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Abstract: Let the Human Immunodeficiency Virus (HIV) infection be mod-
eled by a dynamical system. A classical result shows that if the basic reproduc-
tion number is less than one, the system eventually reaches the virus eradication
state. If it is greater than one, the virus population sustains within hosts. In
the latter case, treatments are required for patients with persistent high vi-
ral load. However, in the treatment of this infection, it is usually difficult to
completely eliminate the within-host viruses for infected patients. Recently, a
treatment goal set up by the medical society is to achieve a functional cure for
patients. A functional cure in the treatment of HIV infection is to permanently
suppress the virus replication or to lead to patients’ long-term remission state
without completely eliminating the within-host viruses. In our previous study,
we extend the classical result and show that a functional cure is possible only
if the capability of patients’ immune stimulation starts to attenuate when the
density of infected cells is below a threshold. In this study, we show that the
conclusion is still valid in a more accurate model proposed by Adams, Banks
et al. This finding implies that the reached conclusion is robust under different
accuracy in modeling HIV infection and suggests that it is the fundamental
principle in governing the the phenomenon of a functional cure.
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1. Introduction

The Human Immunodeficiency Virus (HIV) is a lentivirus that attacks vital
immune cells such as helper T cells, macrophages, and follicular dendritic cells.
The infection of HIV may cause progressive failure of the immune system and
leads to Acquired Immune Deficiency Syndrome (AIDS). Patients frequently
die because of the resulting opportunistic infections or cancer. Currently, no
vaccines are available. Highly Active Anti-Retroviral Therapy (HARRT), which
combines multiple antiviral drugs to suppress the within-host viruses, is typi-
cally recommended to treat this infection.

Since the discovery of HIV, significant scientific effort has led to its further
understanding. For instances, its genome, replication cycle, genetic variabil-
ity as well therapy have been researched extensively. In addition, important
sight to the virus-host intersection has been considered based on experimental
data and mathematical models. One important contribution with this type of
approach is made by Ho, Perelson [9], Shaw, Nowak [16] and their colleagues.
They realize that they may perturb the within-host equilibrium between im-
mune clearance and virus production by initiating antiviral treatment to collect
data for dynamical information of virus production and clearance. With their
experimental data and mathematical models, the life-span of infected cells,
virus production rate and virus clearance rate can be estimated. Their success
stimulates massive follow-up researches. For examples, the complicated viral
decay profile under treatment is studied with this approach by Arnaout et al.
[4], Althaus and De Boer [2], and Hlavacek et al. [8]. The modeling approach
in drug resistance problems is considered by Nowak et al. [10] and Ribeiro et
al. [13]. Nowak and May [11], and Wodarz [17] also consider immune response
stimulated HIV infection with mathematical modeling. The early treatment to
avoid the establishment of latent cells is analyzed by Archin et al. [3]. The
possibility to activate late cells for followed-up therapy is examined with the
same method by Rong and Perelson [14]. A more detailed review of mathemat-
ical modeling in HIV infection can be referred to the recent survey paper by
Perelson [12].

Despite the great advances in understanding the HIV infection and in its
treatment, it is still difficult to completely eliminate the within-host viruses for
infected patients. Furthermore, current therapy with antiviral drugs has serious
side effects and drug resistance problems. This motivates researchers to explore
more effective treatment methods. Particularly, researchers are interested in
methods such as immune therapy that may avoid the serious disadvantage of
lifelong usage of antiviral drugs. A treatment goal to achieve a functional



A NECESSARY CONDITON ON THE FUNCTIONAL... 273

cure for patients therefore recently set up by the medical society. A functional
cure in the treatment of the human immunodeficiency virus (HIV) infection
is to permanently suppress the virus replication or to lead to patients’ long-
term remission state without completely eliminating the within-host viruses,
[18]. Consider the HIV infection modeled by the following dynamical system in
Adams et al. [1]:

dT (t)

dt
= sT − dT · T (t)− β · T (t) · V (t), (1)

dI(t)

dt
= β · T (t) · V (t)− dI · I(t)− p ·E(t) · I(t), (2)

dV (t)

dt
= k · I(t)− dV · V (t)− β · T (t) · V (t), (3)

dE(t)

dt
= cE + g(I) · E(t), (4)

where g(I) = ( b1·I
I+M1

− b2·I
I+M2

− dE) is coined as the immune induction function.
In this system, T , I, V and E represent the density of susceptible target cells,
infected target cells, viruses, and immune effector cells, respectively, and the
rest of symbols are system parameters. To make this system meaningful in
biological sense, it is assumed that all these system parameters are positive.
In Eq. (1), sT is the production rate of target cell T , and −dTT (t) represents
the death of cell T with death rate −dT . The term −β · T (t) · V (t) models
the reduction of the density of the target cell T caused by target cells being
infected by viruses with an infection rate β. In Eq. (2), β ·T (t) ·V (t) represents
the increase of the density of cell I caused by target cell T being infected by
virus V . The term −dII(t) represents the death of cell I with death rate
dI . In the same equation, −p · E(t) · I(t) represents the clearance of cell I
by immune response E with clearance rate p. In Eq. (3), k · I(t) represents
the production of free viruses generated by the infected cells I. The term
−dV ·V (t) models the death of virus with death rate dV . The term −βT (t)V (t)
is the reduction of free viruses caused by their infecting target cells. The final
equation describes the immune response stimulated by the infected cells with
the immune induction function g0(I). Because T , I, V and E represent the
density of cells and should be nonnegative, an equilibrium state of the system is
called biologically meaningful if all these variables are nonnegative. A functional
cure corresponds to drive the system from a stable high-viral-load biologically
meaningful state to a stable low-viral-load biologically meaningful state with
an appropriate treatment method.

In the literature, different patients’ clinical outcomes such as a stable low-
viral-load state, a persistent high-viral-load state, and a functional cure have
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been reported in Vanham and Van Gulck [15], and Autran et al. [5]. To well
model these reported cases, the system should possess either one or multiple
stable equilibrium states. Eq. (1) to Eq. (4) (will be called the Adams system)
is proposed in the work of Adams et al. [1] except that two types of target cells
are considered therein. The major contribution of the work in Adams et al. [1] is
to show that a functional cure is possible with optimal control theory when two
stable biologically meaningful states coexist in the system. However, little on
how system parameters determine the number of stable biologically meaningful
states is discussed. Because this number is related to clinical outcomes, it is of
fundamental importance and will be analyzed in details. The analysis explains
how patents’ different characteristics of immune response, representing with
various system parameters, lead to various clinical outcomes with focus on
conditions of functional curability.

It can be noted that Eq. (1) to Eq. (3) in the Adams system are the same
as equations of the well-known basic model of virus dynamics in Nowak and
May [11] except that the term −β ·T (t) ·V (t) in Eq. (3) is usually neglected in
the basic model. The functional curability problem of the basic model has been
investigated in Chen [7]. Because the Adams system reflects the realistic situa-
tion more accurately and is also much more difficult to analyze, it is considered
in details in this study. In the following, a system is called functional curable
if it possesses at least two stable biologically meaningful equilibrium states and
none of these two states represent virus eradication (i.e. T > 0, E ≥ 0 and
I = V = 0).

2. The Equilibrium States of the System

To consider the number of biologically meaningful equilibrium states of the
Adams system, first focus on the immune induction function g(I). Because I
represents the density of infected cells, g(I) is of interest only within the region
I ≥ 0. Depending on various parameters, the behavior of g(I) with I ≥ 0 has
been classified into four types of functions in Chen [7]. Type I and type II
functions are defined by the following definitions. Their graphs are presented
in Fig. 1.

Definition 1. An immune induction function g(I) is a type I function, if
it is increasing and concave within [0,∞) and has a upper limit as I → ∞.

Definition 2. An immune induction function g(I) is a type II function,
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if it possesses a local maximum I∗ and an inflection point I∗∗ with I∗ < I∗∗.
Mover, the function is increasing and decreasing over the intervals [0, I∗) and
(I∗,∞), respectively. It is concave and convex over the intervals [0, I∗∗) and
(I∗∗,∞), respectively. As I → ∞, the function approaches a lower limit.

Denote D1 = [2M1M2(b1 − b2)]
2 − 4M1M2(b1M1 − b2M2)(b1M2 − b2M1).

By Definition 2, it can be computed that

I∗ =
−2M1M2(b1 − b2) +

2
√
D1

2(b1M1 − b2M2)
, (5)

or

I∗ =
−2M1M2(b1 − b2)− 2

√
D1

2(b1M1 − b2M2)
, (6)

depending which one is a positive number. The inflection point I∗∗ can be

computed to be M2−mM1

m−1 with m = 3

√

b2M2

b1M1
. Type III and type IV functions

are defined based on type I and type II functions as follows: A function g(I)
belongs to the category of type III functions if −g(I) satisfies the definition of
type I functions. Similarly, a function g(I) belongs to the category of type IV
functions if −g(I) satisfies the definition of type II functions.

System parameters leading to different types of functions are summarized in
Table 1 and had been reported in Chen [7]. The derivations of results in Table
1 are based on standard techniques in calculus through tedious calculation and
therefore not provided here. In Adams et al. [1], realistic parameters satisfy-
ing conditions of case 6 and leading to a functional cure have been reported.
Therefore, the following study only focuses on type II functions. Other types
of functions can be similarly considered if further evidence indicates that they
are significant in the functional curability problem.

The biologically equilibrium states of this system can be obtained by letting
the derivatives in Eq. (1) to Eq. (4) be zeros. For notational convenience,
denoteD1 = (dV dT−βkI+βsT ), D2 = (dV dT+βkI−βsT ), and U2 = βdT dV sT .
The equilibrium states can be equivalently considered from the following system
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Type I and conditions

(case 1) M1 = M2, b1 > b2
(case 2) M1 > M2, b1 > b2,b2M1 ≤ b1M2

(case 3) M1 < M2, b1 > b2, b2M2 ≤ b1M1

Type II and conditions

(case 4) M1 < M2, b1 < b2, b1M2 > b2M1

(case 5) M1 < M2, b1 = b2
(case 6) M1 < M2, b1 > b2, b2M2 > b1M1

Type III and conditions

(case 7) M1 = M2, b1 < b2
(case 8) M1 > M2, b1 < b2, b1M1 ≤ b2M2

(case 9) M1 < M2, b1 < b2, b1M2 ≤ b2M1

Type IV and conditions

(case 10) M1 > M2, b1 > b2, b2M1 > b1M2

(case 11) M1 > M2, b1 = b2
(case 12) M1 > M2, b1 < b2, b1M1 > b2M2

Table 1: The behavior of g(I) with respective to system parameters
in Chen [7].

of equations:

T =
−D2 +

√

D2
2 + 4U2

2βdT
, (7)

V =
dT
dV

[
−D1 +

√

D2
2 + 4U2

2βdT
], (8)

E =
−cE
g(I)

, (9)

I ·H1(I) = 0, (10)

where H1(I) = [ 2βsT
2βksT+D2+

√
D2

2
+4U2

− dI +
pcE
g(I) ]. It can be noted that T , V , E

are expressed in terms of I in Eq. (7) to Eq. (9), respectively. The values of
I can be obtained by solving the Eq. (10). One root of this equation is I = 0.
This root leads to one equilibrium state Q1 = ( sT

dT
, 0, 0, cE

dE
). Other roots of

this equation are the roots of H1(I) = 0. To obtain the explicit expressions
of these roots and henceforth other equilibrium states, it requires to solve a
fifth order polynomial equation and this is generally difficult. Denote H(I) =
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Figure 1: Graphs of type I (left hand side) and type II functions
(right hand side). The system parameters for the graph on the left
hand side are b1 = 4, M1 = 100, b2 = 2.5, M2 = 120 and dE = 0.
The parameters for the graph on the right hand side are b1 = 6, M1 =
1.25, b2 = 5, M2 = 6.25 and dE = 0. The local maximum is located
at I∗ = 3.55 (point A) and the inflection point is located at I∗∗ =
6.96. These parameters are chosen for better visual presentation and
might not be meaningful in biological sense. Chen [7]

(I + dT dV
βk

− sT
k
)2 +4dT dV sT

βk2
. To analyze these roots, the equation H1(I) = 0 is

reformed as

g(I) =
pcE
dI

[

I +
√

H(I) + dT dV +βsT
βk

I +
√

H(I) + dT dV +βsT
βk

− 2sT
dI

]

. (11)

Denote H2(I) the function of the right hand side of Eq. (11). The solutions
to Eq. (11) may be considered from the intersection points of the graphs of
g(I) and H2(I). The graph of g(I) has been fully characterized. The graph of
H2(I) can be analyzed with the following lemma and its proof is provided in
the Appendix.

Lemma 3. Let y(I) be a function defined as

y(I) =
I +

√

(I + a− b)2 + 4ab+ (a+ b)

I +

√

(I + a− b)2 + 4ab+ (a+ b)− c
(12)
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with a, b, c > 0. Let I = c[c−2(a+b)]
2(c−2b) . Depending on the parameters a, b and c,

the graph of y(I) can be classified into one of the following three cases:

(i) (c > 2(b + a)) The function y(I) has horizontal asymptotes y = 1,
y = −2b

(c−2b) and a vertical asymptote I = I with I > 0. The function y(I) is

decreasing and greater than one when I ∈ (I,∞) and it is decreasing and less
than −2b

(c−2b) when I ∈ (−∞, I). Furthermore, as I → (I)+ , the function y(I)

goes to ∞ and as I → ∞, it approaches one. When I → (I)−, y(I) goes to −∞
and as I goes to −∞, it approaches −2b

(c−2b) .

(ii) (c > 2b but c ≤ 2(a+ b)) The function y(I) has the same properties as
(i) except that I ≤ 0.

(iii) (c < 2b or c = 2b) The function y(I) is decreasing and greater than
one within the interval [0,∞).

Proof. See Appendix. The graphs of y(I) are presented in Fig. 2.
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Figure 2: The graphs of y(I). The graphs of case (i), (ii) and (iii)
in Lemma 3 are shown in graph (a), (b) and (c), respectively. For
case (i), the parameters are a = 5, b = 4 and c = 30. For case (ii),
the parameters are a = 5, b = 4 and c = 10. For case (iii), the
parameters are a = 10, b = 8 and c = 10. Only case (i) can lead to
biologically meaningful equilibrium states.

Based on Lemma 3, it can be shown that the intersection of g(I) and H2(I)
may lead to biologically meaningful equilibrium states other than Q1 (virus
eradication state) only when case (i) is valid. In addition, the stability of
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Q1 can be investigated. They are stated in the following two theorems and
are essential in deriving a necessary condition for functional curability in the
discussion section. In the following theorems, R0, defined as sT βk

dV dIdT
, is the basic

reproduction number. It represents the number of newly infected cells caused
by one infected cell when all other cells are kept uninfected in the basic model
of virus dynamics in Nowak and May [11].

Theorem 4. The equilibrium state Q1 is biologically meaningful. It is
stable if the following inequality

(
p

k

cE
dE

+
dI
k

+
dV
β

p

k

cE
dE

dT
sT

+
1

R0
> 1)

holds. On the other hands, if

(
p

k

cE
dE

+
dI
k

+
dV
β

p

k

cE
dE

dT
sT

+
1

R0
< 1),

it is not stable.

Proof. Since sT
dT

> 0 and cE
dE

> 0, the equilibrium state Q1 is biologically
meaningful. The stability can be considered from the eigenvalues of the char-
acteristic equation of Eq. (1) to Eq. (4). The four eigenvalues are

x1=
−(dI + dV + p cE

dE
+ β sT

dT
)+

√

(dI − dV + p cE
dE

− β sT
dT

)2 + 4kβ sT
dT

2
,

x2=
−(dI + dV + p cE

dE
+ β sT

dT
)−

√

(dI − dV + p cE
dE

− β sT
dT

)2 + 4kβ sT
dT

2
,

x3 = −dE , and x4 = −dT , respectively. Since k, β, sT and dT are all positive
numbers, four eigenvalues are all real numbers with x2, x3 and x4 < 0. There-
fore, the equilibrium state Q1 is stable if x1 < 0 and this directly leads to the
stated condition.

Theorem 5. Suppose that the immune induction function g(I) is a type
II function. It possesses a positive local maximum at I = I∗ and a horizontal
asymptote y = yh. Denote

hH = H2(0) =

(

pcE
dI

+
pcE
dI

βksT
dIdV dT + βdIsT − βksT

)

.
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Also, denote I = c[c−2(a+b)]
2(c−2b) with a = dT dV

βk
, b = sT

k
and c = 2sT

dI
. Then, the

following statements hold:

(i) If the conditions dE ≤ −hH and hH ≤ yh hold, there exists no biologi-
cally meaningful equilibrium state other than Q1.

(ii) If the conditions sT
dI

> (dV dT
βk

+ sT
k
) and dE > −hH hold, there exists

at least one biologically meaningful equilibrium state other than Q1.

(iii) If the conditions sT
dI

> (dV dT
βk

+ sT
k
), dE > −hH and I∗ ≥ I hold, there

exists exactly one biologically meaningful equilibrium state other than Q1.

Proof. From Eq. (7) and Eq. (8), if I > 0, T and V are all nonnegative.
Therefore, from Eq. (9), if there exists an Ie > 0 such that H2(Ie) = g(Ie) and
g(Ie) < 0, then Ie leads to a biologically meaningful equilibrium state other
than Q1. This may occur only if case (i) in Lemma 3 holds and this case leads
to the condition sT

dI
> (dV dT

βk
+ sT

k
). The rest of the theorem can be observed

from the graphs of g(I) and H2(I) in Fig. 1 and Fig. 2. Case (i) is obtained
from the conditions g(0) ≥ H2(0) and yh ≥ H2(0). Case (ii) is obtained from
the condition g(0) < H2(0), which leads to dE > −hH . When I∗ ≥ I, g(I) and
H2(I) can intersect exactly once within [0, I) and case (iii) follows directly.

3. Numerical Examples

In this section, several numerical examples are presented to justify the the-
oretical analysis. In the literature, the values of system parameters have be
estimated based on experimental data and reported on different articles. These
values are adopted in the work by Adams, Banks et al. [1] and summarized in
Table 2. In the following numerical studies, some of the values of these param-
eters are modified for demonstrating the correctness of the presented theorems.

(a) Choose β = 1.6 × 10−7( ml
virions·day

) and k = 20(virions
day

). The values of
the rest parameters are kept unchanged. The equilibrium states of the system
and their corresponding eigenvalues of the characteristic equations are shown
in Table 3.

With the selected values of system parameters, it can be computed that
R0 = 0.35 and p

k
cE
dE

+ dI
k
+ dV

β
p
k
cE
dE

dT
sT

+ 1
R0

= 2.8792. Moreover, the immune
induction function g(I) is a type II function. According to Theorem 4, the equi-
librium state Q1 is biologically meaningful and stable. This can be confirmed
by the computed eigenvalues. All of its eigenvalues are negative. Furthermore,
it can be computed that sT /dI = 1.4286× 104 and (dV dT

βk
+ sT

k
) = 4.1125× 104 .
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Figure 3: The graphs of the intersection of H2(I) and g(I). The
graphs of case (ii) and case (iii) in Theorem 5 are shown on the
left hand side and right hand side, respectively. The parameters of
graph on the right hand side are sT = 20, dT = 0.01, β = 8, dI = 0.7,
p = 0.7, k = 5, dV = 13, cE = 1, b1 = 12, M1 = 1, b2 = 10, M2 = 5
and dE = 5. The parameters of this graph on the right hand side
are sT = 5, dT = 0.01, β = 8, dI = 0.7, p = 0.7, k = 5, dV = 13,
cE = 1, b1 = 3, M1 = 100, b2 = 2.5, M2 = 500 and dE = 0.9999.

According to Theorem 5, the equilibrium states Q2, Q3 and Q4 are not biolog-
ically meaningful. The computed result is consistent with the prediction of the
theorem. Based on the obtained information, this system achieves the state of
virus eradication.

(b) The values of the system parameters are chosen to be the same as the
values summarized in Table 2. The equilibrium states of the system and their
corresponding eigenvalues of the characteristic equations are shown in Table 4.

With the selected values of parameters, it can be computed that R0 =
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Value Value

sT 104( cells
ml·day

) cE 1( cells
ml·day

)

dT 0.01( 1
day

b1 0.3( 1
day

)

β 8× 10−7( ml
virions·day

) M1 100( cells
ml

)

dI 0.7( 1
day

) b2 0.25( 1
day

)

p 10−5( ml
cells·day

) M2 500( cells
ml

)

k 100(virions
day

) dE 0.1( 1
day

)

dV 13( 1
day

)

Table 2: The values of system parameters in Adams et al. [1].

Eq. T I V E

Q1 1.0 × 106 0 0 10

Q2 2.95× 106 −2.78 × 104 −4.13 × 104 18

Q3 9.71× 105 1217 1850 −4.64 × 104

Q4 9.98× 105 82 125 −4.57 × 104

Eq. e. value1 e. value2 e. value3 e. value4

Q1 -0.01 -0.10 -13.41 -0.45

Q2 -14.17 0.06 -0.07 -0.054

Q3 -13.39 -0.00 + 0.12i -0.00 - 0.12i -0.01

Q4 -13.40 0.14 -0.14 -0.01

Table 3: Equilibrium states and their eigenvalues.

8.7912 and p
k
cE
dE

+ dI
k

+ dV
β

p
k
cE
dE

dT
sT

+ 1
R0

= 0.1208. Moreover, the immune in-
duction function g(I) is a type II function with a local maximum at I∗ = 284.
From Theorem 4, the equilibrium state Q1 is biologically meaningful but is
not stable. This can be confirmed by the computed eigenvalues. Not all its
eigenvalues are negative and henceforth it is not stable. Furthermore, it can
be computed that sT /dI = 1.4286 × 104 and (dV dT

βk
+ sT

k
) = 1725. The terms

H2(0) and I defined in Theorem 5 are −1.9619×10−6 and 1.2649×104, respec-
tively. According to parts (ii) of Theorem 5, there exists at least one biologically
meaningful equilibrium state other than Q1. In this case, the equilibrium states
Q2, Q3 and Q4 are all biologically meaningful. From the computed eigenval-
ues, Q2 and Q4 are stable but Q3 is not stable. In this system, two stable
biologically meaningful equilibrium states Q2 and Q4 coexist. Therefore, it is
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Eq. T I V E

Q1 1.0× 106 0 0 10

Q2 1.15 × 105 1.26 × 104 9.66 × 104 23

Q3 5.80 × 105 1218 9046 2.75× 105

Q4 9.54 × 105 82 596 4.85× 105

Eq. e. value1 e. value2 e. value3 e. value4

Q1 -0.01 -0.10 -18.34 3.84

Q2 -13.80 -0.042 + 0.22i -0.042 - 0.22i -0.042

Q3 -16.91 0.22 -0.21 -0.024

Q4 -19.31 -0.0016 + 0.39i -0.0016 - 0.39i -0.0103

Table 4: Equilibrium states and their eigenvalues.

functional curable with a high-viral-load state Q2 and a low-viral-load state Q4.

(c) Choose M1 = 1 × 104( cells
ml

) and M2 = 5 × 104( cells
ml

). The values of
the rest parameters are kept unchanged. The equilibrium states of the system
and their corresponding eigenvalues of the characteristic equations are shown
in Table 5.

Eq. T I V E

Q1 1.0× 106 0 0 10

Q2 1.32 × 104 1.22 × 105 9.36 × 105 −6.19× 104

Q3 1.15 × 105 1.27 × 104 9.67 × 104 −58

Q4 1.67 × 105 8205 6.25 × 104 3.16 × 104

Eq. e. value1 e. value2 e. value3 e. value4

Q1 -0.01 -0.10 -18.34 3.84

Q2 -13.10 -0.67 -0.04 + 0.14i -0.04 - 0.14i

Q3 -13.80 -0.042 + 0.22i -0.042 - 0.22i 0.017

Q4 -14.15 -0.022 + 0.24i -0.022 - 0.24i -0.013

Table 5: Equilibrium states and their eigenvalues.

With the selected values of system parameters, it can be computed that
R0 = 8.7912 and p

k
cE
dE

+ dI
k

+ dV
β

p
k
cE
dE

dT
sT

+ 1
R0

= 0.1208. Moreover, the im-
mune induction function g(I) is a type II function with a local maximum
at I∗ = 2.8416 × 104. According to Theorem 4, the equilibrium state Q1
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is biologically meaningful but is not stable. This can be confirmed by the
computed eigenvalues. Not all its eigenvalues are negative and henceforth it
is not stable. Furthermore, it can be computed that sT /dI = 1.4286 × 104

and (dV dT
βk

+ sT
k
) = 1725. The terms H2(0) and I defined in Theorem 5 are

−1.9619× 10−6 and 1.2649× 104, respectively. According to part (iii) of Theo-
rem 5, there exists exactly one biologically meaningful equilibrium state other
than Q1. In this case, except Q1, the only biologically meaningful equilibrium
state is Q4. From the computed eigenvalues, it is stable because all its eigenval-
ues have negative real parts. Based on the obtained information, this system
possesses only one stable biologically meaningful equilibrium state Q4. Because
the viral load at the state Q4 is relatively high, this system can be recognized
as the case of persistent infection.

4. Discussion

Based on the obtained theoretical results, some important biological insights
are concluded as follows.

(1) Consider the basic model of virus dynamics:

dT (t)

dt
= sT − dT · T (t)− β · T (t) · V (t), (13)

dI(t)

dt
= β · T (t) · V (t)− dI · I(t), (14)

dV (t)

dt
= k · I(t)− dV · V (t). (15)

The classical result in Nowak and May [11] indicates that virus eradication
state is stable if the basic reproduction number R0 < 1. If R0 > 1, it is not
stable. Define the modified basic reproduction number R

′

0 as 1

R
′

0

= pcE
kdE

+ dI
k
+

dV pcEdT
βkdEsT

+ 1
R0

. In the Adams system, the immune response is taken into account.

From Theorem 4, virus eradication state is stable only when R′

0 < 1. Because
R

′

0 < R0, this implies that due to the effect of immune clearance, the virus
population becomes extinct within hosts easier.

(2) The number of biologically meaningful equilibrium states can be further
discussed when R

′

0 < 1. From the proof of Theorem 5, if sT
dI

< (dV dT
βk

+ sT
k
), no

biologically meaningful equilibrium states other than Q1 exist. Furthermore,
by assuming sT

dI
> (dV dT

βk
+ sT

k
) to be valid, the condition dE < −hH in part (i)
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of Theorem 5 is equivalent to the condition R
′

0 < 1. Therefore, from part (i)
of Theorem 5, unless hH > yh, it may be concluded that Q1 is the only stable
and biologically meaningful equilibrium state when R′

0 < 1. In other words,
the virus population eventually becomes extinct under this condition. Because
0 > hH , in biological viewpoints, 0 > hH > yh implies that stable equilibrium
states other than Q1 could exist only if the immune response deeply attenuates
at high viral load. However, whether this does occur cannot be concluded based
on this study.

(3) In part (ii) and part (iii) of Theorem 5, by assuming sT
dI

> (dV dT
βk

+ sT
k
)

to be valid, it can be shown that the condition dE > −hH is equivalent to
the condition R′

0 > 1. That is, conditions of part (ii) and part (iii) are valid
only when Q1 is unstable. Furthermore, a functional cure may occur only if
at least two stable equilibrium states other than Q1 coexist in the system due
to the proper intersection of g(I) and H2(I). It can be noted that this cannot
be possible when the local maximum I∗ of g(I) is on the right hand side of
the vertical asymptote of H2(I) as shown in Fig. 3. This condition implies a
criterion that a functional cure is possible only under the circumstance that
the capability of immune stimulation starts to attenuate when the density of
infected cells is below a threshold I = c[c−2(a+b)]

2(c−2b) with a = dT dV
βk

, b = sT
k

and

c = 2sT
dI

. As it was pointed out in Adams et al. [1] and Bonhoeffer et al. [6],
such attenuation is caused by immune impairment at high viral load. In our
previous study by Chen [7], we consider a system similar to the Adams system
except that the Adams system includes an additional term −βT (t)V (t) in Eq.
(3). We reach the same conclusion that a functional cure is possible only if
the capability of immune stimulation starts to attenuate when the density of
infected cells is below a threshold (the thresholds of two systems are different
due to the additional term in the Adams system). The finding in this study
suggests that our conclusion is robust under different accuracy in modeling HIV
infection and the reached conclusion is a fundamental principle in governing the
phenomenon of a functional cure.

(4) From the numerical examples, realistic system parameters exist such
that the system may possesses one or multiple stable equilibrium states in
modeling various reported clinical outcomes. Therefore, it reconfirms that the
Adams system is a suitable model in studying the functional curability prob-
lems.
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Appendix

Proof of Lemma 3

For notational convenience, denote A(I) =
√

(I + a− b)2 + 4ab, B(I) = (I+a+

b) and C(I) = I+a−b. Moreover, let p1(I) = A(I)+B(I), p1
∗(I) = A(I)−B(I),

p2(I) = A(I) + C(I), p2
∗(I) = A(I) − C(I), p3(I) = A(I) + B(I) − c, and

p3
∗(I) = A(I)−B(I) + c. The derivative of y(I) is

y′(I) =
−c[A(I) +C(I)]

A(I)[A(I) +B(I)− c]2
.

To prove this lemma, we consider the properties of the numerators and the
denumerators of y(I) and y′(I), respectively.

We first show that the numerator of y(I) is always positive. Consider the
product p1(I)p

∗

1(I) = −4bI. When I > 0, the product is negative. The func-
tions p1(I) and p∗1(I) are of opposite signs. Because a, b, c > 0, it is easy to
check that p1(I) > 0 when I > 0. Therefore, the function p∗1(I) < 0 when
I > 0. When I = 0, it can be observed that p1(I) > 0 and p∗1(I) = 0. When
I < 0, the product of p1(I) and p∗1(I) is positive. These two functions are of
the same sign. Furthermore, notice that the term −4bI can be zero only when
I = 0. This indicates that the function p1(I) can never be zero. By continuity
of p1(I) and intermediate value theorem, if p1(I) < 0 when I < 0, there exists
some constant w such that p1(I) = 0 at I = w. This contradicts to the fact
that p1(I) can never be zero. From the discussion of all cases I > 0, I = 0 and
I < 0, it can be concluded that p1(I) is always positive.

Similarly, it can be shown that the numerator of y′(I) is negative. Consider
the product p2(I)p

∗

2(I) = 4ab. Because a, b > 0, this implies that p2(I) and
p∗2(I) are of the same sign and they can never be zero. By continuity, both
functions do not change their signs. When I > 0, it is easy to observe that
p2(I) is positive. Therefore, both functions p2(I) and p∗2(I) are positive and
the numerator of y′(I), −cp2(I), is always negative.

We next analyze the denumerator of y(I). Consider the product p3(I)p
∗

3(I) =
2I(c− 2b) + c[2(a+ b)− c]. To study the properties of p3(I), it requires to con-
sider three cases: (1) c = 2b ,(2) c > 2b, and (3) c < 2b. When c = 2b,
the function p3(I) is equivalent to p2(I) and henceforth it is always posi-
tive. The case c > 2b can be divided into two subcases: c > 2(a + b) and
c ≤ 2(a + b). We first consider the first subcase. Rewrite the product as
p3(I)p

∗

3(I) = 2(c−2b)(I − I). It indicates that p3(I) and p∗3(I) can only be zero
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at I = I. It can be computed that p3(I) =

√

[

(c−2b)2+4ab
2(c−2b)

]2
+

[

−(c−2b)2−4ab
2(c−2b)

]

and p∗3(I) =

√

[

(c−2b)2+4ab
2(c−2b)

]2
−

[

−(c−2b)2−4ab
2(c−2b)

]

. Clearly, because c > 2b, it can

be observed that p3(I) = 0 but p∗3(I) 6= 0. By continuity of p∗3(I) and interme-
diate value theorem, it may be argued that the function p∗3(I) does not change
sign. Since p∗3(I) is positive as I goes to minus infinity, it is always positive.
Therefore, the sign of p3(I) follows the sign of 2(c − 2b)(I − I). It can be con-
cluded that the function p3(I) is greater than, equals to and is less than zero
when I > I, I = I, and I < I, respectively. By the same arguments, in the
subcase c ≤ 2(a + b), the function p3(I) is also greater than, equals to and is
less than zero when I > I, I = I, and I < I, respectively. We now consider the

case c < 2b. From p3(I) =

√

[

(c−2b)2+4ab
2(c−2b)

]2
+

[

−(c−2b)2−4ab
2(c−2b)

]

, it is easy to see

that p3(I) 6= 0 and therefore it does not achieve zero. By continuity of p3(I)
and intermediate value theorem, the function p3(I) does not change sign. Since
p3(I) is positive as I goes to infinity, it is always positive.

With the properties of the numerators and denumerators of y(I) and y′(I),
we now prove (i), (ii), and (iii). For part (i), we first consider the asymptotes
of y(I). As I goes to infinity, the function y(I) approaches one. As I goes to
I, the denumerator of function y(I) approaches zero. Furthermore, consider

y(I) =
p1(I)

p3(I)
=

p1(I)p
∗

1(I)p
∗

3(I)

p3(I)p∗3(I)p
∗

1(I)
=

−4bIp∗3(I)

2(c− 2b)(I − I)p∗1(I)
. (16)

From the definitions of p1(I), p1
∗(I), p3(I) and p3

∗(I), it can be seen that as I
goes to minus infinity, the function y(I) approaches −2b

(c−2b) . Therefore, the func-

tion y(I) has horizontal asymptotes y = 1, y = −2b
(c−2b) and a vertical asymptote

I = I. The behavior of y(I) as I approaches I, infinity and minus infinity, re-
spectively, can also be easily observed. From the analysis of p2(I), the function
y′(I) is always negative except that it does not exist at I = I. This indicates
that y(I) is decreasing over the intervals (I,∞) and (−∞, I), respectively. It
remains to show that y(I) > 1 when I > I and y(I) < −2b

(c−2b) when I < I.

They may be observed from the numerator and the denumerator of y(I). From
Eq. (12), as I goes to infinity, the absolute value of the numerator is strictly
greater than the absolute value of the denumerator. Moreover, the function
y(I) is decreasing over the interval (I,∞). Therefore, the function y(I) > 1
when I > I. It can be similarly proved that y(I) < −2b

(c−2b) when I < I.

The proof of the statement in part (ii) is exactly the same as that of part
(i). We next prove (iii). First, consider c < 2b. From the property of p2(I),
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the function y′(I) is always negative. This indicates that y(I) is decreasing.
Furthermore, from the properties of p1(I) and p3(I), the function y(I) is always
positive and is greater than one. The function y(I) evaluated at I = 0 is
2(a+b)

2(a+b)−c
. As I goes to infinity, y(I) approaches its horizontal asymptote y = 1

and henceforth it is greater than one. The proof for case c = 2b is the same as
that of case c < 2b except that y(0) = a+b

a
in this case.
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