimates for finite samples as the inclusion of the LDV
violates the assumption of strict exogeneity of the regressors (Nickell 1981). For those who
prefer RE models, which can be considered as a special case of MLMs, the consistency of
parameter estimates of RE models depends not only on the assumption of the independence
between the unit effects and covariates, but also on the initial conditions of the outcome variable
(Anderson and Hsiao 1981; Anderson and Hsiao 1982; Hsiao 2003).

It has been shown that the RE model for dynamic panel models is consistent, assuming that
the initial values of outcomes (i.e., yj0) are treated as fixed constants (Anderson and Hsiao 1982;
Sevestre and Trognon 1985). This property holds only if explanatory variables are not
correlated with the unit effects or, at least, the correlation is explicitly modeled. A common
approach to deal with the correlation between the unit effects and covariates is to include the
within-group means of the covariates as group-level predictors suggested by Mundlak (1978).
However, there is little discussion on finite sample properties of this approach for dynamic
panel models in estimating correlated rarely changing variables although some literature implies
that this approach works fine asymptotically (Anderson and Hsiao 1982; Hsiao 2003).

Building on the structure of simultaneous equation models and error-component formula-
tions, an RE-based model is proposed here to accommodate the dependence between the unit
effects and rarely changing variables. This model not only explicitly deals with the problem of
endogenous explanatory variables, but also maintains the advantages of multilevel modeling,
e.g., the extension to models with random coefficients. For illustration, consider the model
presented in Equation 1, which contains an LDV, a rarely changing variable, and the unit
effects. The resulting analysis also holds for correlated time-varying variables and can be
generalized to both static and dynamic panel models containing both exogenous and
endogenous explanatory variables.

I start with the assumption that a rarely changing variable can be decomposed into three
components: a mean effect, differences between units, and differences within units. Differences
between units are effects specific to individual units, which do not vary over time, and
differences within units are changes over time within a specific individual unit. Thus, the slowly
changing variable can be expressed as

wjt = ζ0 + ηj + ξjt; (2)

3 The derivation of the dynamic multiplier and, thus, the dynamic effects of covariates can be found
in textbooks about panel models such as Baltagi (2005), Hsiao (2003), and Wooldridge (2002) and in
political science research such as Beck (2001), Beck and Katz (1996), De Boef and Keele (2008), Keele and
Kelly (2006).
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where ζ0 denotes the mean effect, ηj between differences, which can be treated as the “unit
effects” for wjt, and ξjt within differences.4 Combining Equation 2 with Equation 1, we have a
simultaneous equation model as follows:

yjt = μ +ϕyjðt�1Þ + βwjt + δj + εjt; (3)

wjt = ζ0 + ηj + ξjt: (4)

Equation 3 is an ordinary panel model for a continuous outcome variable and it is assumed
that

εjt �iid Nð0; σ2εÞ: (5)

Note that ξjt in Equation 4 denotes differences within units for a rarely changing variable.
Although the distribution of ξjt may be limited to certain values empirically, which depends on
the operationalization of variables, ξjt can be any positive or negative values theoretically.
In other words, ξjt ranges from negative infinity to positive infinity in general. Moreover, as
the value of wjt rarely changes for a given unit j, ξjt is highly likely to be 0. Based on these
two general points, I assume that ξjt follows a normal distribution with mean 0 and finite
variance σ2ξ , i.e.,

ξjt �iid Nð0; σ2ξÞ: (6)

Next, to model the correlation across equations, i.e., the dependence between δj and
wjt, I assume that there exists a time-invariant, unobserved common factor related to some
features of the individual units influencing both yjt and wjt through δj and ηj, respectively.

5

That is to say, the dependence between δj and wjt results from the correlation between δj
and ηj. Following the conventional approach in which the unit effects are assumed to
be normally distributed with mean 0 and finite variance (Mundlak 1978; Gelman and Hill
2007), it is assumed that the joint distribution for the vector ψ j = ðηj; δjÞ is a bivariate normal
distribution:

ðηj; δjÞ � N2ð0;ΩÞ; for j= 1; � � � ; J; (7)

where the variance–covariance matrix is of the form

Ω=
σ2η σδη

σδη σ2δ

 !
: (8)

4 One may argue that we can simply decompose wjt into three components by the fact that
wjt =w + ðwj�wÞ + ðwjt�wjÞ. By this transformation, we do not need additional distributional assumptions for
these three components. However, when we substitute this transformation into Equation 1 and obtain
yjt = αj + βw + βðwj�wÞ + βðwjt�wjÞ + εjt , we can see that the overall mean effect, within effect, and between
effect of w on y are equal, which is an unrealistic assumption.

5 Although the proposed model does not explicitly model the correlation between the LDV and the unit
effects, it provides consistent model estimates by assuming that yj0 is fixed just like dynamic RE models
(Anderson and Hsiao 1982; Sevestre and Trognon 1985; Hsiao 2003).
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Consequently, the dependence between δj and wjt is represented by the covariance σδη. As our
interest is the correlation between δj and wjt, given Ω and σ2ξ , we can simply derive this value by
the definition of correlation given by

corrðδj;wjtÞ= Covðδj;wjtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðδjÞVarðwjtÞ

p ;

=
Covðδj; ηjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðδjÞVarðwjtÞ
p ;

=
σδηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2δðσ2ξ + σ2ηÞ
q : ð9Þ

The second line of Equation 9 is derived because the correlation between wjt and δj in fact
results from the correlation between ηj and δj.

The main distinction between Mundlak’s (1978) approach and the BSEM presented in this
section is that the former provides no further information about the degree of the correlation
between covariates and the unit effects while the latter does, given that both approaches
explicitly model the correlation. The additional information gained from the BSEM over
Mundlak’s approach is important for at least two reasons. First, the estimated correlation shows
the extent of the dependence with regard to a particular covariate. With this information, we
know which covariates suffer from the problem of endogeneity and how serious this problem is.
Second, in practice, the information on the degree of the correlation shows us which variables
are correlated to the features of the individual units that do not vary over time. When a covariate
is highly correlated to the unit effects, it means that the differences in this covariate are
mainly from the differences in the features of individual units. This information sometimes has
theoretical meanings.

I estimate this model by a Bayesian approach, so I complete the model specification
by defining the prior distribution. Let θ = (β, σε, ζ0, σξ, Ω) denote the model parameters
where β = (ϕ, μ, β)′. Following the conventional approach (Carlin and Louis 2000;
Robert 2001; Gelman et al. 2004), I use conjugate prior distributions for these parameters as
follows:

σ2ε � Inv�Gammaðv0=2; d0=2Þ; (10)

β jσ2ε � N3ðb0; σ2εB0Þ; (11)

σ2ξ � Inv�Gammaðg0 = 2; h0 = 2Þ; (12)

ζ0 jσ2ξ � Nðm0; σ
2
ξ = a0Þ; (13)

Ω � Inv�Wishartðν0;Λ�1
0 Þ; (14)

where v0, d0, b0, B0, g0, h0, m0, a0, ν0, and Λ0 are hyperparameters, which can be
assigned values to reflect prior information about the corresponding parameters or to give
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diffuse forms.6 Furthermore, I assume priori independence of ðβ; σ2εÞ; ðζ0; σ2ξÞ, and Ω and,
therefore, our prior distribution of θ is given by

πðθÞ= IG σ2ε j
v0
2
;
d0
2

� �
N3 β j σ2ε ; b0;B0
� �

´ IG σ2ξ j
g0
2
;
h0
2

� �
N ζ0 j σ2ξ ;m0; a0
� �

IW Ω j ν0;Λ�1
0

� �
: ð15Þ

Let yj = (yj1, yj2,… , yjT)′, yj,−1 = (yj0, yj1,… , yj(T− 1))′, wj = (wj1, wj2,…,wjT)′,
ξj = ðξj1;ξj2; � � � ; ξj tÞ0, and εj = ðεj1; εj2; � � � ; εj tÞ0 be T × 1 vectors of observations for unit j = 1,
2,… , J. The simultaneous equation model has the form

wj

yj

 !
=

0 0

βIT 0

 !
wj

yj

 !
+

ζ0IT 0

μIT ϕIT

 !
e

yj;�1

 !
+

e ~0

~0 e

 !
ηj

δj

 !
+

ξj

εj

 !
; (16)

where 0 is a T × T matrix, e = (1,… , 1)′ is a T× 1 vector, ~0= ð0; � � � ; 0Þ0 is a T × 1 vector. The
multivariate regression representation of the structural form is given by

Y j =BY j +ΓXj +Zψ j +Uj; (17)

where ψ j = ðηj; δjÞ0; Uj ~N(0, Σ), and

Σ=
σ2ξIT 0

0 σ2ϵIT

 !
: (18)

Also, let y = (y1,… , yJ), w = (w1,… , wJ), and ψ = ðψ1; � � � ;ψJÞ. The likelihood function for
the simultaneous equation model denoted by pðw; y j ψ; θÞ has the form

pðw; y j ψ; θÞ=
YJ
j= 1

pðwj; yj j ψ; θÞ; (19)

where pðwj; yj j ψ; θÞ=N2TðBY j +ΓXj +Zψ j;
PÞN2ðψ j j 0;ΩÞ:

From the Bayes theorem, the joint posterior distribution of interest, πðθ j y;w;ψÞ, is as
follows:

πðθ j y;w;ψÞ / pðy;w j ψ; θÞpðψ j θÞπðθÞ: (20)

This joint distribution is of a type that can be efficiently processed by MCMC methods
(see Gelfand and Smith 1990; Casella and George 1992; Chib and Greenberg 1995), which can
be implemented in computer programs such as WinBUGS (Lunn et al. 2000) and JAGS
(Plummer 2003).

6 In the Bayesian approach, proper prior distributions can help in the identification of the sampling model
(Lindley 1972). In this case, the simultaneous equation is identified as ζ0 is assumed to be normally distributed
with mean known.
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MONTE CARLO SIMULATIONS

In this section, I employ Monte Carlo simulations to assess the finite sample properties of the
BSEM, compared with alternative estimators that have been proposed or suggested to estimate
correlated explanatory variables.

Simulation Design

The data generation process (DGP) for the simulations is as follows:

yjt = μ +ϕyjðt�1Þ + α1x1jt + α2x2jt + α3x3jt + β1w1jt + β2w2jt + β3w3jt + δj + εjt; (21)

where x1, x2, and x3 are time-varying variables and w1, w2, and w3 are rarely changing variables,
δj denotes the unit effects, and εjt the error term. The two groups of variables except w3 are
drawn from a normal distribution with different means and variances; δj is normally distributed
with mean 0 and variance 1; the error term εjt is assumed to be white noise and drawn from a
standard normal distribution. Among the covariates, x3 and w3 are correlated with the unit
effects δj and, thus, x3, w3, δ, and ε vary for each replication while x1, x2, w1, and w2 are fixed
across all experiments. In the experiments, the correlation between x3 and the unit effects, corr
(x3, δj), and the correlation between w3 and the unit effects, corr(w3, δj), are varied. In specific,
corr(x3, δj) = {0, 0.1, 0.2,… , 0.9} and corr(x3, δj) = {0, 0.1, 0.2,… , 0.9}.7

The true values of the coefficients are held constant throughout all experiments as follows:

μ= 1; ϕ= 0:8; α1 = 0:5; α2 = 2; α3 =�1:5; β1 =�2:5; β2 = 1:8; β3 = 3:

I simulate the data with different numbers of time periods T = {15, 30, 60} and fixed number of
units J = 20. The number of replications is 500 for each experiment. Moreover, another
experimental design is conducted in which the data are simulated with different numbers of
units J = {40, 60} and fixed number of time periods T = 30. For this design, the number of
replications is 100.

The DGP presented in Equation 21 follows the simulation design in Plümper and Troeger
(2007) but differs in three fundamental respects. First, the unit effects vary across replications
for each experiment, which account for random variation in the unit effects (Breusch et al.
2011). Second, the rarely changing variables I consider are persistent for the rest of periods
under analysis once they change at a certain (randomly assigned) time point. Finally, the
dynamics of explanatory variables are taken into account by the inclusion of the LDV in
the DGP.

The BSEM employed here contains two endogenous covariates, x3 and w3, which is an
extension of the one discussed in the A Model for Endogenous Rarely Changing Variables
section. This Bayesian model with vague priors is estimated with MCMC techniques and is
implemented in JAGS 3.1.0 called from R version 3.1.0 (Su and Yajima 2012).8 The estimation
was performed with three parallel chains of 10,000 iterations each. The first half of the iterations

7 The correlated covariates are generated via the following procedure: first, after the samples of δj are drawn,
the unit-level covariates (x3j and w3j) are generated with the assigned values of correlation; second, for
j= 1; 2; � � � ; J, samples of x3jt are drawn from a normal distribution with means x3j and variances 1− [corr(x3j,
δj)]

2; third, samples of w3jt are generated to be w3jt = w3j for t = 1, 2,… , k, where k is a random number from
{1, 2,… , T}. For t = k+ 1, k+ 2, … , T, w3jt = w3j + τj, where τj � Nð1; 0:25Þ. By this procedure, both δj and
x3jt have a univariate normal distribution while w3jt does not. Moreover, δj and x3jt jointly have a bivariate normal
distribution while δj and w3jt do not. Therefore, the distributional assumptions made in the simulation do not
exactly match the model assumptions.

8 The prior values used for the simulation are presented in Appendix A.
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were discarded as a burn-in and five as thinning, and thus 3000 samples in total were generated.
The convergence of Markov chains was tested by standard diagnostic tools such as Geweke,
Gelman-Rubin, Raftery-Louis, and Heidelberger-Welch (Gill 2008b) and was conducted by an
easy to use R function superdiag that integrates all of the standard empirical diagnostics (Tsai
and Gill 2012). The results show no evidence of non-convergence.

The alternative estimators considered include the pooled ordinary least squares (OLS)
estimator, the FE estimator, the fixed-effects vector decomposition (FEVD) estimator (Plümper
and Troeger 2007), the RE model, and a MLM with the within-group means of the correlated
variables (Mundlak 1978; Gelman 2006). This procedure is implemented in R: the FE and
RE models are estimated through the plm package (Croissant and Millo 2008); the MLM is
estimated by the restricted maximum likelihood estimation through the lme4 package (Bates,
Maechler and Ben 2015).9

To compare competing estimators, I follow the literature in reporting the average bias and the
root mean squared error (RMSE) of estimates. To avoid the bias to be canceled out, I calculate
the absolute value of bias (hereafter, AVB). The RMSE captures both the bias and efficiency of

the estimators calculated based on the formula

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR

s= 1
β̂ðsÞ�βtrueð Þ2
R

r
, where β̂ðsÞ denotes the estimate,

s in the superscript denotes the sth replicate within R replications, and βtrue is the true value.
Moreover, the uncertainty associated with simulation results is reported along with the

estimates of AVB and RMSE (Koehler, Brown and Haneuse 2009). Let θ denote some target
quantities of interest, i.e., AVB and RMSE, and θ̂R the estimate of θ from a Monte Carlo
simulation with R replications. The variability between simulations, also called the Monte Carlo
error (MCE), is defined as the standard deviation of the Monte Carlo estimator:

MCEðθ̂RÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðθ̂RÞ

q
: (22)

That is to say, MCE(AVBR) and MCE(RMSER) of a number of coefficient parameters are
presented in the simulation results to show the variation of the Monte Carlo sampling
distribution.

Results of Simulation

In Table 1, I report the AVB and RMSE over ten experiments for three different designs:
T = {15, 30, 60} with J = 20. The results of experiments in which the correlation between the
time-varying variable x3 and the unit effects δ is varied are displayed from the second to the
seventh columns; those in which the correlation between the rarely changing variable w3 and the
unit effects δ is varied are displayed in the eighth to the 13th columns. Notice that in the former
corr(w3, δj) is fixed at the value of 0.3 while in the latter corr(x3, δj) is fixed at the value of 0.3.

The results in Table 1 are summarized as follows. First, on average, the pooled OLS produces
the poorest estimates in terms of AVB and RMSE. As we know and the results confirm,
the correlation between the LDV and the unit effects would seriously bias the pooled

9 I am especially interested in the performance of the MLM and FEVD in a dynamic setting as they are
increasingly used in empirical research, but there is few discussion on their performance. I do not consider
generalized method of moments (GMM) estimators here and leave them for future research because GMM
estimators explicitly account for the correlation between the LDV and unit effects while the estimators compared
here do not and because GMM estimators are not suited for data that do not have many units, which is what I
consider here.
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TABLE 1 Absolute Value of Bias (AVB) and Root Mean Squared Error (RMSE) over 500 Replications Times Ten Experiments with
T Varied

corr(x3, δ) = {0,… , 0.9} corr(w3, δ) = {0,… , 0.9}

AVB RMSE AVB RMSE

yt − 1 x3 w3 yt− 1 x3 w3 yt− 1 x3 w3 yt− 1 x3 w3

OLS 0.019 0.240 0.104 0.022 0.277 0.129 0.020 0.141 0.182 0.022 0.160 0.213
(0.003) (0.025) (0.026) (0.003) (0.027) (0.031) (0.003) (0.023) (0.031) (0.004) (0.024) (0.033)

FE 0.006 0.063 0.123 0.007 0.080 0.151 0.006 0.050 0.124 0.007 0.061 0.152
(0.001) (0.016) (0.030) (0.002) (0.021) (0.035) (0.001) (0.012) (0.031) (0.002) (0.014) (0.037)

FEVD 0.006 0.063 0.312 0.007 0.080 0.351 0.006 0.050 0.355 0.007 0.061 0.398
(0.001) (0.016) (0.057) (0.002) (0.021) (0.059) (0.001) (0.012) (0.048) (0.002) (0.014) (0.050)

RE 0.005 0.073 0.108 0.006 0.095 0.133 0.005 0.049 0.129 0.006 0.060 0.157
(0.001) (0.017) (0.025) (0.001) (0.023) (0.030) (0.001) (0.012) (0.030) (0.001) (0.014) (0.034)

MLM 0.005 0.063 0.120 0.006 0.079 0.148 0.005 0.050 0.120 0.006 0.061 0.147
(0.001) (0.016) (0.028) (0.001) (0.021) (0.034) (0.001) (0.012) (0.031) (0.001) (0.014) (0.036)

BSEM 0.005 0.062 0.114 0.006 0.077 0.140 0.005 0.049 0.115 0.006 0.060 0.141
(0.001) (0.016) (0.027) (0.001) (0.020) (0.032) (0.001) (0.012) (0.029) (0.001) (0.014) (0.035)

corr(w3, δ) = 0.3, J = 20, T = 15 corr(x3, δ) = 0.3, J = 20, T = 15

OLS 0.017 0.248 0.116 0.020 0.283 0.145 0.018 0.146 0.184 0.021 0.164 0.216
(0.003) (0.023) (0.028) (0.003) (0.025) (0.035) (0.003) (0.021) (0.033) (0.003) (0.022) (0.036)

FE 0.004 0.044 0.087 0.005 0.055 0.107 0.004 0.035 0.086 0.005 0.043 0.107
(0.001) (0.010) (0.021) (0.001) (0.014) (0.024) (0.001) (0.008) (0.021) (0.001) (0.009) (0.026)

FEVD 0.004 0.044 0.281 0.005 0.055 0.312 0.004 0.035 0.330 0.005 0.043 0.370
(0.001) (0.010) (0.048) (0.001) (0.014) (0.049) (0.001) (0.008) (0.040) (0.001) (0.009) (0.042)

RE 0.004 0.054 0.084 0.004 0.072 0.103 0.003 0.034 0.099 0.004 0.042 0.120
(0.001) (0.012) (0.020) (0.001) (0.018) (0.023) (0.001) (0.008) (0.021) (0.001) (0.009) (0.024)

MLM 0.003 0.044 0.085 0.004 0.055 0.104 0.003 0.035 0.085 0.004 0.042 0.104
(0.001) (0.011) (0.020) (0.001) (0.014) (0.024) (0.001) (0.008) (0.021) (0.001) (0.009) (0.025)

BSEM 0.003 0.043 0.083 0.004 0.055 0.102 0.003 0.034 0.083 0.004 0.042 0.103
(0.001) (0.010) (0.020) (0.001) (0.014) (0.023) (0.001) (0.008) (0.020) (0.001) (0.009) (0.024)

corr(w3, δ) = 0.3, J = 20, T = 30 corr(x3, δ) = 0.3, J = 20, T = 30
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TABLE 1 (Continued )

corr(x3, δ) = {0,… , 0.9} corr(w3, δ) = {0,… , 0.9}

AVB RMSE AVB RMSE

yt − 1 x3 w3 yt− 1 x3 w3 yt− 1 x3 w3 yt− 1 x3 w3

OLS 0.020 0.260 0.166 0.023 0.292 0.209 0.020 0.156 0.219 0.023 0.173 0.260
(0.003) (0.023) (0.039) (0.003) (0.026) (0.048) (0.003) (0.019) (0.040) (0.003) (0.020) (0.048)

FE 0.003 0.030 0.071 0.004 0.038 0.088 0.003 0.024 0.073 0.004 0.030 0.089
(0.001) (0.008) (0.017) (0.001) (0.011) (0.021) (0.001) (0.006) (0.017) (0.001) (0.007) (0.020)

FEVD 0.003 0.030 0.286 0.004 0.038 0.311 0.003 0.024 0.327 0.004 0.030 0.363
(0.001) (0.008) (0.040) (0.001) (0.011) (0.040) (0.001) (0.006) (0.038) (0.001) (0.007) (0.039)

RE 0.003 0.036 0.072 0.004 0.049 0.088 0.003 0.024 0.082 0.004 0.029 0.101
(0.001) (0.009) (0.017) (0.001) (0.014) (0.020) (0.001) (0.006) (0.019) (0.001) (0.007) (0.022)

MLM 0.003 0.030 0.069 0.004 0.038 0.085 0.003 0.024 0.070 0.003 0.030 0.086
(0.001) (0.008) (0.017) (0.001) (0.011) (0.020) (0.001) (0.006) (0.017) (0.001) (0.007) (0.019)

BSEM 0.003 0.030 0.068 0.004 0.038 0.084 0.003 0.024 0.070 0.003 0.029 0.086
(0.001) (0.008) (0.017) (0.001) (0.011) (0.020) (0.001) (0.006) (0.016) (0.001) (0.007) (0.019)

corr(w3, δ) = 0.3, J = 20, T = 60 corr(x3, δ) = 0.3, J = 20, T = 60

Note: Monte Carlo errors are presented in parentheses.
OLS = ordinary least squares; FE = fixed effects; FEVD = fixed-effects vector decomposition; RE = random effects; MLM = multilevel models; BSEM = Bayesian
simultaneous equation model.
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OLS estimator. Furthermore, the correlation between covariates and the unit effects exacerbates
the problem. The magnitude of AVB and RMSE does not decrease as T increases.

Second, among these six estimators, the FEVD estimator produces estimates with the largest
AVB and RMSE for the rarely changing variable in all cases while its estimates for the LDV
and the time-varying variable are exactly the same with those under the FE model. The results
indicate that the FEVD does not perform well for estimating rarely changing variables in
dynamic panel data models.

Third, the RE is more biased than the FE in estimating correlated covariates x3 and w3

while the RE is more efficient than the FE in estimating slightly correlated covariates, i.e., corr
(x3, δj) = 0.3 or corr(w3, δj) = 0.3. As the correlation is modeled under the MLM, the MLM
and the FE perform equally well in estimating coefficients for the LDV and correlated
covariates in terms of AVB and RMSE. In other words, when the correlation between the unit
effects and covariates is modeled by Mundlak’s (1978) approach, the MLM is less biased at the
expense of efficiency.

Last but not least, the BSEM performs as well as, or better than the FE, RE, and MLM in
terms of AVB and RMSE. We can see that, in almost all of the cases, the BSEM is the least
biased and the most efficient estimator. These properties can be more clearly observed when
T is small.

In Table 2, I report the AVB and RMSE over ten experiments for three different
designs: J = {10, 40, 60} with T = 30. Combining the results in Table 2 and the results in the
middle block of Table 1 in which J = 20 and T = 30, we can see how the performances of
these estimators change as the number of units increases. We find that the results are similar to
those summarized above: the pooled OLS produces the poorest estimates and does not
perform better as J increases; the FEVD does not perform well for estimating rarely changing
variables in dynamic panel data models; the RE is more biased than the FE, MLM, and
BSEM; the MLM and BSEM performs equally well with the FE in terms of AVB but are more
efficient than the FE; the BSEM performs better than the MLM especially when J is small,
e.g., J = 10.

I then show the effects of the correlation on the AVB and RMSE of the estimates for the
LDV, time-varying variable x3, and rarely changing variable w3. To save space, I only present
the results from the design where J = 20 and T = 30, but the results remain the same for
T = {15, 60} with J fixed and J = {40, 60} with T fixed. Figure 1 presents the AVB and RMSE
of the six estimators for the LDV, x3, and w3 when corr(x3, δj) is varied and corr(w3, δj) is fixed
at the value of 0.3. The three panels on the left-hand side [(a), (c), and (e)] show the comparison
in terms of AVB and, as can be seen, the pooled OLS produces estimates of the LDV and x3
with the largest AVB. The RE performs worse for strongly correlated covariate x3. The FEVD
estimator has the poorest estimates of rarely changing variables and the FE, MLM, and BSEM
perform more or less equally well in estimating all of these three variables no matter what the
size of the correlation is.

Furthermore, the same pattern appears in the RMSE of these estimators represented in the
three panels on the right-hand side of Figures 1(b), 1(d), and 1(f). Simply put, the pooled OLS
has the largest RMSE for the LDV and time-varying variable x3 while the FEVD estimator
performs poorly for the estimate of rarely changing variable w3. The RE has poor performance
in RMSE for the covariate strongly correlated to the unit effects. The BSEM performs equally
well with the FE and MLM.

Figure 2 presents the AVB and RMSE of the six estimators for the LDV, time-varying
variable x3, and rarely changing variable w3 when corr(x3, δj) is fixed at the value of 0.3 and
corr(w3, δj) is varied. It shows that, in general, the pooled OLS has the largest AVB and
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TABLE 2 An Absolute Value of Bias (AVB) and Root Mean Squared Error (RMSE) over 100 Replications Times Ten Experiments with
J Varied

corr(x3, δ) = {0,… , 0.9} corr(w3, δ) = {0,… , 0.9}

AVB RMSE AVB RMSE

yt − 1 x3 w3 yt− 1 x3 w3 yt− 1 x3 w3 yt− 1 x3 w3

OLS 0.020 0.214 0.217 0.025 0.258 0.271 0.019 0.127 0.252 0.024 0.155 0.307
(0.005) (0.036) (0.062) (0.006) (0.044) (0.074) (0.004) (0.029) (0.058) (0.006) (0.033) (0.071)

FE 0.008 0.060 0.160 0.010 0.075 0.198 0.007 0.051 0.157 0.009 0.062 0.196
(0.002) (0.016) (0.045) (0.002) (0.020) (0.059) (0.002) (0.011) (0.042) (0.002) (0.012) (0.049)

FEVD 0.008 0.060 0.382 0.010 0.075 0.443 0.007 0.051 0.405 0.009 0.062 0.461
(0.002) (0.016) (0.075) (0.002) (0.020) (0.079) (0.002) (0.011) (0.068) (0.002) (0.012) (0.074)

RE 0.007 0.064 0.147 0.009 0.083 0.179 0.007 0.050 0.156 0.008 0.061 0.191
(0.002) (0.016) (0.040) (0.002) (0.022) (0.049) (0.002) (0.010) (0.041) (0.002) (0.012) (0.047)

MLM 0.007 0.059 0.152 0.009 0.075 0.190 0.007 0.050 0.152 0.008 0.062 0.190
(0.002) (0.016) (0.043) (0.002) (0.020) (0.055) (0.002) (0.010) (0.039) (0.002) (0.012) (0.047)

BSEM 0.007 0.058 0.143 0.008 0.073 0.178 0.007 0.050 0.145 0.008 0.061 0.181
(0.002) (0.016) (0.040) (0.002) (0.020) (0.051) (0.002) (0.010) (0.038) (0.002) (0.012) (0.044)

corr(w3, δ) = 0.3, J = 10, T = 30 corr(x3, δ) = 0.3, J = 10, T = 30

OLS 0.021 0.272 0.109 0.023 0.299 0.136 0.022 0.166 0.174 0.023 0.177 0.203
(0.002) (0.017) (0.024) (0.002) (0.019) (0.029) (0.002) (0.014) (0.026) (0.002) (0.014) (0.028)

FE 0.003 0.031 0.058 0.004 0.040 0.071 0.003 0.024 0.057 0.003 0.029 0.070
(0.001) (0.008) (0.015) (0.001) (0.012) (0.017) (0.001) (0.006) (0.013) (0.001) (0.007) (0.016)

FEVD 0.003 0.031 0.313 0.004 0.040 0.325 0.003 0.024 0.349 0.003 0.029 0.377
(0.001) (0.008) (0.030) (0.001) (0.012) (0.029) (0.001) (0.006) (0.028) (0.001) (0.007) (0.028)

RE 0.003 0.048 0.063 0.003 0.068 0.075 0.002 0.024 0.083 0.003 0.029 0.102
(0.001) (0.012) (0.016) (0.001) (0.019) (0.018) (0.001) (0.006) (0.017) (0.001) (0.006) (0.020)

MLM 0.003 0.031 0.057 0.003 0.040 0.069 0.002 0.024 0.057 0.003 0.029 0.070
(0.001) (0.008) (0.014) (0.001) (0.012) (0.016) (0.001) (0.006) (0.013) (0.001) (0.007) (0.015)

BSEM 0.003 0.031 0.056 0.003 0.039 0.069 0.002 0.024 0.057 0.003 0.029 0.069
(0.001) (0.008) (0.014) (0.001) (0.012) (0.016) (0.001) (0.006) (0.012) (0.001) (0.007) (0.015)

corr(w3, δ) = 0.3, J = 40, T = 30 corr(x3, δ) = 0.3, J = 40, T = 30
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OLS 0.022 0.280 0.127 0.025 0.306 0.154 0.023 0.173 0.187 0.024 0.184 0.217
(0.002) (0.012) (0.024) (0.002) (0.014) (0.028) (0.002) (0.012) (0.024) (0.002) (0.011) (0.026)

FE 0.003 0.025 0.050 0.003 0.031 0.060 0.002 0.020 0.048 0.003 0.025 0.060
(0.001) (0.006) (0.014) (0.001) (0.008) (0.017) (0.001) (0.005) (0.011) (0.001) (0.006) (0.014)

FEVD 0.003 0.025 0.321 0.003 0.031 0.328 0.002 0.020 0.354 0.003 0.025 0.379
(0.001) (0.006) (0.023) (0.001) (0.008) (0.023) (0.001) (0.005) (0.026) (0.001) (0.006) (0.023)

RE 0.002 0.047 0.058 0.003 0.069 0.070 0.002 0.020 0.083 0.003 0.025 0.101
(0.001) (0.008) (0.014) (0.001) (0.013) (0.016) (0.001) (0.005) (0.014) (0.001) (0.006) (0.016)

MLM 0.002 0.025 0.047 0.003 0.031 0.058 0.002 0.020 0.045 0.003 0.025 0.056
(0.001) (0.006) (0.013) (0.001) (0.008) (0.016) (0.001) (0.005) (0.011) (0.001) (0.006) (0.013)

BSEM 0.002 0.025 0.047 0.003 0.031 0.057 0.002 0.020 0.045 0.003 0.025 0.056
(0.001) (0.006) (0.013) (0.001) (0.008) (0.016) (0.001) (0.005) (0.011) (0.001) (0.006) (0.013)

corr(w3, δ) = 0.3, J = 60, T = 30 corr(x3, δ) = 0.3, J = 60, T = 30

Note: Monte Carlo errors are presented in parentheses.
OLS = ordinary least squares; FE = fixed effects; FEVD = fixed-effects vector decomposition; RE = random effects; MLM = multilevel models; BSEM = Bayesian
simultaneous equation model.
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inefficient estimates of the LDV and x3; the RE has biased and inefficient estimates for the
LDV and w3; the FEVD performs poorly in terms of the AVB and RMSE in estimating the
coefficient of w3. The FE, MLM, and BSEM perform equally well in estimating the LDV,
x3, and w3.

Finally, I present the estimates of the correlation between the unit effects and the time-
varying variable and rarely changing variable from the proposed model. To save space, I only
show the results from the design where T = 30 and J = 20. In Figure 3, the two panels on the
top are from the design where corr(x3, δj) is varied while corr(w3, δj) is fixed at the value of 0.3;
the two panels at the bottom are from the design where corr(x3, δj) is fixed at the value of 0.3
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Fig. 1. Change in the absolute value of bias and root mean squared error (RMSE) over variations in the
correlation between the unit effects and the time-varying variable x3; corr(w3, δj) = 0.3, J = 20, and T = 30
Note: LDV = lagged dependent variable; OLS = ordinary least squares; FE = fixed effects; FEVD = fixed-
effects vector decomposition; RE = random effects; MLM = multilevel models; BSEM = Bayesian simultaneous
equation model.
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while corr(w3, δj) is varied. Moreover, the solid lines represent the 90 percent highest posterior
density (HPD) intervals of the correlation between the unit effects and covariates from
generated data while the dotted lines represent the 90 percent HPD intervals of the estimated
correlation parameters. As can be seen in Figure 3, the estimates of correlation between the unit
effects and the time-varying variable x3 and those between the unit effects and rarely changing
variable w3 are approximately close to those in the generated data.10 As the dotted lines represent
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Fig. 2. Change in the absolute value of bias and root mean squared error (RMSE) over variations in the
correlation between the unit effects and the rarely changing variable w3; corr(x3, δj) = 0.3, J = 20, and T = 30
Note: LDV = lagged dependent variable; OLS = ordinary least squares; FE = fixed effects; FEVD = fixed-
effects vector decomposition; RE = random effects; MLM = multilevel models; BSEM = Bayesian simultaneous
equation model.

10 The results show that the BSEM underestimates the correlation, especially when the correlation is high. In
real data, however, the correlation is rarely >0.7 as shown in the application. When the correlation is low or
medium, the BSEM actually estimates the correlation well.
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the estimates, they have larger uncertainty than the simulated correlation coefficients. But the wide
range of uncertainty decreases as J or T increases, which is not shown here to save space.

In short, the proposed model not only performs as well as, or better than classical estimators
in estimating coefficients for correlated covariates in terms of bias and efficiency especially
when J or T is small, but also provides estimates for the correlation between the unit effects and
covariates. Therefore, when the sample size is small or the degree of the correlation between the
unit effects and covariates is of interest, the proposed model is preferred to the conventional
estimators such as the FE models which eliminate the unit effects, and the RE models which
assume no correlation.

Robustness Check for Distributional Assumptions

One concern about the simulation results is that the setup of a bivariate normal distribution
for δj and x3j matches the model assumption. In this subsection, I conduct a robustness analysis
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Fig. 3. The 90 percent highest posterior density intervals of the simulated and estimated correlations
between the unit effects and the covariates x3 and w3 for T = 30 and J = 20
Note: The plus signs denote the median. The solid lines present the correlation from the simulated data while
the dotted lines present the estimates of correlation.
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to check whether the data are simulated in favor of the proposed model and against the
alternative estimators. Instead of drawing samples from a standard normal distribution, I draw
the samples of δj from a uniform distribution in the interval between −2 and 2. Then, the unit-
level covariates x3j and w3j are generated based on the assigned values of correlation and the
individual-level samples x3jt and w3jt are generated in turn, which is the same procedure as that
is stated in the Simulation Design section (and in footnote 7 for details). By drawing samples of
δj from a uniform distribution, the joint distribution of δj and x3jt is a bimodal distribution
rather than a bivariate normal distribution. The comparison between alternative estimators is
conducted under the setting that J = 20, T = 15, and R = 100.

The results are shown in Table 3, which indicate that the performances of these estimators are
consistent to what we find in the experiment with J = 20 and T = 15 presented in the top block
of Table 1. The results remain the same when J or T is changed. Simply put, the results in
Table 3 suggest that the changes in the distributional setup for the joint distribution of (δj, x3jt)
and that of (δj, w3jt) do not influence the estimates. These results indicate that the BSEM still
performs well even if the distributional assumptions of the BSEM are not matched by the
simulation design, which implies that the simulation results are quite robust.

Sensitivity Analysis for the Choice of Priors

As discussed in the A Model for Endogenous Rarely Changing Variables section, one of the
advantages of the proposed model against alternative estimators is that the BSEM can estimate
the correlation between covariates and the unit effects. The major component for the estimation
of correlation lies in the variance–covariance matrix Ω, which is assumed to be an inverse
Wishart distribution with the degrees of freedom ν0 and the scale matrix Λ0. In both the
simulation and the application, these hyperparameters of the inverse Wishart distribution are
assigned values to be an uninformative prior for the correlation. In specific, suppose that Ω is a
p × p matrix. The degree of freedom ν0 is set to be p+ 1 and the scale matrix Λ0 is an identity
matrix Ip, which implies a uniform distribution for the correlation.

To check the sensitivity to the choice of this parameterization, I use three different
parameterizations for the degrees of freedom while the scale matrix is fixed to an identity matrix
Ip: ν0 = {p, p + 3, p + 7}, where p = 3 in the simulation. The sensitivity analysis is conducted
under the setting that J = 20, T = 15, and R = 100. To save space, I only present the 90 percent
HPD intervals of varied correlations for the designs where ν0 = p and p+ 7 displayed in
Figure 4.11 As can be seen, panels (a) and (c) in Figure 4 show the same pattern as the upper-left
panel in Figure 3, which suggests that the estimated correlations are close to the simulated ones
although the BSEM underestimates the correlation when the correlation is high. By the same
token, panels (b) and (d) in Figure 4 show the same pattern as the bottom-right panel in
Figure 3. In sum, these results show that the posterior distribution of correlation parameters
from the BSEM is not affected by the choice of prior values.

APPLICATION: SOCIAL SPENDING IN LATIN AMERICA

Previous studies on democracy and social welfare policy focus on Latin American countries
because, first, there is great variation in social welfare systems among Latin American countries

11 p and p + 7 are selected to show two extremely distinct distributions for the correlation. When ν0 = p, the
prior for the correlation is a bimodal distribution which has two peaks around −1 and 1. When ν0 = p+ 7, the
prior for the correlation is a unimodal distribution centered on 0.
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TABLE 3 Absolute Value of Bias (AVB) and Root Mean Squared Error (RMSE) over 100 Replications Times Ten Experiments with Joint
Distributions Changed

corr(x3, δ) = {0,… , 0.9} corr(w3, δ) = {0,… , 0.9}

AVB RMSE AVB RMSE

yt− 1 x3 w3 yt− 1 x3 w3 yt− 1 x3 w3 yt− 1 x3 w3

OLS 0.019 0.244 0.108 0.022 0.281 0.132 0.019 0.138 0.176 0.022 0.157 0.208
(0.003) (0.024) (0.027) (0.003) (0.025) (0.033) (0.003) (0.021) (0.028) (0.003) (0.022) (0.030)

FE 0.006 0.063 0.120 0.007 0.080 0.149 0.006 0.050 0.122 0.007 0.061 0.150
(0.001) (0.013) (0.029) (0.002) (0.018) (0.035) (0.001) (0.011) (0.032) (0.002) (0.014) (0.038)

FEVD 0.006 0.063 0.312 0.007 0.080 0.356 0.006 0.050 0.359 0.007 0.061 0.403
(0.001) (0.013) (0.051) (0.002) (0.018) (0.052) (0.001) (0.011) (0.046) (0.002) (0.014) (0.049)

RE 0.005 0.072 0.104 0.006 0.093 0.130 0.005 0.048 0.128 0.006 0.060 0.155
(0.001) (0.016) (0.024) (0.001) (0.022) (0.029) (0.001) (0.011) (0.027) (0.002) (0.013) (0.030)

MLM 0.005 0.063 0.117 0.006 0.079 0.146 0.005 0.050 0.118 0.006 0.061 0.145
(0.001) (0.014) (0.027) (0.001) (0.018) (0.033) (0.001) (0.011) (0.032) (0.002) (0.013) (0.037)

BSEM 0.005 0.062 0.111 0.006 0.077 0.139 0.005 0.049 0.113 0.006 0.060 0.140
(0.001) (0.013) (0.025) (0.002) (0.016) (0.031) (0.001) (0.011) (0.029) (0.002) (0.013) (0.033)

corr(w3, δ) = 0.3, J = 20, T = 15 corr(x3, δ) = 0.3, J = 20, T = 15

Note: Monte Carlo errors are presented in parentheses.
OLS = ordinary least squares; FE = fixed effects; FEVD = fixed-effects vector decomposition; RE = random effects; MLM = multilevel models; BSEM = Bayesian
simultaneous equation model.
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and, second, most Latin American countries experienced regime change between democracy
and authoritarianism. However, the empirical results are not consistent. For example, while
some studies show that democratic regimes tend to spend more on overall social programs than
authoritarian regimes (Brown and Hunter 1999; Avelino, Brown and Hunter 2005), others find
no robust evidence that democracy has an impact on aggregate social expenditures (Kaufman
and Segura-Ubiergo 2001). Moreover, for disaggregate spending, some find that democracy has
a positive effect on social security spending in the long term (Huber et al. 2008), while others do
not find strong evidence in either the short term or the long term (Kaufman and Segura-Ubiergo
2001; Avelino, Brown and Hunter 2005).

The inconsistent results in previous studies may result from at least two methodological
issues. First, the slowly changing property of political regimes are not explicitly illustrated and
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Fig. 4. The 90 percent highest posterior density intervals of the simulated and estimated correlation
coefficients between the unit effects and the covariates for T = 30 and J = 20
Note: The plus signs denote the median. The solid lines present the correlation from the simulated data while
the dotted lines present the estimates of correlation.
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different model strategies are used. Some of these studies include an LDV to correct for serial
correlation (Kaufman and Segura-Ubiergo 2001; Avelino, Brown and Hunter 2005). Some
other studies consider the long-term properties of political regimes, but inappropriately model
the long-term effects of democracy by cumulating yearly values of democracy variable (Huber
et al. 2008).

Second, the absence of country-specific effects in statistical models is one of the problems in
past empirical research (Ross 2006). One of the reasons to exclude unit effects is that these unit
effects influence the coefficients of factors that vary mainly between countries (Plümper,
Troeger and Manow 2005). As discussed before, excluding the unit effects may be at the risk of
having omitted variable bias, which leads to invalid inferences. Furthermore, as discussed in the
A Model for Endogenous Rarely Changing Variables section, it is better to include an LDV and
unit effects into model specifications to evaluate the effects of democracy on social welfare
spending because it is believed that the effects of democracy is distributed across several
extended time periods.

Data and Measurements

I apply the BSEM presented in the A Model for Endogenous Rarely Changing Variables section
to analyze social spending in Latin America, which handles the above issues. The data set I use
was collected by Huber et al. (2008).12 This data set covers a number of political and economic
variables in 18 Latin American countries from 1970 to 2000. In this application, the outcome
variable is SSW, and the main explanatory variable is the level of democracy.

Before discussing the results of analysis, two important points need to be observed.
First, SSW is measured as a percentage of gross domestic product (GDP). As it is bounded
between 0 and 100 percent, we can argue that the proportion of GDP spent on social security is
stationary (Beck and Katz 2011). Second, the distribution of social security spending is right-
skewed, so I use the logarithm transformation, which is better described by a normal
distribution.13

The level of democracy (DEM), which is rarely changing, is measured by the Polity index
ranging from −10 to 10 with 10 as the highest degree of democracy (Marshall, Jaggers and Gurr
2010). I also include several control variables that may influence social spending discussed in
the literature. These control variables are gross domestic production per capita (GDPPC)
(million US dollars) adjusted for purchasing power parities, the percentage of population that
lives in the urban area (UBNPOP), the percentage of aged population (POP65), export and
import as a percentage of GDP as a measurement of trade openness (TRADE), and foreign
direct investment (FDI) as a percentage of GDP.14

12 The data on SSW were collected by Huber et al. (2008) from the International Monetary Fund (IMF) and
those on education and health spending were from the Economic Commission for Latin American and the
Caribbean, Cominetti’s (1996) data set, and the IMF. The data set can be downloaded from the website
http://www.unc.edu/ jdsteph/common/data-common.html

13 Six observations (1981–1986 in Peru) have values of 0 in the measurement of social security/welfare
spending, which makes logarithm transformation produce negative infinity. For these six observations, I treat
them as missing rather than replace them with small values. Looking at the data carefully, we observe that the
measure of spending on social security/welfare is missing in 1979, 1980, and from 1987 to 1989. Consequently,
it is reasonable to treat them as missing. It turns out that this setup does not affect the results.

14 I update the observations on FDI for missingness from World Development Indicators (2011) from
the World Bank. This updated data can be downloaded in http://data.worldbank.org/data-catalog/world-
development-indicators. For the remaining missing values in TRADE and FDI, I employed multiple imputation
(Rubin 1987) by the R package mice (Van Buuren and Groothuis-Oudshoorn 2011).
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As I am not sure which covariate is correlated with the unit effects, I model all of them.
Therefore, the simultaneous equation model is given by Equation 23:

lnðSSWjtÞ= β0 +ϕlnðSSWjðt�1ÞÞ + β1DEMjt + β2GDPPCjt + β3UBNPOPjt

+ β4POP65jt + β5TRADEjt + β6FDIjt + δj + εjt;

DEMjt = ζ1 + η1j + ξ1jt;

GDPPCjt = ζ2 + η2j + ξ2jt;

UBNPOPjt = ζ3 + η3j + ξ3jt;

POP65jt = ζ4 + η4j + ξ4jt;

TRADEjt = ζ5 + η5j + ξ5jt;

FDIjt = ζ6 + η6j + ξ6jt: ð23Þ

This model is estimated with MCMC techniques and implemented in JAGS 3.1.0 called from R
(R2jags).15

Results of Analysis

The results of the analysis of social spending are displayed in Figures 5–7. Figure 5 presents the
intervals of 90 percent level for explanatory variables from the six estimators discussed in the
Monte Carlo Simulations section. We can see that, first, in general the BSEM, FE, and MLM
provide very similar results for the estimates for these covariates,16 which suggest that
democracy, GDP per capita, and the urban population matter for the outcome variable. In
specific, democracy and the urban population have a positive effect while GDP per capita has a
negative effect on social spending.

Second, the estimate for democracy under the FEVD is negative, which is extremely different
from the results in alternative estimators. The findings in the simulations tell us that this may be
misleading as the FEVD is biased for rarely changing variable. Moreover, we also observe that
the FEVD provides smaller uncertainty of estimates than the FE (Breusch et al. 2011), which
leads to incorrect inferences, e.g., a negative effect of democracy and a positive effect of the
aged population and trade.

Finally, the estimates for democracy under the pooled OLS and RE are somewhat different
from those under the BSEM, FE, and MLM. As the simulation results suggest, it is possible that
the level of democracy is correlated to the unit effects based on the findings in the simulations.
This situation also occurs for GDP per capita and the aged population.

15 Vague priors are used for parameters, which are presented in Appendix A. The estimation was performed
with three parallel chains of 50,000 iterations each to be conservative. The first half of the iterations were
discarded as a burn-in period and five as thinning and thus 15,000 samples were generated. The convergence of
MCMC chains is conducted by using the R function superdiag and there is no evidence of non-convergence in
these chains.

16 A Bayesian version of the MLM (BMLM) is estimated for the comparison with the BSEM. The results (not
shown here) suggest that the BMLM performs almost the same with the BSEM. Although both BMLM and
BSEM perform equally well, like the MLM, the BMLM provides no information on the correlation between the
unit effects and covariates.
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To check the possibility of correlation between these variables and the unit effects, I rely on
the 90 percent credible intervals of the estimated correlations provided by the BSEM presented
in Figure 6. As can be seen, the posterior distribution of the estimated correlation between the
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Fig. 5. Determinants of social security spending, 1971–2000
Note: BSEM = Bayesian simultaneous equation model; MLM = multilevel models; RE = random effects;
FEVD = fixed-effects vector decomposition; FE = fixed effects; OLS = ordinary least squares;
GDPPC = gross domestic production per capita; FDI = foreign direct investment.
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Fig. 6. The 90 percent highest posterior density of estimated correlation between unit effects and covariates
Note: DEM = democracy; GDPPC = gross domestic production per capita; UBNPOP = percentage of
population that lives in the urban area; POP65 = percentage of aged population; TRADE = measurement of
trade openness; FDI = foreign direct investment.
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unit effect and the level of democracy mainly lies in the negative region, which implies a
negative correlation. In contrast, Figure 6 shows that the other five variables are positively
correlated with the unit effects, among which the 90 percent credible intervals of correlation for
GDPPC and POP65 mainly lie in the positive region although the intervals are wide. In short,
the results suggest that the level of democracy, GDP per capita, and the aged population are
slightly or moderately correlated to the unit effects. In other words, the results imply that the
unobserved, time-invariant features of individual countries simultaneously influence social
spending, political development, economic development, and the aged population.

Figure 5 shows that democracy matters for social spending. In a dynamic model, it basically
means that democracy has an immediate effect on social provision policy. To see dynamic
effects, one should consider the dynamic multiplier, which involves the coefficient of the LDV,
ϕ (Keele and Kelly 2006). The left panel in Figure 7 shows the 90 percent intervals of the LDV
from the six estimators. As can be seen, the estimates of the LDV from five estimators are
almost equivalent except for that from the pooled OLS. It is well known that the estimate of the
LDV is biased upward under the pooled OLS, which is observed in Figure 7. Taking the
estimates from the BSEM, the right panel in Figure 7 presents the dynamic effects of democracy
over six time periods when the Polity scores increase 1 unit. As can be seen, the posterior
probability of the effect of democracy on social spending is over 90 percent. This implies that,
for a given country, when the level of democracy increases, social spending increases as well.
Overall, the evidence shows that democratic regimes have a positive effect on social spending in
either the short term or the long term.

CONCLUDING REMARKS

Existing literature argues that democracies pursue more welfare-enhancing policies than
non-democracies. Recently, some studies argue that the realization of redistributive policies in
democracies may be observed in the long term (Keefer and Khemani 2005; Keefer and Vlaicu
2008). The empirical evidence of how political regimes affect redistributive policies, however,
is inconsistent. Following studies of political regimes and redistributive policies in

Estimates of the LDV

0.3 0.4 0.5 0.6 0.7 0.8

0.3 0.4 0.5 0.6 0.7 0.8

OLS

FE

FEVD

RE

MLM

BSEM

Time Points

D
yn

am
ic

 E
ffe

ct
s

0 1 2 3 4 5

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

Fig. 7. Estimates of the autoregressive coefficient and dynamic effects of political regimes on social
spending. The solid lines represent 90 percent credible intervals
Note: BSEM = Bayesian simultaneous equation model; MLM = multilevel models; RE = random effects;
FEVD = fixed-effects vector decomposition; FE = fixed effects; OLS = ordinary least squares; LDV = lagged
dependent variable.

A Bayesian Approach to Dynamic Panel Models 617

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/psrm.2015.81
Downloaded from https:/www.cambridge.org/core. National Chengchi University, on 18 Jan 2017 at 02:53:50, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/psrm.2015.81
https:/www.cambridge.org/core


Latin America, this article examines the dynamic effects of political regimes on social programs
by focusing on estimating the effects of rarely changing variables within a Bayesian framework.

The dynamic effects of rarely changing variables such as the level of democracy are often of
great interest in the study of political economy. Nevertheless, the classical estimators are
problematic when estimating the effects of time-invariant and rarely changing variables along
with unit effects, the control of which is important in the analysis of welfare states (Kaufman
and Segura-Ubiergo 2001; Ross 2006). This article shows the flexibility and advantages of the
Bayesian approach to estimating the coefficients of endogenous explanatory variables along
with the parameters of the correlation between the unit effects and covariates. The finite sample
properties of the proposed model and alternative estimators that are widely applied to panel
data analyses are explored in Monte Carlo simulations. The results show that the proposed
model not only performs as well as, or better than alternative estimators in terms of
bias and efficiency, but also provides additional information on the degree of the correlation
between the unit effects and covariates, which will not be discovered without the proposed
model. Applying the BSEM to the study on social spending in Latin America, this article
finds evidence that political regimes affect social welfare spending both in the short and
long terms.

For future research, first, the proposed model can be applied to studies in which researchers
are interested in the long-term effects of political institutions such as the effect of centralized
wage bargaining on income inequality (Scheve and Stasavage 2009). Second, it would be useful
to model heterogeneous coefficients and account for the correlated predictors at the group level
as we have substantive (Western 1998; Beck and Katz 2007) and methodological (Nerlove
1971; Pesaran and Smith 1995; Hsiao Pesaran and Tahmiscioglu 1999) reasons to do so.
Finally, the endogenous covariates are not limited to continuous variables, but include discrete
variables, which can be modeled by assuming an unobserved latent trait underlying observed
discrete variables.
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