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# < 4 & ! Online learning refers to learning methods that process
data one-by-one. Since the data point can be removed after
being processed, online methods require less memory and are
advantageous when dealing with very large real-time data.
This project studies online statistical inference for
Internet product ratings data. The proposed method 1is
applied to two real datasets. The results are satisfactory.

# < B 43 © Bayesian inference, online machine learning



Final report for project: From online to batch learning of a
Bayesian method

1 Introduction

The present project explored Woodroofe-Stein’s identity for Bayesian learning. We extend
the moment matching in Weng and Lin (2011) for models of ranked data to item response
theory models. Both are latent ability models, and they often model the outcomes by normal
or logistic distributions. We obtain online algorithms to adjust the parameters in certain
ordinal IRT models designed for Likert-type data, and demonstrate the effectiveness of the
proposed algorithm through two real datasets. Our experiments show that the proposed

method works well. This is joint work with Dr. Coad.

2 Item response models

Item response models have been widely used in modeling scored data from educational tests;
see [1].

Ezxample 1: Basic IRT. The basic one-parameter IRT model is for analyzing dichoto-
mously scored test data. It models the probability of a correct response to a test item as a
function of the examinee’s ability and the item’s difficulty. Let the item response variable
Y;; be 0 or 1, corresponding to whether the response to the jth test item taken by the ith
individual is correct or not, ¢; represent the ability of the ith individual, and 3; represent

the difficulty of the jth test item. The model has the form
P(Yi; =110, 8;) = F(0; — B)), (1)

where F'(+) is a c.d.f. from a continuous distribution. When F() is the standard logistic
c.d.f., (1) is the Rasch model [5]; and when F(-) is the standard normal c.d.f., (1) is called
the Normal Ogive (or Probit) model.

Ezample 2: Ordinal IRT. [6] introduced the graded response model to analyze ordered
polytomous data. Let Y;; denote the score of the ith individual on item j, 6; the proficiency
of the 7th individual, 3; the discrimination parameter for test item j, ;. the item response
parameter for test item j and category ¢, where ¢ = {0,1,...,C;}. The model specifies the

probability of the ¢th individual responding in category ¢ or higher on the test item j as

P(Yi; > c|Bj,0i,65.c) = F(Bj(0: — 0j.c)),



where F(-) is the c.d.f. of a logistic or a normal distribution. In this model, the number
of categories C; for item j can be different across j. For Likert-type data in which the
categories are {1,2,...,C} for all items, [4] proposed a modified graded response model,
which resolved the item response parameter J;. into the item location parameter o; and

the category threshold parameter d._1, where dy = —oo; that is,
P(Yij 2 c|Bj, 0i, o, de—1) = F(B;(6; + aj — de—1)). (2)
The resulting probability of category c is
P(Yy; = clB), 03, a5, de, detr) = F(B;(0i + aj — dc)) — F(B;(0; + aj — det1))

[2] proposed an ordinal IRT model to fit online product ratings data. Let Yj; €
{1,2,...,C} denote the rating of item i by rater j. Typically a rater may only rate a
small proportion of products. So, many Y;; are missing. They assume that the observed

Y;; is determined by an unobserved variable Y;7:

Y:LJ =Cc<= }/1; € (70—1776]7 (3)
where the 7. are cutpoints, 79 = —o0, 7o = o0, and assume that Yzj is parameterized as
. id
Y;j = a; + B;0; + €5, €ij o N(0,1). (4)

In (4), oj captures the center location of rater j’s rating, ; measures the discriminating
ability of rater j, and 6; represents the latent quality of item i. By (3), the probability of

observing Yj; in category c or higher is
P(Y;; > clay, B, 0i,7ve—1) = ®(Bi0; + aj — Ye—1). (5)
So, the probability of category c is
P(Yij = clag, Bj, 05, 7e—1,7e) = ®(B0i + o — ve—1) — ®(B;0; + o — 7).

That €;; in (4) follows either the normal or the logistic distribution. We observe that
model (5) closely resembles (2), but they differ in the parameterization of the item location

and category threshold parameters.

3 The approximation method

Let ¢ and ® denote the density and distribution function of a standard normal variable,
and let ¢(z|u, o) denote the density of the normal distribution with mean p and standard

deviation o.



The proposed method is based on the moment equations obtained from a version of
Stein’s identity. The famous Stein’s lemma [7] concerns the expectation of a normally
distributed random variable. It is of interest primarily because of its applications to the
James-Stein estimator [3] and to empirical Bayes methods. In the context of setting se-
quential confidence levels, [10] studied integrable expansions for posterior distributions and
developed a variant of Stein’s identity. This identity concerns the expectation with respect
to a “nearly normal distribution” in the sense: p(z) = ¢(z)f(z), where f is a real-valued
almost differentiable function defined on RP. [9] used this identity to obtain a Bayesian
approximate moment-matching method, and referred to it as the Woodroofe-Stein identity
to distinguish it from Stein’s lemma.

Here we describe only some moments equations from this identity. For a detailed account
of the identity, we refer readers to [8, Section 2.2] and [9, Corollary 2]. Let o™ = (47, ..., ¢5)
be a suitably normalized vector of the parameter ¥ = (¢1,...,1;,)". Suppose that the

posterior density of ¥* can be written as

Co(y™) f(¥7), (6)

where C' is the normalizing constant. Further suppose that f is a twice continuously differ-

entiable function. An application of the Woodroofe-Stein identity gives the following:

V2f ()

} ) Z.7q:]‘7"‘?k7 (8)
iq

where ;; = 1 if i = ¢ and 0 otherwise, and [];, indicates the (i, ¢) entry of a matrix.

From (7) and (8), the mean and variance of ¢} are

B(yf) =B (algi““) , o)
Var(ut) ~B(wi)?) - Bt = 1+ 8 [ PR [ (908])] o)

4 Online inference of IRT models for Likert-type data

For the basic one-parameter IRT models (1), if the item response function F' is taken as
the standard logistic or normal c.d.f., then it is not difficult to derive real-time parameter

adjustment by modifying Algorithms 1 and 3 in [9].



Our primary interest here are online inference for models (2) and (5), designed for
Likert-type data. We assume that each «; follows N (,uaj,agj), each f3; follows N (p 8, agj),
and each 0; follows N (u., agi) with all parameters mutually independent. Now define the

normalized quantities

L O Ly, Bi — g, 0; — w,
o) = - Y Bi=—— 0i=—" (11)
Ta; T %o,
The posterior distribution of (a}‘, 5 0F) given y;; = c is
p(aj, 55,0 yis) < ¢(, 55, 07) f(af, B}, 0F), (12)

where f is the likelihood based on data y;; = c¢. Note that (12) is of the form (6). Therefore,
one can apply (9), (10) and (11) to derive expressions of approximations.

Below we present the sequential update rule when f in (12) is from (5) and comments
on how similar procedures can be applied when f is as (2).

For model (5), the posterior distribution of (o}, 85, 6;) given y;; = c is (12) with
[, 87,07) = ®(B,0; + aj — ve-1) — P(Bj0i + aj — ). (13)

The proposed estimates for the posterior means and variances are

2
T Tay Pa G 2 9 Ta; )2 Pz @
uaj—uaﬁ(u)“(yvy)’ O e S IR b)) S

Mo = pg g,  Hay —Ye1 and @ =7 — Y1, (17)

_ ) = ¢(pa — a)
) = )~ (s —a)

(18)
N Mm¢<ﬂm> — (pe — a)<b(,uz - a) ¢(ﬂz) — ¢<Mm —a) ?
Al 0) = ) — B —a) <<I><um> —@(um—@) ’
v = \/1 + Jgj + a%j,ugi + agiu%j. (19)

For the unknown cutpoints ¥ = (71, ...,7¢_1)7, we propose to estimate them through

the distribution of y;; in (4) and the relation {y;; = c} < {y}; € (Ye—1,7]} in (3).
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For the modified graded response model (2), the posterior distribution of (a;f, B;-‘,Hf)
given y;; = c is (12) with

f(as, B7,07) = ©(8;(0; + aj — de—1)) — ®(Bj(0: + o — do)). (20)

The parameter update can be derived similarly. To see how, first note that an observed Y;;

from model (2) can be determined by an unobserved variable
i

and the relation Yj; = ¢ & Yg € (Bjdc—1,pjd]; or, equivalently, Yj; = ¢ & Yg/ﬁ] €
(de—1,dc]. Therefore, by approximating the distribution of YZE /Bj, we can estimate the
threshold parameters (dy, ..., dc—1) in the same manner as for . The sequential update for

the posterior means and variances of «;, 3;, and 6; can be derived analogously.

5 Concluding remarks

Online methods are necessary when large amount of data arrive in streams data and real-
time parameter adjustment is needed. We have developed an algorithm for Bayesian online
parameter estimation for IRT models with Likert-type data. We have also compared our
real-time estimation method with the offline MCMC methods via the package Ratings.
Though sacrificing some accuracy, in general, our proposed method achieves a good per-
formance, but with considerably less computational time. Thus, for situations where faster
approximate methods are desirable, our proposed method can be a useful alternative to
offline methods. That said, we have to point out some limitations of our method. First,
with only mean and variance updates, our method can not provide estimates of quantities
of interest, which are easily obtainable by MCMC methods. Second, there is a lack of the-
oretical analysis on the discrepancies between the offline method and the proposed online

one. We leave it as future work.
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Report on attending useR! 2016 conference, June 27 - 30, 2016, Stan-
ford University, Palo Alto, California.

The annual useR! conference is the main meeting of the international R user and
developer community. This year the conference was held at the campus of Stanford
University in Stanford, CA. The conference is being organized with support from the
Department of Statistics, Stanford University and the Stanford Libraries.

On Monday 2016.6.27, I attended two tutorials. One is Machine Learning Algo-
rithmic Deep Dive, which provides a review of the implementations of several machine
learning algorithms. The other is Bayesian Inference Using R Interfaces to Stan,
which introduced Bayesian inference using Hamiltonian Markov Chain Monte Carlo
as implemented in Stan. Hamiltonian Monte Carlo method is rather than, and may
outperform the existing methods in many cases.

I also benefit a lot from several invited talks and contributed sessions. I attended
the following invited talks: Richard Becker’s Forty Years of S, which described the
creation of S at Bell Labs in 1970s; Donald Knuth’s Literate Programming, describing
his work developing Tex in the 1980s, Hadley Wickham’s Towards a Grammar of
Interactive Graphics, and Daniela Witten’s Flexible and Interpretable Regression
Using Convex Penalties, which discussed Fused Lasso Additive Models (FLAM) using
piecewise constant functions.

My poster presentation was on Wednesday 2:30-3:30. My work is on Bayesian
inference for product ratings data using R. It was great to have a bunch of attendees to
discuss with me about my work. Among them, one is from French having co-developed
JAG and asking about particle filtering; one is from Google at Mountain View, who
is interested in analyzing product ratings; one is from University of Washington, who
commented on producing R package, etc.

It is a great conference for R users to meet people who use and develop R tools,
and learn more about how statistics and R are used in a variety of applications in the
big data era.

During these days, I met some friends from industries and academics. Having
chats with them inspired me and encouraged me to keep on moving. It was really a

fruitful trip.
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