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中 文 摘 要 ： 本計畫中，我們是探討流行病感染者痊癒後不具免疫力的一個具擴
散性之SIS模型，此模型沒有比較原理，我們證明了存在連結流行均
衡點及非流行均衡點之行進波解。
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英 文 摘 要 ： We study a diusive SIS model for a disease that the
infectives recover with no
immunity against reinfection. Such a SIS model does not
enjoy the comparison principle. We analytically show that
there exists a family of traveling waves connecting the
endemic equilibrium with the disease-free equilibrium.
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Abstract

We study a diffusive SIS model for a disease that the infectives recover with no
immunity against reinfection. Such a SIS model does not enjoy the comparison princi-
ple. We analytically show that there exists a family of traveling waves connecting the
endemic equilibrium with the disease-free equilibrium.
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1 Introduction

In this paper, we consider a diffusive SIS model for a disease that the infectives recover
without immunity against reinfection. To be precise, let S = S(x, t) represent the number at
time t and position x of individuals who are susceptible to the disease, and I = I(x, t) denote
the number at time t and position x of infected individuals who can spread the disease by
contacting with susceptible individuals. Then the model reads:

St = δSxx + µΛ− βSI − µS + γI, (1.1a)

It = Ixx + βSI − µI − γI − κI. (1.1b)

Here the parameters Λ, µ, β, and γ are positive constants. Moreover, the constant µΛ is
the recruitment rate of the susceptible population S, β is the contact rate, γ is the recovery
rate of the infective population, µ is the natural death rate for both the susceptible and the
infective population, and κ is the rate of the infective population dying from infection. The
constant Λ can be interpreted as a carrying capacity, or maximum possible population size.
Finally, the parameter δ is the ratio of the diffusion rate of the susceptible population to
that of the infective population. This model can be used to describe transmission of diseases
such as sexual transmitted disease, plague, and meningitis.
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Note that if the quantity

R0 :=
βΛ

γ + µ+ κ
< 1

then system (1.1) has only one equilibrium point: (Λ, 0), which is called the disease-free
equilibrium. On the other hand, if R0 > 1 then system (1.1) has the second equilibrium
point: (s∗, i∗), where

s∗ :=
µ+ γ + κ

β
and i∗ :=

µ(Λ− s∗)
µ+ κ

,

which is called the endemic-equilibrium. Furthermore, with a local analysis, one can verify
that the disease-free equilibrium (Λ, 0) is a saddle point of the kinetic equation of sys-
tem (1.1)(i.e., system (1.1) without diffusion), while the endemic-equilibrium (s∗, i∗) is a
stable node of the kinetic equation of system (1.1). This observation suggests that if R0 < 1,
the infection should die out, while if R0 > 1, the infection will spread. In epidemiology, the
quantity R0 is called the basic reproduction number. Since we are concerned with spread of
the infection, throughout this paper, we always assume that R0 > 1.

Numerical simulations show that by locally introducing an amount of the infective pop-
ulation into the area which is inhabited by the susceptible population at the level of the
carrying capacity Λ, the corresponding solution evolves into a pair of diverging travelling
waves propagating outwards from the initial zone. In the present paper, we shall analytically
show the existence of traveling wave solutions of system (1.1).

A traveling wave solution of system (1.1) is a solution of system (1.1) of the form

(S(x, t), I(x, t)) = (s(z), i(z)), z = x+ ct,

with the boundary condition (s, i)(+∞) = (s∗, i∗) and (s, i)(−∞) = (Λ, 0). Here the wave
speed c is a constant to be determined and the wave profile (s, i) ∈ C2(R)×C2(R) is a pair
of nonnegative functions. Upon substituting the ansatz on (s, i) into (1.1), the governing
system for (s, i) reads:

δs′′ − cs′ + µ(Λ− s)− βsi+ γi = 0, (1.2a)

i′′ − ci′ + βsi− (µ+ γ + κ)i = 0 (1.2b)

on R, together with the boundary conditions

(s, i)(+∞) = (s∗, i∗), (s, i)(−∞) = (Λ, 0). (1.3)

Here the prime indicates differentiation with respect to z. Now we are in a position to state
the main result on the existence of traveling waves of system (1.1) as follows:

Theorem 1.1 (Existence of traveling waves)

(I) For each c < cmin := 2
√
βΛ− γ − µ− κ, there are no nonnegative solutions (s, i) of

system (1.2)-(1.3).

(II) For each c > cmin, system (1.2)-(1.3) admits a nonnegative solution (s, i) with the
following properties:
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(i) γ/β < s < Λ and i > 0 over R.

(ii) There exists a γ∗ > 0 such that there hold

(a) if γ ∈ (0, γ∗), then the solution (s, i) approaches (s∗, i∗) monotonically for
large z.

(b) if γ > γ∗, then the solution (s, i) has exponentially damped oscillations about
(s∗, i∗) for large z.

(iii) We have i(z) = O(eλz) as z → −∞, where λ is given by

λ = λ(c) :=
1

2
·
[
c−

√
c2 − 4(βΛ− γ − µ− κ)

]
. (1.4)

We make two comments on Theorem 1.1. First, the minimal speed cmin of traveling waves
of system (1.1) is independent of the ratio δ of the diffusion rates. Second, due to the lack
of uniform bound of the i-component of traveling wave for c close to cmin, we are unable to
show the existence of critical waves (i.e., waves with speed c = cmin). We left this question
for our future study.

Finally, we outline the method for the proof of main results. We will follow the framework
of our previous work [7] to establish Theorem 1.1 whose idea is based on [3]. Note that our
previous work [7] can only be applied to system (1.1) with γ = 0. There are two main steps
for the methods in [7]. First, we need to construct a pair of coupled super/sub-solutions of
system (1.1), then use this set of super/sub-solutions to derive the existence of the solution
of the truncated problem associated with system (1.2), and then, by passing to the limit, get
a candidate solution (s, i) for the traveling wave solution of system (1.2). Second, in order
to verify that the candidate solution (s, i) satisfies the boundary condition at the infinity,
we need to derive the estimates of the derivative of (s, i) and the boundedness of the i-
component, and then apply the LaSalle’s theorem to get that (s, i) satisfies the boundary
condition at infinity. The first step is different from that in [7] since we use the super-
solution to set up the boundary condition for the truncated problem. The second step is a
slight modification of that in [7]. Hence for the proof of the second step, we will only sketch
the main ingredients, and refer the readers to [7] for more details. We remark that due to
the lack of comparison principle of system (1.1), the construction of the sub-solution is based
on the super-solution, not on the traveling waves.

This paper is organized as follows. In Sec. 2, we first construct the coupled pairs of
super/sub-solutions, and then use this set of super/sub-solutions and Schauder fix point
theorem to establish the solution of truncated problem of system (1.1) on the finite interval
[−l, l]. Finally, by passing to the limit l→∞, we obtain a solution (s, i) of system (1.1) on
R with the condition (s, i)(−∞) = (Λ, 0) which is a candidate solution for traveling waves
of system (1.1). In Sec. 3, we verify that the candidate solution (s, i) obtained in Sec. 2 is
indeed a traveling wave solutions of system (1.1). Finally, some auxiliary lemmas are given
in the appendix.
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2 Property of waves and construction of a candidate

of traveling waves

2.1 The minimal speed and decay rate of waves

We first establish the assertion of Theorem 1.1 (I) and the decay rate of the i-component of
waves near infinity.

Lemma 2.1 Suppose that (s, i) is a nonnegative solution of system (1.2)-(1.3). Then we
have

(i) c ≥ cmin, and

(ii) For c > cmin, i(z) = O(eλz) as z → −∞ where λ is given by

λ =
1

2
·
(
c±

√
c2 − 4(βΛ− γ − µ− κ)

)
.

Proof. Linearizing (1.2) around (Λ, 0) yields the equations

δs′′ − cs′ − µs− (βΛ− γ)i = 0, (2.1a)

i′′ − ci′ + (βΛ− µ− γ − κ)i = 0. (2.1b)

Note that (2.1b) has two eigenvalues

λ1 =
1

2
·
(
c−

√
c2 − 4(βΛ− γ − µ− κ)

)
, λ2 =

1

2
·
(
c+

√
c2 − 4(βΛ− γ − µ− κ)

)
.

For contradiction, we assume |c| < 2
√
βΛ− γ − µ− κ holds. Then λ1 and λ2 form a com-

plex conjugate pair. This suggests that i(z) cannot be of the same sign for z for large
−z, a contradiction. Hence we have |c| ≥ 2

√
βΛ− γ − µ− κ. Next we suppose that c ≤

−2
√
βΛ− γ − µ− κ. Then we have λi > 0, i = 1, 2, and so i(z) is unbounded as z → −∞,

which is a contradiction. Taken together, we can conclude c ≥ cmin = 2
√
βΛ− γ − µ− κ,

which completes the proof of assertion (i).
Finally, the assertion (ii) follows from the above linearized equation and the definitions

of λ1 and λ2. This completes the proof of this lemma.
In the remaining of this section, we will construct a candidate of non-critical waves and

hence we always assume that c > cmin.

2.2 Super/sub-solutions

In this subsection, we will construct a pair of super- and sub-solutions (s±, i±). To begin
with, we give the definition of super- and sub-solutions of (1.2).

Definition 2.1 (s+, i+) and (s−, i−) are called a pair of super- and sub-solutions of (1.2) if
s+, i+, s−, i− are nonnegative continuous functions and satisfy

δ(s+)′′(z)− c(s+)′(z) + µ(Λ− s+(z))− βs+(z)i−(z) ≤ 0,

δ(s−)′′(z)− c(s−)′(z) + µ(Λ− s−(z))− βs−(z)i+(z) ≥ 0,(
i+
)′′

(z)− c
(
i+
)′

(z) + βs+(z)i+(z)− (γ + µ+ κ)i+(z) ≤ 0,(
i−
)′′

(z)− c
(
i−
)′

(z) + βs−(z)i−(z)− (γ + µ+ κ)i−(z) ≥ 0
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except for finitely many points of z in R.

The idea of the construction of the super/sub-solutions is motivated by [3]. Specifically,
we first construct the s-component of the super-solution s+. Then we use s+ to construct
the i-component of the super-solution i+, which is immediately employed to construct the
s-component of the sub-solution s−. The s− is in turn used to generate the i-component of
the sub-solution i−.

To construct the super/sub-solutions, we select 0 < α < min{c/δ, λ1} and 0 < η <
min{α, λ2 − λ1} such that

c− δα > 0, (2.2)

λ1−α > 0, η−α < 0, and P (λ1 + η) < 0. In view of the fact that e(λ1−α)z → 0 as z → −∞,
there exists z0 < 0 such that

e(λ1−α)z ≤ µ

β
,∀z ≤ z0.

Hence we have
µeαz ≥ βi+(z),∀z ≤ z0 (2.3)

and
M := Λe−αz0 > Λ. (2.4)

Finally, we pick

L > max
{M

Λ
,− βM

P (λ1 + η)

}
, (2.5)

and set z1 = − lnL/η. Note that z1 < z0 < 0 since z0 = − lnM/α, L > M , and η < α.
Now we define four nonnegative continuous functions s+, s−, i+, and i− as follows:

s+(z) := Λ,

s−(z) :=

{
Λ−Meαz, z ≤ z0,
0, z > z0,

i+(z) := eλ1z,

i−(z) :=

{
eλ1z − Le(λ1+η)z, z ≤ z1,
0, z > z1.

It is obvious that s+(z) satisfies the inequality

δ(s+)′′(z)− c(s+)′(z) + µ(Λ− s+(z))− βs+(z)i−(z) ≤ 0 (2.6)

for all x ∈ R. In the following, we will show that (s+, i+) and (s−, i−) are a pair of upper
and lower solutions of (1.2) .

Lemma 2.2 The function i+(z) satisfies the equation(
i+
)′′

(z)− c
(
i+
)′

(z) + βs+(z)i+(z)− (γ + µ+ κ)i+(z) = 0 (2.7)

for all z ∈ R, where the prime denotes the differentiation with respect to z.
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Proof. Since P (λ1) = 0, it follows that(
i+
)′′

(z)− c
(
i+
)′

(z) + βs+(z)i+(z)− (γ + µ+ κ)i+(z) = P (λ1) · i+(z) = 0, ∀z ∈ R.

In the sequel, we retain the notation z0.

Lemma 2.3 The function s−(z)} satisfies the inequality

δ(s−)′′(z)− c(s−)′(z) + µ(Λ− s−(z))− βs−(z)i+(z) ≥ 0 (2.8)

for all z 6= z0.

Proof. For z > z0, the inequality (2.8) follows from s−(z) ≡ 0 in (z0,∞). For z < z0,
s−(z) = Λ −Meαz, and hence Λ − s−(z) = Meαz. Together with the fact that s−(z) ≤ Λ,
we can use deduce

δ(s−)′′(z)− c(s−)′(z) + µ(Λ− s−(z))− βs−(z)i+(z)

≥ Mα(c− δα)eαz + µMeαz − βΛi+(z)

≥ Mα(c− δα)eαz +M
(
µeαz − βi+(z)

)
(by (2.3))

≥ 0. (by (2.2) and (2.4))

Hence (2.8) holds.

In the sequel, we retain the notation z1 and L.

Lemma 2.4 The function i−(z) satisfies the inequality(
i−
)′′

(z)− c
(
i−
)′

(z) + βs−(z)i−(z)− (γ + µ+ κ)i−(z) ≥ 0 (2.9)

for all z 6= z1.

Proof. For z > z1, the inequality (2.9) follows from i−(z) ≡ 0 in (z1,∞). For z < z1,
i−(z) = i+(z)− Le(λ1+η)z and s−(z) = Λ−Meαz. Then we have

(i−)′(z) = (i+)′(z)− (λ1 + η)Le(λ1+η)z,

(i−)′′(z) = (i+)′′(z)− (λ1 + η)2Le(λ1+η)z,

and

s−(z)i−(z)

= (Λ−Meαz)
(
i+(z)− Le(λ1+η)z

)
≥ Λi+(z)−Me(α+λ)z − ΛLe(λ1+η)z.

Together with (2.7) and definition of P , we get

(i−)′′(z)− c(i−)′(z) + βs−(z)i−(z)− (γ + µ+ κ)i−(z)

≥ e(λ1+η)z[−P (λ1 + η)L− βMe(α−η)z]

≥ 0. (by e(α−η)z ≤ 1 and (2.5))

This completes the proof of this lemma.
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2.3 A truncated problem

In this subsection, we will use the super/sub solutions established in Sec. 2.2 to construct the
solutions of the truncated problem of system (1.2)-(1.3). With the aid of the solution of the
truncated problem, we can use the limiting process to obtain a solution (s, i) of system (1.2)
satisfying (s, i)(−∞) = (Λ, 0) which can be a good candidate of traveling wave solutions of
system (1.1).

Let l > z1. We consider the following truncated problem

δs′′ − cs′ + µ(Λ− s)− βsi+ γi = 0 in (−l, l), (2.10a)

i′′ − ci′ + βsi− (γ + µ+ κ)i = 0 in (−l, l), (2.10b)

together with the boundary conditions

(s, i)(−l) = (s+, i+)(−l), (s, i)(l) = (s+, i+)(l). (2.11)

In the remaining of this subsection, we will employ the Schauder fixed point theorem to
establish the existence of solutions of (2.10)-(2.11). To do this, we set Il := [−l, l] and
X := C(Il)× C(Il). Define the working space

E := {(s, i) ∈ X| s− ≤ s ≤ s+ ≡ Λ and i− ≤ i ≤ i+ in Il},

which is a closed convex set in the Banach space X equipped with the norm ‖(f1, f2)‖X =
‖f1‖C(Il) + ‖f2‖C(Il). Since s− and i− are nonnegative, it follows that s ≥ 0 and i ≥ 0 for
any (s, i) ∈ E. Next, we define the mapping FE → E as follows: given (s0, i0) ∈ E, set

F(s0, i0) := (s, i),

where (s, i) is the solution of the boundary value problem

δs′′ − cs′ + µ(Λ− s)− βsi0 + γi0 = 0 in (−l, l), (2.12a)

i′′ − ci′ + βs0i0 − (γ + µ+ κ)i = 0 in (−l, l), (2.12b)

(s, i)(−l) = (s+, i+)(−l), (s, i)(l) = (s+, i+)(l). (2.12c)

Note that any fixed point of F is a solution of the problem (2.10)-(2.11). Hence in order to
solve the problem (2.10)-(2.11), it suffices to verify that the mapping F satisfies the condition
of the Schauder fixed point theorem. We will do this in the remaining part of this subsection.

Lemma 2.5 The mapping F is well-defined; that is, for a given (s0, i0) ∈ E, there exists
a unique solution (s, i) to the boundary value problem (2.12). Moreover, s− ≤ s ≤ s+ and
i− ≤ i ≤ i+ in Il.

Proof. Since system (2.12) is not a coupled system and the equations (2.12a) and (2.12b)
are inhomogeneous linear equations, the existence and uniqueness to the boundary value
problem (2.12) can be easily obtained by [8, Theorem 3.1 of Chapter 12]. Moreover, since
δs′′ − cs′ − (µ + βi0)s = −µΛ − γi0 ≤ 0 on (−l, l) and s(±l) = s+(±l) = Λ > 0, it follows
from the maximum principle that s > 0 over Il. Similarly, one can deduce that i > 0 over Il.
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Next we claim that s− ≤ s ≤ s+ in Il. Note that −l < 0 < z0 < z1 < l. To show that
s− ≤ s in Il, we recall that i0 ≤ i+ and i0 ≥ 0. Together with (2.12a), we deduce that

δs′′ − cs′ + µ(Λ− s)− βsi+ ≤ 0 in (−l, l). (2.13)

Then (2.8) and (2.13) imply that the function w1 := s−s− satisfies δw′′1−cw′1−(µ+βi+)w1 ≤ 0
in (z0, l). In addition, from (2.12c) and the fact s(z0) > 0 and s−(z0) = 0, we know that
w1(z0) > 0 and w1(l) = s+(l)− s−(l) > 0. Hence the maximum principle asserts that w1 ≥ 0
in [z0, l], which implies that s− ≤ s in [z0, l]. Together with the fact that s− ≡ 0 ≤ s in
[−l, z0], we get s− ≤ s in [−l, l]. Now we show that s ≤ s+ in Il. Recalling that s+ ≡ Λ and
noting that γ < βΛ, one can easily see that s+ satisfies

δ(s+)′′ − c(s+)′ + µ(Λ− s+)− βs+i0 + γi0 ≤ 0 in (−l, l).

Since s+(±l) = s(±l), we can use a similar argument as the proof for s− ≤ s in [z0, l] to get
that s ≤ s+ in Il.

Finally, we claim that i− ≤ i ≤ i+ on Il. Since

s−i− ≤ s0i0 ≤ Λi+,

so that
i′′ − ci′ + βs−i− − (γ + µ+ κ)i ≤ 0 (2.14)

and
i′′ − ci′ + βΛi+ − (γ + µ+ κ)i ≥ 0 (2.15)

for all z in (−l, l). Now we consider the function w2 = i − i−. From (2.12c) and the fact
i(z1) > 0 and i−(z1) = 0, we know that w2(z1) > 0 and w2(l) = i+(l)−i−(l) > 0. In addition,
(2.9) and (2.14) give that w′′2(z)− cw′2(z)− (γ + µ+ κ)w2(z) ≤ 0 for all z ∈ (z1, l). Then it
follows from the maximum principle that w2 ≥ 0 in [z1, l]. This implies that i− ≤ i in [z1, l].
Together with the fact that i− ≡ 0 ≤ i in [−l, z1], we get i− ≤ i in Il. Similarly, noting that
i+(±l) = i(±l), one can easily use (2.15) and the maximum principle to deduce that i ≤ i+

in Il. Hence the proof of this lemma is completed.

Lemma 2.6 F is a continuous mapping.

Proof. For given (s0, i0) and (s̃0, ĩ0) in E, let

(s, i) = F(s0, i0) and (s̃, ĩ) = F(s̃0, ĩ0). (2.16)

Consider the function w1 := s− s̃. With a straightforward computation, one can verify that
w1(−l) = w1(l) = 0 and

w′′1 −
c

δ
w′1 + f1(z)w1 = h1(z),

where

f1(z) = −(µ+ βi0(z))/δ and h1(z) =
1

δ
(βs̃(z)− γ)

(
i0(z)− ĩ0(z)

)
.
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Since 0 ≤ i0 ≤ i+ ≤ ‖i+‖C(Il) = eλl and 0 ≤ s̃ ≤ s+ ≡ Λ, it follows that

−C1 ≤ f1 ≤ 0 and |h1| ≤ C2 · ‖i0 − ĩ0‖C(Il),

where C1 := (µ + βeλl)/δ, C2 := (βΛ + γ)/δ. Then from Lemma A.1 in the appendix, it
follows that there exists a positive constant C3, depending only on C1, δ, c, and l, such that

‖w1‖C(Il) ≤ C2C3 · ‖i0 − ĩ0‖C(Il),

which, together with definition of w1, implies that

‖s− s̃‖C(Il) ≤ C2C3 · ‖i0 − ĩ0‖C(Il). (2.17)

Next, consider the function w2 = i− ĩ. Again, with a straightforward computation, it follows
that w2 satisfies w2(−l) = w2(l) = 0 and

w′′2 − cw′2 − (γ + µ+ κ)w2 = h2(z),

where
h2 = βĩ0(s̃0 − s0) + βs0(ĩ0 − i0). (2.18)

Since 0 ≤ ĩ0 ≤ ‖i+‖C(Il) = eλl and 0 ≤ s0 ≤ Λ, we deduce from (2.18) that

|h2| ≤ βeλl‖s0 − s̃0‖C(Il) + βΛ‖i0 − ĩ0‖C(Il).

Then Lemma A.1 in the appendix asserts that there exists a positive constant C4, depending
only on γ, µ, κ, β, c, Λ, λ, and l, such that

‖w2‖C(Il) ≤ C4

(
‖s0 − s̃0‖C(Il) + ‖i0 − ĩ0‖C(Il)

)
,

which, together with definition of w2, implies that

‖i− ĩ‖C(Il) ≤ C4

(
‖s0 − s̃0‖C(Il) + ‖i0 − ĩ0‖C(Il)

)
. (2.19)

Finally, we use (2.16), (2.17), (2.19), and definition of the norm ‖ · ‖X to deduce that

‖F(s0, i0)−F(s̃0, ĩ0)‖X
= ‖(s, i)− (s̃, ĩ)‖X
= ‖s− s̃‖C(Il) + ‖i− ĩ‖C(Il)

≤ C5(‖s0 − s̃0‖C(Il) + ‖i0 − ĩ0‖C(Il))

= C5‖(s0, i0)− (s̃0, ĩ0)‖X , (2.20)

where C5 = C2C3 + C4. Thus, for a given ε > 0, we choose 0 < σ1 < ε/C5. Then, by (2.20),
we have

‖F(s0, i0)−F(s̃0, ĩ0)‖X < ε,

for any (s0, i0), (s̃0, ĩ0) ∈ E such that ‖(s0, i0) − (s̃0, ĩ0)‖X < σ1. This implies that F is a
continuous mapping, thereby completing the proof of this lemma.
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Lemma 2.7 F is precompact.

Proof. The proof of this lemma are standard. We follows the proof of [7, Lemma 2.7].
For a given sequence {(s0,n, i0,n)}n∈N in E, let (sn, in) = F(s0,n, i0,n). Then Lemma 2.5

yields that (sn, in) ∈ E. Since 0 ≤ s− ≤ s+ ≡ Λ and 0 ≤ i− ≤ i+ ≤ eλl in Il, it follows from
definition of the set E that the sequences

{s0,n}, {i0,n}, {sn}, {in}, {s0,ni0,n}, and {sni0,n}

are uniformly bounded in Il. Then, in view of Lemma A.2 in the appendix, we have that
the sequences

{s′n} and {i′n},
are also uniformly bounded in Il. Hence Arzela-Ascoli theorem asserts that there exists a
subsequence {(snj , inj)} of {(sn, in)} such that

(snj , inj)→ (s, i),

uniformly in Il as j →∞, for some (s, i) ∈ E. This implies that the set F(E) is compact in
E, and hence that F is precompact. This establishes the assertion of this lemma.

Finally, with the aid of Lemma 2.5-Lemma 2.7, we can apply the Schauder fixed point
theorem to conclude that F has a fixed point (sl, il), which is a nonnegative solution of
system (2.10)-(2.11) satisfying 0 ≤ s− ≤ sl ≤ s+ ≡ Λ and 0 ≤ i− ≤ il ≤ i+ on Il. Indeed,
sl > γ/β on Il. To see this, we note that s := γ/β satisfies

δs′′ − cs′ + µ(Λ− s)− βsi+ γi ≥ 0 in (−l, l), (2.21)

where we have used the fact Λ > γ/β. Let w := sl − s. Then, using (2.10a) and (2.21), we
deduce that

δw′′ − cw′ − (µ+ βi)w ≤ 0 in (−l, l).
In addition, since Λ > γ/β, it follows from (2.11) that w(±l) = sl(±l)−s(±l) = Λ−γ/β > 0.
Then it follows from the maximum principle that w > 0 and so sl > s on Il. Hence sl > γ/β
on Il. From the above discussion, we have the following existence result for the truncated
problem (2.10)-(2.11).

Lemma 2.8 System (2.10)-(2.11) admits a solution (sl, il) on Il. Moreover,

γ/β ≤ max{γ/β, s−} ≤ sl ≤ s+ ≡ Λ and 0 ≤ i− ≤ il ≤ i+ (2.22)

on Il.

2.4 The construction of a candidate of traveling waves

In this subsection, we use the solution (sl, il) of the truncated problem (2.10)-(2.11) and
the limiting argument to obtain a solution (s, i) of system (1.2) satisfying (s, i)(−∞) = (Λ, 0).
Hence if we could show that (s, i)(+∞) = (s∗, i∗), then (s, i) must be a traveling wave of
system (1.1). Thus this observation would suggest that (s, i) is a good candidate of traveling
wave solutions of system (1.1). The condition that (s, i)(+∞) = (s∗, i∗) will be verified in
Sec. 3. Now we have the following lemma.

10



Lemma 2.9 If c > cmin, then system (1.2) admits a solution (s, i) on R satisfying γ/β <
s < Λ and i > 0 over R, i(z) = O(eλz) as z → −∞, where λ is given by (1.4), and

(s, i)(−∞) = (Λ, 0) and (s′, i′)(−∞) = (0, 0).

Proof. Let {ln}n∈N be an increasing sequence in (z1,∞) such that ln → ∞ as n → ∞ and
let (sn, in), n ∈ N, be a solution of system (2.10)-(2.11) with l = ln. For any fixed N ∈ N,
since the function i+ is bounded above in [−lN , lN ], it follows from (2.22) that the sequences

{sn}n≥N , {in}n≥N , and {snin}n≥N

are uniformly bounded in [−lN , lN ]. Then we can use Lemma A.2 to infer that the sequences

{s′n}n≥N and {i′n}n≥N

are also uniformly bounded in [−lN , lN ]. Using (2.10), we can express s′′n and i′′n in terms of
sn, in, s′n and i′n. Differentiating (2.10), we can use the resulting equations to express s′′′n
and i′′′n in terms of sn, in, s′n, i′n, s′′n and i′′n. Consequently, the sequences

{s′′n}n≥N , {i′′n}n≥N , {s′′′n }n≥N and {i′′′n }n≥N

are uniformly bounded in [−lN , lN ]. With the aid of Arzela-Ascoli theorem, we can use a
diagonal process to get a subsequence {(snj , inj)} of {(sn, in)} such that

snj → s, s′nj → s′, s′′nj → s′′,

and
inj → i, i′nj → i′, i′′nj → i′′,

uniformly in any compact interval of R as n → ∞, for some functions s and i in C2(R).
Then it is easy to see that (s, i) is a nonnegative solution of system (1.2) and satisfies

γ/β ≤ max{γ/β, s−} ≤ s ≤ s+ ≡ Λ and 0 ≤ i− ≤ i ≤ i+ (2.23)

over R. From definitions of s− and i+, we see that s−(z) → Λ and i+(z) → 0 as z → −∞.
This, together with (2.23), implies that

(s, i)(−∞) = (Λ, 0), (2.24)

and i(z) = O(eλz) as z → −∞, where λ is given by (1.4).
Furthermore, we claim that γ/β < s < Λ and i > 0 over R, and

(s′, i′)(−∞) = (0, 0). (2.25)

For contradiction, we assume that i(z̃1) = 0 for some z̃1 ∈ R. Then i′(z̃1) = 0. Therefore the
uniqueness gives that i ≡ 0, which contradicts the fact that i ≥ i− > 0 on (−∞, z1). Hence
i > 0 over R. To prove s < Λ over R, we also use a contradictory argument and assume that
s(z̃2) = Λ for some z̃2 ∈ R. In this case, s′(z̃2) = 0 and s′′(z̃2) ≤ 0. This contradicts (1.2a)
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with z = z̃2. Hence s < Λ over R. Suppose s(z̃3) = γ/β for some z̃3 ∈ R, then s′(z̃3) = 0
and s′′(z̃3) ≥ 0. This contradicts (1.2a) with z = z̃3. Hence s > γ/β over R.

To prove (2.25), we use Eq. (1.2a) to deduce that

s′(z) = e−
c
δ

(z−ξ)s′(ξ)− 1

δ
e−

c
δ
z

∫ z

ξ

e
c
δ
τ
(
µ(Λ− s(τ))− βs(τ)i(τ) + γi(τ)

)
dτ. (2.26)

By fixing ξ and letting z → −∞ in the equality (2.26), we immediately deduces that,

lim sup
z→−∞

|s′(z)| ≤ 1

δ
max
τ≥ξ
|µ(Λ− s(τ))− βs(τ)i(τ) + γi(τ)| · lim sup

z→−∞
e−

c
δ
z

∫ z

ξ

e
c
δ
τdτ

≤ 1

c
max
τ≥ξ
|µ(Λ− s(τ))− βs(τ)i(τ) + γi(τ)|

for s ∈ R. Together with the fact that µ(Λ− s(−∞))− βs(−∞)i(−∞) + γi(−∞) = 0, we
can deduce that s′(−∞) = 0. Similarly, using equation (1.2b) and arguing as above, we also
get i′(−∞) = 0.

3 Existence of non-critical waves of system (1.1)

Throughout this section, we always assume that c > cmin. Now we will establish the assertion
of Theorem 1.1 (II), which is restated in the following lemma for the convenience of the
readers.

Lemma 3.1 If c > cmin, then system (1.2)-(1.3) admits a nonnegative solution (s, i) with
the following properties:

(i) γ/β < s < Λ and i > 0 over R.

(ii) There exists a γ∗ > 0 such that there hold

(a) if γ ∈ (0, γ∗), then the solution (s, i) approaches (s∗, i∗) monotonically for large z.

(b) if γ > γ∗, then the solution (s, i) has exponentially damped oscillations about
(s∗, i∗) for large z.

(iii) i(z) = O(eλz) as z → −∞, where λ is given by (1.4).

- In the remaining part of this section, we will prove Lemma 3.1. Recall from Sec. 2.4 that
a good candidate for the solution of system (1.2)-(1.3) is the one given in Lemma 2.9 which
will be denoted by (s, i). Lemma 2.9 indicates that (s, i) satisfies (s, i)(−∞) = (Λ, 0) and the
assertions (i) and (iii) of Lemma 3.1. Further, if (s, i)(∞) = (s∗, i∗), then a straightforward
eigenvalue analysis of system (1.2)-(1.3) around the equilibrium point (s∗, i∗) shows that the
assertions (ii) of Lemma 3.1 holds for (s, i). Hence, in order to complete the proof of Lemma
3.1, it remains to verify that (s, i) satisfies

(s, i)(∞) = (s∗, i∗). (3.1)
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To show the equality (3.1), we set

û(z) = s(z) and v̂(z) = i(z). (3.2)

Then the governing equation for (u, v) = (û, v̂) is given by

δu′′ − cu′ = µ(u− Λ) + βuv − γv, (3.3a)

v′′ − cv′ = −βuv + (γ + µ+ κ)v, (3.3b)

where the prime denotes the differentiation with respect to z, and (3.1) becomes the equality

(û, v̂)(∞) = (s∗, i∗). (3.4)

Further, in view of the definition of (û, v̂) and Lemma 2.9, we have that (û, v̂) is a solution
of (3.3) on R satisfying

γ/β < û < Λ and v̂ > 0 (3.5)

over R, and
(û, v̂)(−∞) = (Λ, 0) and (û′, v̂′)(−∞) = (0, 0).

We will keep the notation (û, v̂) throughout the remaining of this section.

In order to show the equality (3.4) (i.e., (s, i)(∞) = (s∗, i∗), we write (3.3) as a system
of first-order ODEs:

u′ = w, (3.6a)

δw′ = cw + µ(u− Λ) + βuv − γv, (3.6b)

v′ = y, (3.6c)

y′ = cy − βuv + (γ + µ+ κ)v. (3.6d)

Next we borrow the idea of [4] to define the Lyapunov function L by

L(u,w, v, y)

:= −
(
δw − cu− δ(µ+ κ)

w

βu− γ
+
c(µ+ κ)

β
ln
βu− γ
βs∗ − γ

)
−
(
y − cv − i∗ y

v
+ ci∗ ln

v

i∗

)
= L1(u,w, v, y) + L2(u,w, v, y). (3.7)

With the use of a straightforward computation, the orbital derivative of L along the solution
χ(z) := (û(z), ŵ(z), v̂(z), ŷ(z)), where ŵ := û′(z) and ŷ := v̂′(z), of system (3.6) is

d

dz
L(χ(z))

= ∇L(χ(z)) · χ′(z)

= −δβ(µ+ κ)
ŵ(z)2

(βû(z)− γ)2
− i∗ ŷ(z)2

v̂(z)2
− µβ(βΛ− γ)(s∗ − û(z))2

(µ+ κ)(βû− γ)
,

which, together with the fact that βΛ− γ > 0 and βû− γ > 0, yields

d

dz
L(χ(z)) ≤ 0.
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Hence the orbital derivative of L along χ(z) is non-positive, and

L(χ(z)) ≤ L(χ(0)),∀z ≥ 0. (3.8)

Now we collect the estimates of (û, v̂) and its derivatives in the following lemma whose
proof is deferred to the appendix B.

Lemma 3.2 (i) There exists a positive constant B such that 0 < v̂(z) < B for all z ∈ R.

(ii) There exist positive constants Li, i = 1, 2, such that

−L1(βû(z)− γ) < û′(z) < L2(βû(z)− γ)

for all z ≥ 0.

(iii)

−µ+ γ + κ

c
· v̂(z) ≤ v̂′(z) ≤ c

2
v̂(z) ∀z ∈ R.

In the sequel, we retain the notation B, and Li, i = 1, 2.

Note that (3.5) and Lemma 3.2 assert that the solution χ(z) = (û(z), ŵ(z), v̂(z), ŷ(z))
with (ŵ, ŷ) = (û′, v̂′) of system (3.6) is positively invariant in the open bounded set D for
all z ≥ 0, where D is defined by

D :=
{

(u,w, v, y)|γ
β
< u < Λ, 0 < v < B,−L1(βu−γ) < w < L2(βu−γ),−2(µ+γ+κ)

c
v < y < cv

}
.

On the other hand, one can easily see that L is continuous, and, by (3.5) and Lemma 3.2,
that L is bounded below on D. Taken together, it follows from LaSalle’s invariance principle
that χ(z)→ (s∗, 0, i∗, 0) as z →∞, and so (s, i)(∞) = (û, v̂)(∞) = (s∗, i∗). This completes
the proof of Lemma 3.1, and hence the proof of Theorem 1.1.

Appendix A

In this appendix, we collect some a priori estimates in [6] for solutions of the inhomogeneous
linear equation

w′′(z) + Aw′(z) + f(z)w(z) = h(z). (A.1)

Lemma A.1 (Lemma 3.2 of [6])
Let A be a positive constant and let f and h be continuous functions on [a, b]. Suppose

that w ∈ C([a, b]) ∩ C2((a, b)) satisfies the differential equation (A.1) in (a, b) and w(a) =
w(b) = 0. If

−C1 ≤ f ≤ 0 and |h| ≤ C2 on [a, b],

for some constants C1, C2, then there exists a positive constant C3, depending only on A,
C1, and the length of the interval [a, b], such that

‖w‖C([a,b]) ≤ C2C3.
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Lemma A.2 (Lemma 3.3 of [6])
Let A, f , and h be as in Lemma A.1. Suppose that w ∈ C([a, b]) ∩ C2((a, b)) satisfies

(A.1) in (a, b). If ‖w‖C([a,b]) ≤ C0 for some constant C0, then there exists a positive constant
C4, depending only on A, C0, C1, C2, and the length of the interval [a, b], such that

‖w′‖C([a,b]) ≤ C4.

Appendix B

In this appendix, we will show the a prior estimates for (û, v̂) given in Lemma 3.2. Since
the proof of these a prior estimates are similar to those in our previous work [7], we will only
sketch the necessary ingredients and refer the readers to [7] for further details.

B.1 Estimates of the derivative of v̂

We first derive the estimate for the derivative of (û, v̂). This will completes the proof of
Lemma 3.2 (iii). Recall that (û, v̂) is defined by (3.2).

Lemma B.1 For each z ∈ R, the following inequalities hold:

v̂′(z) ≤ c

2
v̂(z), (B.1)

v̂′(z) ≥ −µ+ γ + κ

c
· v̂(z), (B.2)

û′(z) ≤ µΛ/c. (B.3)

Proof. The proof of the inequalities (B.1) and (B.3) follows the line of the inequalities (3.9)
and (3.11) in [7, Lemma 3.2].

For the proof of (B.2), we set

Φ(z) := cv̂′(z) + (µ+ γ + κ)v̂(z).

Then the proof follows the line of the inequality (3.10) in [7, Lemma 3.2]. Hence the proof
of this lemma is completed.

B.2 Boundedness of v̂

In this subsection, we wii prove that v̂ is bounded over R. This will completes the proof
of Lemma 3.2 (i). Recal that limz→−∞ v̂(z) = 0. For contradiction, we assume that
lim supz→∞ v̂(z) = ∞. Then this gives rise to two possibilities: (i) limz→∞ v̂(z) = ∞;
or (ii) lim infz→∞ v̂(z) < lim supz→∞ v̂(z) =∞. In this subsection, we will exclude these two
possibilities.
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B.2.1 The case that limz→∞ v̂(z) =∞

In this subsection, we will exclude the possibility that limz→∞ v̂(z) = ∞. Specifically, we
state it in the following lemma.

Lemma B.2 The solution (û, v̂) cannot satisfy limz→∞ v̂(z) =∞.

Proof. Set
Ψ := δû′ − cû + v̂′ − cv̂

for z ∈ R. Then the proof follows the line of the proof in [7, Lemma 3.3].

B.2.2 The case that lim infz→∞ v̂(z) < lim supz→∞ v̂(z) =∞

In this subsection, we will exclude the case that lim infz→∞ v̂(z) < lim supz→∞ v̂(z) = ∞.
For contradiction, we assume that lim infz→∞ v̂(z) < lim supz→∞ v̂(z) = ∞. Then v̂(z)
oscillates infinitely many times as z →∞. To derive a contradiction, we need five auxiliary
lemmas (i.e., Lemma B.3 - Lemma B.7).

Lemma B.3 û(z) oscillates infinitely many times as z →∞.

Proof. The proof follows the line of the proof in [7, Lemma 3.4].

Lemma B.4 û ≥ γ/β + ε0 on R for some positive constant ε0. In the sequel, we retain the
notation ε0.

Proof. The proof is a slight modification of that for [7, Lemma 3.5].
First, recall that û(−∞) = Λ > γ/β, û(z) > γ/β for all z ∈ R, and that û oscillates

infinitely many times as z →∞. Therefore, if the assertion of the lemma is false, then there
exists a sequence of positive numbers {zn} → ∞ such that û has a local minimum at zn and
û(zn)→ γ/β as n→∞.

With the use of (B.1) and (B.2), we have that

L2(χ(z)) ≥ −
(
− c

2
v̂(z) +

(µ+ γ + κ)i∗

c
+ ci∗ ln

v̂(z)

i∗

)
:= ψ3(v̂(z)).

Since ψ3(0+) =∞ and ψ3(∞) =∞, the function ψ3 is bounded below in (0,∞). Hence the
above inequality implies that L2(χ(z)) is bounded below for z ≥ 0. Further, since û(zn) is a
local minimum of û, we have that ŵ(zn) = û′(zn) = 0, and so

L1(χ(zn)) =

(
cû(zn)− c(µ+ κ)

β
ln
βû(zn)− γ
βs∗ − γ

)
→∞ as n→∞,

where we have used βû(zn)→ γ as n→∞, and βs∗ − γ > 0. Taken together, we conclude
that L(χ(zn))→∞ as n→∞. This is a contradiction to the fact that L(χ(z)) is decreasing
in z. Hence this completes the proof of this lemma.
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Lemma B.5 There exists a M1 ≥ i∗ such that for v̂(z) ≥M1 with z ≥ 0, we have û′(z) < 0.
In the sequel, we retain the notation M1.

Proof. The proof is a slight modification of that for [7, Lemma 3.6].
First, since cv/2 − ci∗ ln v → ∞ as v → ∞, there exists a large M1 ≥ i∗ such that for

v ≥M1, we have( c
2
v − ci∗ ln v

)
+ ci∗ ln i∗ >

δµΛ

c
+
c(µ+ κ)

β
ln
βΛ− γ
βs∗ − γ

+ 2 |L(χ(0))| . (B.4)

Next, with the use of (B.1) and (B.3), we deduce that for all z with ŵ(z) ≥ 0, there holds

L1(û, ŵ, v̂, ŷ)(z) ≥ −δµΛ

c
− c(µ+ κ)

β
ln
βΛ− γ
βs∗ − γ

, (B.5)

and for all z with ŷ(z) ≥ 0, there holds

L2(û, ŵ, v̂, ŷ)(z) ≥
( c

2
v̂(z)− ci∗ ln v̂(z)

)
+ ci∗ ln i∗. (B.6)

Now, for z with v̂(z) ≥ i∗ and ŷ(z) < 0, we estimate L2(û, ŵ, v̂, ŷ) as follows:

L2(û, ŵ, v̂, ŷ)(z) = −ŷ(z) + cv̂(z) + i∗
ŷ(z)

v̂(z)
− ci∗ ln

v̂(z)

i∗

= −
(

1− i∗

v̂(z)

)
ŷ +

(
cv̂(z)− ci∗ ln v̂(z)

)
+ ci∗ ln i∗

≥ (cv̂(z)− ci∗ ln v̂(z)) + ci∗ ln i∗.

(B.7)

We are now ready to establish the assertion of this lemma. For contradiction, suppose that
there exists a ẑ1 ≥ 0 such that v̂(ẑ1) ≥ M1 and ŵ(ẑ1) = û′(ẑ1) ≥ 0. Then with the aid of
(B.5)-(B.7), it follows from the choice of M1 that

L(χ(ẑ1)) = L(û, ŵ, v̂, ŷ)(ẑ1) > 2 |L(χ(0))| ,

which contradicts (3.8). The proof of this lemma is thus completed.

Lemma B.6 Suppose that v̂(ẑ0) ≥M1 and v̂′(ẑ0) = 0 for some ẑ0 ∈ R. Then v̂(ẑ0) cannot
be a local minimum.

Proof. The proof follows the line of the proof in [7, Lemma 3.7].

Lemma B.7 There exist positive constants k1 and M2 > max{M1, lim supz→∞ v̂(z)} such
that for z ≥ 0 with v̂(z) ≥ M2, we have v̂(z) ≤ −k1û

′(z). In the sequel, we retain the
notations k1 and M2.

Proof. The proof is a slight modification of that for [7, Lemma 3.8].
To begin with, we set

k1 :=
4δ(µ+ κ)

βε0c
.
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Since
c

4
v − ci∗ ln

v

i∗
→∞ as v→∞,

there exists a large M2 > M1 such that

c

4
v̂(z)− ci∗ ln

v̂(z)

i∗
≥ c(µ+ κ)

β
ln
βΛ− γ
βs∗ − γ

+ |L(χ(0))| , (B.8)

for all z with v̂(z) ≥M2. Now we set Z :=
{
z ≥ 0 : v̂(z) ≥M2

}
.

Next we estimate L1(χ(z)) for z ∈ Z. From Lemma B.5 and Lemma B.4, we have
ŵ(z) = û′(z) < 0 and βû − γ ≥ βε0 for z ∈ Z. Then the following inequality holds for
z ∈ Z,

L1(χ(z)) = −δŵ(z) + cû(z) + δ(µ+ κ)
ŵ(z)

(βû(z)− γ)
− c(µ+ κ)

β
ln
βû(z)− γ
βs∗ − γ

,

≥ δ(µ+ κ)

βε0
· ŵ(z)− c(µ+ κ)

β
ln
βΛ− γ
βs∗ − γ

.

(B.9)

Now we turn to estimate L2(χ(z)) for z ∈ Z. Indeed, since i∗/v̂(z) < 1 for z ∈ Z, we
can use (B.1) to deduce that for z ∈ Z, it holds

L2(χ(z)) = −ŷ(z) + cv̂(z) + i∗
ŷ(z)

v̂(z)
− ci∗ ln

v̂(z)

i∗

=

[
−
(

1− i∗

v̂(z)

)
ŷ(z) +

c

2
v̂(z)

]
+
c

4
v̂(z) +

(
c

4
v̂(z)− ci∗ ln

v̂(z)

i∗

)
≥ c

4
v̂(z) +

(
c

4
v̂(z)− ci∗ ln

v̂(z)

i∗

)
(using (B.1))

≥ c

4
v̂(z) +

(
c(µ+ κ)

β
ln
βΛ− γ
βs∗ − γ

+ |L(χ(0))|
)
. (using (B.8))

(B.10)

In view of (B.9)-(B.10) and the definition of k1, we have that for z ∈ Z,

L(χ(z)) = L1(χ(z)) + L2(χ(z))

≥ c

4
·
(
v̂(z) + k1ŵ(z)

)
+ |L(χ(0))| .

Rearranging the above inequality, we deduce that

c

4
·
(
v̂(z) + k1ŵ(z)

)
≤ L(χ(z))− |L(χ(0))| ≤ 0,

which, together with ŵ(z) = û′(z), yields v̂(z) ≤ −k1û
′(z). Hence the proof is com-

pleted.

Now we are ready to exclude the case that lim infz→∞ v̂(z) < lim supz→∞ v̂(z) =∞.

Lemma B.8 The solution (û, v̂) cannot satisfy the inequality lim infz→∞ v̂(z) < lim supz→∞ v̂(z) =
∞.
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Proof. For contradiction, we assume that lim infz→∞ v̂(z) < lim supz→∞ v̂(z) = ∞. Then,
in view of Lemma B.5 and Lemma B.6, we can choose positive numbers ẑ0 and ẑ1 such that
v̂(ẑ0) = M2, v̂′(z) ≥ 0 for z ∈ [ẑ0, ẑ1), v̂′(ẑ1) = 0, û′(z) < 0 for z ∈ [ẑ0, ẑ1], and

cv̂(ẑ1) > cM2 + k1

∫ Λ

0

|βû− γ − µ− κ|dû. (B.11)

Hence [ẑ0, ẑ1] ⊂ Z :=
{
z ≥ 0 : v̂(z) ≥M2

}
.

Then the remaining of the proof is a slight modification of that for [7, Lemma 3.9]. Hence
the proof of this lemma is completed.

B.3 Estimate of the derivative of û

In the following lemma, we derive the estimate for the derivative of û. This will completes
the proof of Lemma 3.2 (ii). For this, we recall from Sec. B.2 that v̂ is bounded over R.
Thus we can choose a positive constant B such that v̂(z) < B for all z ∈ R.

Lemma B.9 There exist positive constants Li, i = 1, 2, such that

−L1(βû(z)− γ) < û′(z) < L2(βû(z)− γ) (B.12)

for all z ≥ 0.

Proof. (1) We show that −L1(βû(z) − γ) < û′(z) for all z ≥ 0, if L1 is a sufficiently large
constant such that −L1(βû(0)− γ) < û′(0) and L1 ≥ 2B/c.

Let
Φ1(z) := û′(z) + L1(βû(z)− γ).

It suffices to show that Φ1(z) > 0 for all z ≥ 0. Note that Φ1(0) > 0. For contradiction, we
assume that there exists ẑ1 > 0 such that Φ1(ẑ1) = 0 and Φ′1(ẑ1) ≤ 0. Then there are two
possibilities: either

Φ1(z) ≤ 0,∀z ≥ ẑ1 (B.13)

or
Φ1(ẑ2) = 0 and Φ′1(ẑ2) ≥ 0, (B.14)

for some ẑ2 ≥ ẑ1. For the first case, (B.13) gives

cû′(z) ≤ −2B(βû(z)− γ), ∀z ≥ ẑ1.

Together with the fact that 0 ≤ v̂ ≤ B, βû− γ > 0, and û < Λ, we deduce from (3.3a) that

δû′′ = cû′ + (βû− γ)v̂ − µ(Λ− û) ≤ −B(βû− γ) < 0,∀z ≥ ẑ1,

which implies that û′ is decreasing in [ẑ1,∞). Hence û′(z) ≤ û′(ẑ1) = −L1(βû(ẑ1)− γ) < 0
for all z ≥ ẑ1, which contradicts the boundedness of û. For the second case, (B.14) yields
that

û′(ẑ2) = −L1(βû(ẑ2)− γ) (B.15)
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and
û′′(ẑ2) ≥ −L1βû′(ẑ2). (B.16)

Using (3.3a), we deduce that

0 = δû′′(ẑ2)− cû′(ẑ2) + µ(Λ− û(ẑ2))− (βû(ẑ2)− γ)v̂(ẑ2)

≥ −δL1βû′(ẑ2) + cL1(βû(ẑ2)− γ)− (βû(ẑ2)− γ)B

(by (B.15) and (B.16), and the fact that µ(Λ− û) > 0, βû− γ > 0 and 0 < v̂ ≤ B)

≥ δL2
1β(βû(ẑ2)− γ) + (βû(ẑ2)− γ)B (by (B.15) and definition of L1)

> 0, (use the fact that βû− γ > 0)

a contradiction again.
(2) We show that there exists a positive constant L2 such that

û′(z) < L2(βû(z)− γ),∀z ≥ 0. (B.17)

Since v̂ is bounded, one can easily use (B.1) and (B.2) to deduce that L2(χ(·)) is bounded
below on [0,∞). This, together with (3.8), implies that L1(χ(·)) is bounded above on [0,∞).
Recall that

L1(χ(z)) = −
(
δû′(z)− cû(z)− δ(µ+ κ)

û′(z)

βû(z)− γ
+
c(µ+ κ)

β
ln
βû(z)− γ
βs∗ − γ

)
.

Then, using (B.3), the upper boundedness of L1(χ(·)), and the fact that γ/β+ε0 ≤ û < Λ on
R, we infer that û′(z)/(βû(z)−γ) is bounded above over z ≥ 0. Hence there exists a positive
constant L2 such that (B.17) holds. The proof of this lemma is thus completed.
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