
ORIGINAL INVESTIGATION

Betaine enhances antidepressant-like, but blocks psychotomimetic
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Abstract Ketamine is emerging as a new hope against de-
pression, but ketamine-associated psychotomimetic effects
limit its clinical use. An adjunct therapy along with ketamine
to alleviate its adverse effects and even potentiate the antide-
pressant effects might be an alternative strategy. Betaine, a
methyl derivative of glycine and a dietary supplement, has
been shown to have antidepressant-like effects and to act like
a partial agonist at the glycine site of N-methyl-D-aspartate re-
ceptors (NMDARs). Accordingly, betaine might have poten-
tial to be an adjunct to ketamine treatment for depression. The
antidepressant-like effects of ketamine and betaine were eval-
uated by forced swimming test and novelty suppressed feed-
ing test in mice. Both betaine and ketamine produced
antidepressant-like effects. Furthermore, we determined the
effects of betaine on ketamine-induced antidepressant-like
and psychotomimetic behaviors, motor incoordination,

hyperlocomotor activity, and anesthesia. The antidepressant-
like responses to betaine combined with ketamine were stron-
ger than their individual effects. In contrast, ketamine-induced
impairments in prepulse inhibition, novel object recognition
test, social interaction, and rotarod test were remarkably atten-
uated, whereas ketamine-induced hyperlocomotion and loss
of righting reflex were not affected by betaine. These findings
revealed that betaine could enhance the antidepressant-like
effects, yet block the psychotomimetic effects of ketamine,
suggesting that betaine can be considered as an add-on thera-
py to ketamine for treatment-resistant depression and suitable
for the treatment of depressive symptoms in patients with
schizophrenia.
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Introduction

Ketamine is clinically used for analgesia, sedation, and anes-
thetic induction. Recent clinical studies have shown that low-
dose ketamine produces a rapid-acting and sustained antide-
pressant effect in major depressive disorder (Murrough et al.
2013; Wan et al. 2014), in bipolar depression (Ionescu et al.
2015; Nugent et al. 2014; Rybakowski et al. 2013), and in
depression with suicidal ideation (Aligeti et al. 2014;
Thakurta et al. 2012; Zigman and Blier 2013).

Despite ketamine can induce a rapid onset of antidepres-
sant effect, the adverse mental status associated with ketamine
use including psychosis, dissociative, hallucinogenic, and am-
nesic effects (Krystal et al. 1994; Perry et al. 2007) leads to
discontinuation. Accordingly, research attempts have been fo-
cusing on developing new compounds with more specific
rapid-acting antidepressant treatments but free of ketamine’s
adverse effects (Browne and Lucki 2013; Burgdorf et al.
2013). Alternatively, an adjunct treatment which can promote
the therapeutic efficacy and concomitantly avoid the adverse
effects of ketamine has also been considered (Chiu et al. 2015;
Ibrahim et al. 2012).

The mechanisms underlying the antidepressant- and
psychosis-inducing effects of ketamine have been suggested
to be associated with blockade of NMDARs. Several drugs
that effectively either block or antagonize NMDAR activity,
such as the competitive NMDAR antagonists CGP 37849 and
CGP 40116 (Papp and Moryl 1994), the noncompetitive,
nonsubunit selective NMDAR antagonist MK-801 (Autry
et al. 2011; Lima-Ojeda et al. 2013; Maeng et al. 2008), and
the NR2B selective antagonist RO-25-6981 (Lima-Ojeda et
al. 2013; Maeng et al. 2008), have repeatedly and consistently
been shown to have antidepressant-like properties in rodent
models. NMDAR blockade is also the main contributor of the
psychotomimetic effects of ketamine, as most NMDAR an-
tagonist compounds have the same properties (Nakao et al.
2003; Neymotin et al. 2011; Thomson et al. 1985;
Vollenweider and Geyer 2001). On the other hand, enhance-
ment of NMDAR function, via activation of glycine binding
site or modulation of metabotropic glutamate receptors, rep-
resents a promising approach to reverse psychotomimetic ef-
fects of ketamine (Chan et al. 2008; Krystal et al. 2005;
Roberts et al. 2010; Yang et al. 2010) or other NMDAR an-
tagonists (Kanahara et al. 2008; Kawaura et al. 2015; Lipina
et al. 2005; Santini et al. 2014). Therefore, NMDAR glycine
binding site partial agonists, being developed with the goal of
achieving the antidepressant efficacy and rapid onset seen
with ketamine, but without their limiting side effects, might
also have the capability of being agonists to ameliorate the
manifestations of NMDAR hypofunction state, such as
ketamine-induced psychotic effects and addiction.

Betaine, a methyl glycine derivative, is an important unit in
one-carbon metabolism and a commonly used nutrient

supplement. In addition to being a methyl donor, betaine has
been shown to attenuate glutamate-induced neurotoxicity in
primary cultured brain cells (Park et al. 1994). Based on the
structural similarity to glycine, we have examined if betaine
can affect the NMDAR function and demonstrated that beta-
ine acts like a NMDAR glycine binding site partial agonist
(Lee and Chen 2014). Furthermore, betaine exhibits
antidepressant-like effects in rats (Kim et al. 2013).
Accordingly, it is hypothesized that betaine can promote the
antidepressant-like but antagonize the psychotomimetic effect
of ketamine.

The present study usedmouse models to evaluate the effects
of betaine on antidepressant-like and psychosis-like behaviors
of ketamine to test the hypothesis. At first, the forced
swimming test (FST), novelty suppressed feeding test (NSF),
and emergence test were used to compare the depression-like
and anxiolytic properties of betaine with ketamine. Thereafter,
the combined effects of betaine and ketamine on the forced
swimming test were examined. Moreover, we determined
whether betaine can abolish or attenuate the ketamine-
induced psychotomimetic effects including prepulse inhibition
(PPI) deficits in acoustic startle reflex, cognitive dysfunction in
the novel object recognition test, and social withdrawal.
Finally, the motor incoordination, hyperlocomotor activity,
and sedative effects of ketamine were monitored by the rotarod
test, open field, and loss of righting reflex, respectively.

These experiments support that betaine can be considered
as an add-on treatment to reduce the discontinuation rates for
patients who have a dramatic response to ketamine therapy.

Materials and methods

Animals and drugs

Male ICR mice (8 weeks, 30–45 g) were supplied from the
BioLASCO Charles River Technology (Taiwan) and housed
4–5 per cage in a 12-h light/dark cycle with ad libitum access
to water and food. All the experiments were in accordance
with the Republic of China animal protection law
(Chapter III: Scientific Application of Animals) and approved
by the Review Committee of Tzu Chi University and the
institutional animal care and use committees of National
Health Research Institutes.

Ketamine and betaine monohydrate (Sigma Chemical Co.,
St. Louis, MO, USA) were dissolved in saline and intraperi-
toneally injected in volumes of 10 ml/kg. Low doses of keta-
mine (3, 10, and 15 mg/kg, i.p.) were chosen for the forced
swimming test based on previous studies (Garcia et al. 2008).
Ketamine (10 mg/kg, i.p.) was used in novelty suppressed
feeding test (Li et al. 2010). Ketamine (30 mg/kg, i.p.) was
applied in the open field test, rotarod performance, novel ob-
ject recognition memory, social interaction, and prepulse
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inhibition (Chan et al. 2008). The anesthetic dose of ketamine
(100 mg/kg i.p.) was used for loss of righting reflex.

Forced swimming test

In the pilot study, the dose-dependent effects of ketamine and
betaine on FST were explored by a time-sampling method.
Mice were placed in a Plexiglas cylinder (33.5 cm height,
20 cm diameter) filled with 25 ± 1 °C water to a height of
18–20 cm for 15 min (pretest session) followed by two sub-
sequent tests 1 week apart. Twenty-four hours later (day 1 test
session), mice were treated with various doses of betaine or
ketamine 30 min prior to the test. The mice were placed in the
water again for 6 min, the first 2 min has elapsed, and the
observation was made every 5 s to score the presence of im-
mobility, which was defined as a lack of motion of the whole
body, when mice remained floating motionless in the water,
making only those movements necessary to keep the head
above water. The sustained effects were examined 8 days later
(day 8 retest session). The mice were retested again without
any pretreatment. After each test, animals were dried by
towels and under a lamp for 30 min.

In order to determine the interaction between ketamine and
betaine, the duration of immobility, struggling, and swimming
was measured in another set of experiments. Struggling be-
havior consisted of upward directed movements of the fore-
paws along the side of the swim chamber. Swimming behav-
ior was defined as movement (usually horizontal) throughout
the swim chamber. Immobility was assigned when no addi-
tional activity was observed other than that required to keep
the head above the water. The test sessions were videotaped
and each session was stored as a video file. The mice were
tested 1 and 7 days after the 15-min pretest session. Ketamine
and/or betaine was administered 30 min prior to day 1 test
session only.

Novelty suppressed feeding test

The NSF test was measured in 24-hr food-deprived mice.
Betaine (10, 20, and 30 mg/kg), ketamine (10 mg/kg), or
saline was administered 1 h prior to the test. At the time of
testing, a single food pellet placed in the middle of a novel
environment (a test box 40 × 40 × 40 cm). The latency to start
feeding was recorded.

Emergence test

The emergence test was examined in a test box
(35 × 35 × 30 cm) contained an aluminum cylinder (10 cm
deep × 6.5 cm diameter) located lengthwise along one wall,
with the open end 10 cm from the corner. Betaine (0, 30, and
100 mg/kg) or ketamine (10 mg/kg) was administered 30 min
prior to the test. Mice were placed into the cylinder and tested

for 10 min and scored three behavioral parameters: the latency
to leave the cylinder, the number of entries into the cylinder,
and the total time spent inside the cylinder.

Prepulse inhibition test

SR-LAB (San Diego Instruments, San Diego, CA, USA)
acoustic startle chambers were used. SR-LAB software con-
trolled the delivery of all stimuli to the animals and recorded
the response. The animals were initially moved from the home
cage, weighed, and then placed into the restrainers in the star-
tle chambers for 30-min habituation.

Betaine (0, 30, and 100 mg/kg) was administered 30 min
prior to the ketamine (30 mg/kg) or saline injection. After
administration of ketamine or saline, the experiment started
with a 5-min adaptation period during which the animals were
exposed to 67-dB background white noise, and this back-
ground noise was continued throughout the session. Then,
the following adaptation period startle session began with five
initial startle stimuli (120 dB bursts of white noise, 40 ms
duration). After the first five initial stimuli, mice received five
different trial types: pulse alone trials (120 dB bursts of white
noise, 40ms duration); three prepulse and pulse trials in which
76, 81, or 86 dB white noise bursts (9, 14, and 19 dB above
background) of 20 ms duration preceded 120 dB pulse by
100 ms prepulse onset to pulse onset; and no-stimuli trials
during which only background noise was applied. Each of
these trial types was presented five times in randomized order.
The intertrial interval was 7–23 s, and the test lasted 15 min in
total. Prepulse inhibition was calculated as the percent inhibi-
tion of the startle amplitude evoked by the pulse alone: %
PPI = (magnitude on pulse alone trial − magnitude on
prepulse + pulse trial / magnitude on pulse alone trial) × 100.

Novel object recognition test

The experimental apparatus consisted of a Plexiglas open
field box (35 × 35 × 30 cm) located in a sound-attenuated
room and illuminated with a 20-W light bulb. The novel
object recognition procedure consisted of habituation,
training, and retention sessions. Habituation was conduct-
ed in two consecutive daily sessions, during which each
mouse was allowed to individually explore the box in the
absence of objects for 20 min. The animal is then re-
moved from the arena and placed in its home cage.
During the training session, each animal was placed in
the box, and after 5 min, two identical sample objects
(A + A) were simultaneously introduced in two corners.
Each animal was allowed to explore the objects for
5 min. An animal was considered to explore the object
when its head was facing the object at a distance of ap-
proximately 1 cm or less between the head and object or
when it was touching or sniffing the object. The time
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spent exploring each object was recorded using stop-
watches by an experimenter blind to the treatment condi-
tion. After the training session, the mice were immediate-
ly returned to their home cages. The next day, the mice
are allowed to explore the open field with one identical
sample object and a novel object to assess the recognition
memory (A + B). The animals were allowed to explore the
box freely for 5 min, and the time spent exploring each
object was recorded as described above. The objects and
chambers were cleaned with 70 % ethanol after each use.
The preference index in the retention session, defined as
the ratio of the amount of time spent exploring the novel
object and total time spent exploring both objects, was
used to evaluate memory retention. In the training session,
the preference index was defined as the ratio of the time
spent exploring the object that replaced the original object
in the retention session and the total exploration time.
Betaine (0, 30, and 100 mg/kg) was administered
30 min prior to ketamine (30 mg/kg) or saline (vehicle)
20 min prior to the training session.

Social interaction test

This protocol was modified from the original social interac-
tion test (Lin et al. 2010; Qiao et al. 2001). The social inter-
action between pairs of mice was examined in an open field
box (35 × 35 × 30 cm) under normal room lighting. The paired
mice were randomly assigned from different home cages with
the same drug treatment. Betaine (0, 100, and 300 mg/kg) was
administered 30 min prior to ketamine (30 mg/kg). Five mi-
nutes later, each pair of unfamiliar mice was placed in the
apparatus for 10 min and the total time that a pair spent in
social interaction was recorded by an observer who was blind
to the drug treatments.

Rotarod test

Motor coordination was assessed by an automated rotarod
device (Singa; Technology Co., Ltd, Taiwan) for a maxi-
mum of six mice. A computer recorded the latency to fall
in seconds. During the training period, the mice were first
trained on the rotarod at a constant speed of 20 rotations
per minute (rpm) until all of the mice were able to spend
at least 3 min on the rod. Betaine (0, 30, and 100 mg/kg)
was administered 30 min prior to the ketamine (30 mg/kg)
or saline injection. Subsequently, the mice were tested at
20 rpm 10 min after ketamine injection at 5 min intervals
for 30 min.

Loss of righting reflex

Betaine (0, 300, and 600 mg/kg) was administered 30 min
prior to the anesthetic doses of ketamine (100 mg/kg). Then,

the mice were placed in a clean cage until the righting reflex
was lost. They were then placed in the supine position until
recovery and the onset and duration of the loss of righting
reflex was recorded. Recovery of the righting reflex was de-
fined as the ability to perform three successive rightings.

Open field test

The dose-dependent effect of betaine and the effect of
betaine prior to ketamine on locomotor activity were
assessed. The animals were habituated in the activity
cages (Columbus Auto-Track System, Version 3.0 A,
Columbus Institute, Columbus, OH, USA) for 2 h.
Betaine (30 and/or 100 mg/kg) or saline was given
30 min prior to ketamine (30 mg/kg). The distance (cm)
traveled was recorded for a total of 180 min.

Statistical analyses

All of the data are expressed as mean ± SEM. The data from
the forced swimming test, rotarod test, the percentage of PPI,
and novel object recognition test were analyzed by mixed-
design ANOVAs with test session, time, prepulse intensity,
and session as the within subject factor, respectively.
Differences among experimental groups in the social interac-
tion test, the duration of loss of righting reflex, and the total
distance in locomotor activity test were analyzed by one-way
ANOVA. Multiple comparisons were performed using the
Fisher’s LSD test. p < 0.05 was considered statistically
significant.

Results

Dose-dependent effects of ketamine and betaine on FST
scored by the time-sampling method

The acute and sustained effects of various doses of ketamine
(3, 10, 15 mg/kg) and betaine (10, 20, 30 mg/kg) on FSTwere
assessed on days 1 and 8, respectively (Fig. 1a, b). A mixed-
design ANOVA on the count of immobility demonstrated sig-
nificant main effects of ketamine (F3, 28 = 13.295, p < 0.001)
and betaine (F3, 25 = 11.362, p < 0.001). There was no signif-
icant effect of test session or interaction. Post hoc comparisons
showed that ketamine (3, 10, and 15 mg/kg) and betaine (20
and 30 mg/kg) significantly decreased the count of
immobility.

Dose-dependent effects of betaine on novelty suppressed
feeding test

The effects of ketamine (10 mg/kg) and betaine (10, 20,
30 mg/kg) on NSF were examined (Fig. 2a). One-way
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ANOVA revealed a significant treatment effect (F4, 35 = 5.3,
p < 0.01). Post hoc comparisons demonstrated that betaine
(30 mg/kg) and ketamine (10 mg/kg) significantly reduced
the latency to feed in the NSF compared with saline-treated
mice.

Dose-dependent effects of betaine on the emergence test

The effects of ketamine (10 mg/kg) and betaine (30 and
100 mg/kg) on the emergence test were examined (Fig. 2b–
d). One-way ANOVA revealed that there was a significant
difference in the total time spent inside the cylinder (F3, 30 =
4.079, p < 0.05), but not in the latency to leave the cylinder
(F3, 30 = 0.262, p = 0.852) and the number of entries into the
cylinder (F3, 30 = 1.592, p = 0.212). Post hoc tests indicated
that only ketamine significantly reduced the total time spent
inside the cylinder.

Effects of ketamine and betaine on the duration
of immobility, struggling, and swimming in FST

This experiment included a control group and various
doses of ketamine (3, 10, 15 mg/kg), betaine (10, 20,
30 mg/kg), and betaine (10, 20, 30 mg/kg) pretreatment
prior to ketamine (fixed dose at 10 mg/kg). The duration
of immobility, struggling, and swimming is shown in
Fig. 3. A mixed-design ANOVA revealed that there was
a significant main effect of treatment on the duration of
immobility (F9, 75 = 5.42, p < 0.001). There was no signif-
icant effect of test session or interaction. All pairwise
multiple comparisons indicated that ketamine (10 and
15 mg/kg), betaine (20 and 30 mg/kg), and betaine (10,
20, and 30 mg/kg) pretreatment prior to ketamine
(10 mg/kg) significantly decreased the duration of immo-
bility. Furthermore, the mice with betaine (30 mg/kg) pre-
treatment prior to ketamine (10 mg/kg) had significantly
shorter duration of immobility compared with the mice
that received ketamine (10 mg/kg) alone.

During day 1 test session, ketamine (3, 10, and
15 mg/kg), betaine (20 and 30 mg/kg), and betaine (10,
20, and 30 mg/kg) prior to ketamine (10 mg/kg) signifi-
cantly reduced the duration of immobility compared with
the vehicle control group. Further, the mice with betaine
(30 mg/kg) pretreatment prior to ketamine (10 mg/kg) had
significantly shorter duration of immobility compared
with the mice that received ketamine (10 mg/kg) alone.
During day 7 retest session, the duration of immobility in
the groups of ketamine (15 mg/kg), betaine (20 and
30 mg/kg), and betaine (10, 20 and 30 mg/kg) pretreat-
ment prior to ketamine (10 mg/kg) was significantly de-
creased compared with the vehicle control group
(Fig. 3a).

For the duration of struggling, a mixed-design ANOVA
revealed significant main effects of treatment (F9, 75 = 2.586,
p < 0.05) and test session (F1, 75 = 24.517, p < 0.001). All
pairwise multiple comparisons indicated that ketamine
(15 mg/kg), betaine (20 and 30 mg/kg), and betaine
(20 mg/kg) prior to ketamine (10 mg/kg) significantly
increased the duration of struggling. During day 1 test session,
ketamine (15mg/kg) and betaine (20 mg/kg) prior to ketamine
(10 mg/kg) significantly increased the duration of struggling
compared with the control group. During day 7 retest session,
ketamine (15 mg/kg) and betaine (30 mg/kg) significantly
increased the duration of struggling compared with the control
group (Fig. 3b).

A mixed-design ANOVA revealed that there were signifi-
cant effects of treatment (F9, 75 = 3.096, p < 0.01) and test
session (F1, 75 = 4.918, p < 0.05) on the duration of swim-
ming. All pairwise multiple comparisons demonstrated that
the ketamine (10 and 15 mg/kg), betaine (20 and 30 mg/kg),
and betaine (10, 20, and 30 mg/kg) pretreatment prior to
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ketamine (10 mg/kg) significantly increased the duration of
swimming. During day 1 test session, betaine (20 and 30 mg/
kg), ketamine (10 and 15 mg/kg), and betaine (10, 20, and
30 mg/kg) pretreatment prior to ketamine (10 mg/kg) signifi-
cantly increased the duration of swimming compared with the
control group. Further, betaine (30 mg/kg) pretreatment prior
to ketamine (10 mg/kg) showed longer duration of swimming
compared with ketamine (10 mg/kg). During day 7 retest ses-
sion, ketamine (15 mg/kg) and betaine (10, 20 and 30 mg/kg)
prior to ketamine (10 mg/kg) significantly increased the dura-
tion of swimming compared with the control group (Fig. 3c).

Effects of betaine and ketamine on motor coordination
in the rotarod test

In the experiment for assessing the effect of betaine and
ketamine on rotarod performance, a mixed-design ANOVA
revealed significant main effects of treatment (F4, 205 =
107.477, p < 0.001) and time (F4, 205 = 23.938, p < 0.001) on
rotarod performance and a significant treatment × time
interaction (F16, 205 = 8.48, p < 0.001). Post hoc multiple
comparisons indicated that ketamine significantly decreased
the latency to stay on the rotarod, and betaine (30 and

100 mg/kg) significantly reduced the ketamine-induced motor
incoordination (Fig. 4a).

Effects of betaine on ketamine-induced prepulse inhibition
deficits

As for PPI, a mixed-design ANOVA revealed main effects of
treatment (F4, 90 = 5.338, p = 0.001) and prepulse intensity
(F2, 90 = 27.215, p < 0.001) and a significant treatment × prepulse
intensity interaction (F8, 90 = 2.292, p < 0.05). Ketamine alone
significantly reduced the PPI. Multiple comparisons revealed
that pretreatment of betaine (100 mg/kg) significantly attenu-
ated the ketamine-induced disruption of PPI (Fig. 4b).

Effects of betaine on ketamine-induced recognition
memory deficits in the novel object recognition test

A mixed-design ANOVA revealed significant main effects of
treatment (F4, 29 = 7.114, p < 0.001) and session (F1, 29 =
72.776, p < 0.001) and a significant treatment × session inter-
action (F4, 29 = 3.684, p < 0.05). There was no significant dif-
ference in the recognition index between treatment groups in
the training session. Post hoc tests revealed that ketamine
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significantly reduced the recognition index and betaine (30
and 100 mg/kg) significantly reversed the recognition
impairing effects of ketamine in the retention session (Fig. 5a).

Effects of betaine on ketamine-induced social withdrawal

One-way ANOVA indicated a significant effect of treatment
(total duration: F4, 39 = 6.608, p < 0.001). Post hoc tests indi-
cated that betaine (30 and 100 mg/kg, i.p.) significantly

attenuated the reduction in social interaction duration induced
by ketamine (Fig. 5b).

Effects of betaine on ketamine-induced loss of righting
reflex

Ketamine (100 mg/kg, i.p.) produced loss of righting reflex
(LORR). One-way ANOVA revealed that pretreatment with
betaine (300 and 600 mg/kg) did not affect the onset
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(F2, 18 = 0.76, p = 0.482) and duration (F2, 18 = 0.191, p =
0.828) of ketamine-induced loss of righting reflex (Fig. 6).

Effects of betaine on locomotor activity and locomotor
hyperactivity induced by ketamine

One-way ANOVA revealed that betaine (30 and 100 mg/kg)
did not affect the travel distances (F2, 17 = 0.862, p = 0.44)
(Fig. 7a) and the time in the center (F2, 17 = 0.149, p =
0.863) after betaine administration (Fig. 7b). The effect of

betaine on ketamine-induced locomotor hyperactivity was
examined by administration of ketamine (30 mg/kg) 30 min
after betaine (0, 30, and 100 mg/kg, i.p.) injection (Fig. 7c).
One-way ANOVA demonstrated that there was a significant
effect of treatment (F3, 32 = 5.157, p < 0.01) on the total travel
distances after ketamine administration (Fig. 7d). Post hoc
tests indicated that ketamine increased the total travel
distances, while the ketamine-induced locomotor hyperactivity
was not affected by betaine (30 and 100 mg/kg) treatment.

Discussion

The present study revealed that betaine dose-dependently pro-
duced not only rapid but also sustained antidepressant-like
effects in the FST. In addition, betaine reduced the latency to
feed in the NSF, supporting its antidepressant-like effect.
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Unlike ketamine, betaine did not show anxiolytic effect in the
emergence test. It is of note that betaine had an additive effect
when combined with a low dose of ketamine in the FST. On
the contrary, betaine remarkably attenuated the ketamine-
evoked disruption of PPI, novel object recognition impair-
ment, and motor incoordination in the rotarod test, but did
not influence ketamine-induced locomotor hyperactivity and
anesthesia. It appears that betaine could enhance the
antidepressant-like yet disrupt the psychotomimetic effects
of ketamine.

It is not surprising that betaine could produce rapid and
sustained antidepressant effects because betaine has been
found to act like an NMDAR glycine binding site partial
agonist. In fact, the NMDAR glycine site partial agonists
D-cycloserine, 1-aminocyclopropanecarboxylic acid (ACPC)
(Papp and Moryl 1996), and GLYX-13 (Burgdorf et al. 2013;

Moskal et al. 2014) as well as NMDAR glycine site antagonist
7-chlorokynurenic acid (Zhu et al. 2013) have shown potential
antidepressant-like effects. Among them, GLYX-13 has been
proved to have sustained effects. On the other hand, D-serine
(Malkesman et al. 2012) and glycine transporter-I inhibitor
sarcosine (Chen et al. 2015; Huang et al. 2013), which are
assumed to potentiate NMDAR function through glycine
site, can also improve depression-like behaviors in rodent
models and in human depression (Huang et al. 2013).
Modulation of NMDAR glycine site might be majorly con-
tributed to the rapid and sustained antidepressant-like effect
of betaine, although betaine elevated 5-HT levels and has
been suggested to be like a traditional antidepressant (Kim
et al. 2013).

A recent clinical study has demonstrated that S-adenosyl-
methionine (SAMe) plus betaine is more effective than SAMe
alone when administered as an add-on therapy to subjects,
affected by mild to moderate depression, who were low re-
sponders to conventional antidepressants (Di Pierro et al.
2015). Although a betaine-alone treatment group was not in-
cluded in this clinical report and the exact mechanisms under-
lying the antidepressant effects of betaine remain to be further
investigated, apparently betaine has beneficial effects for pa-
tients with treatment-resistant depression.

Betaine pretreatment increased the antidepressant-like
effects of ketamine at a dose below the ceiling effect.
The possible mechanisms underlying the antidepressant
effects of ketamine have been reviewed and suggested
that in addition to acting on NMDAR, ketamine at low
doses increases glutamate neurotransmission by both in-
creased glutamate release and increased AMPA receptor
expression and insertion into the synaptic site. This causes
secondary increased BDNF release and hence activation
of ERK signaling which then stimulates the protein kinase
mammalian target of rapamycin (mTOR) and thus via a
complex signaling path leads to increased synaptic protein
expression (GluR1) and increased insertion and density of
synapses, leading to increased structural connectivity be-
tween neurons, particularly in the prefrontal cortex
(Dwyer and Duman 2013). Betaine and ketamine might
have the convergent influence on downstream synaptic
plasticity cascades in their sustained antidepressant
effects.

The adverse mental status associated with ketamine use
including psychosis, dissociative, hallucinogenic, and amne-
sic effects (Krystal et al. 1994; Perry et al. 2007) may lead to
discontinuation of ketamine therapy in the treatment of de-
pression. The effects of betaine on ketamine model of psycho-
sis were determined. As shown in previous studies (Chan et al.
2008, 2012), ketamine at a higher dose (30 mg/kg) produced
psychotomimetic behaviors. Betaine abolished or significant-
ly attenuated these behavioral abnormalities in a dose-
dependent manner. The psychotomimetic effects of ketamine
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are mainly attributed to the NMDAR blockade, as it is a prom-
inent feature of most NMDAR antagonist compounds (Nakao
et al. 2003; Neymotin et al. 2011; Thomson et al. 1985;
Vollenweider and Geyer 2001). Betaine might counteract the
psychotomimetic effects of ketamine through modulating the
NMDAR glycine binding site since the beneficial effect of
betaine in the NORT was significantly attenuated by 7-
chlorokynurenic acid (7-CTKA), an antagonist for the
NMDAR glycine binding site (Supplement 1). The effective
doses of betaine to reverse the psychotomimetic behaviors
induced by ketamine ranged from 30 to 100 mg/kg, which
were significantly lower than other NMDAR modulators,
such as glycine (1.6 g/kg), D-serine (0.6, 1.8, and 2.7 g/
kg) (Katsuki et al. 2007; Lipina et al. 2005; Zhou et al.
2013), and sarcosine (100 and 300 mg/kg) (Chen et al.
2010; Yang et al. 2010). It is possible but still needs to be
verified whether the antipsychotic effects of betaine are
more potent than glycine, D-serine, and sarcosine
clinically.

Ketamine anesthesia has been attributed to the NMDAR
blockade. In fact, other molecular actions, in particular, the
HCN1 channels, have been indicated as a critical molecular
substrate for hypnotic actions of ketamine (Chen et al. 2009).
Betaine did not affect the ketamine-induced righting reflex,
which might implicate that betaine is devoid of interaction
with HCN1 channels. The diverse interactions between keta-
mine and betaine in the behavioral manifestations indicated
the distinct neural circuits participating in the antidepressant,
psychotomimetic, and anesthetic effects of ketamine. It is of
interest to differentiate the particular brain regions for the psy-
chotomimetic or antidepressant-like effects of ketamine.
Comparison of ketamine, betaine, and their combined effects
on c-Fos expression might be able to provide more informa-
tion to address this issue.

Betaine is the methyl donor exclusively in the betaine ho-
mocysteine methyltransferase pathway and causes both ho-
mocysteine reduction and increased blood SAMe levels
(Obeid 2013). Thus, betaine is approved for the treatment of
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homocystinuria. Growing evidence shows that betaine has the
potential to treat neurological disorders. Betaine has been re-
ported to prevent seizures in rodents (Freed 1984; 1985), to
improve symptoms of Rett syndrome (Percy and Lane 2005),
and to delay the onset of neurologic impairment due to vita-
min B12 deficiency (van der Westhuyzen and Metz 1984)
clinically. Furthermore, betaine attenuates memory deficits
induced by homocysteine (Chai et al. 2013) and LPS (Miwa
et al. 2011). It appears that betaine plays a critical role in the
regulation of brain functions.

A recent clinical study has shown that the combined action
of SAMe and betaine is more effective than the administration
of SAMe alone in patients with mild to moderate depression
(Di Pierro et al. 2015). The present animal study revealed that
betaine has acute and sustained antidepressant-like effects.
Taken together, betaine might be beneficial in the treatment
of different types of depression and involve more than one
mechanism. Moreover, treatment with betaine prior to keta-
mine produced additive antidepressant-like effects and
avoided the psychotomimetic effects of ketamine, suggesting
that betaine is an ideal candidate for use as an add-on therapy
with ketamine in patients with treatment-resistant depression
and bipolar disorder. Finally, betaine might be especially suit-
able for the treatment of depression in patients with schizo-
phrenia as it exhibits antidepressant-like and antipsychotic-
like properties.
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