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a b s t r a c t

In this work, we present an intelligent classroom orchestration technology to capture semantic learning
analytics from paper-based programming exams. We design and study an innovative visual analytics
system, EduAnalysis, to support programming content semantics extraction and analysis. EduAnalysis
indexes each programming exam question to a set of concepts based on the ontology. It utilizes auto-
matic indexing algorithm and interactive visualization interfaces to establish the concepts and questions
associations. We collect the indexing ground truths of the targeted set from teachers and experts from
the crowd. We found that the system significantly extracted more and diverse concepts from exams and
achieved high coherence within exam. We also discovered that indexing effectiveness was especially
prevalent for complex content. Overall, the semantic enriching approach for programming problems
reveals systematic learning analytics from the paper exams.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Paper-based exams are one of the main assessment methods in
today's majority of classrooms. Such delivery method is especially
beneficial for the sake of easiness in exam-proctoring and pre-
venting academic dishonesty. However, they are in fact very time-
consuming to grade, hard to maintain consistency among graders,
and normally contain only very limited feedback to a student.
Furthermore, it is impractical for an instructor to track detailed
performance of a student (e.g., how s/he received partial credits in
different exam questions), instead, teachers discuss on the returned
exam in the class (hopefully thorough and detailed enough to cover
all the students' misconceptions). Although teachers may still point
out the common mistakes and try to pinpoint the key concepts
related to the such mistakes during instruction, many desired
detailed learning analytics are unavailable, such as how did s/he
receive partial credits, was it a single concept or multiple concepts
mistake, a careless mistake or a long-term misconception etc. As a
result, students often focus solely on the scores they earned on the
returned exams, but miss several learning opportunities (Ambrose,
iao), yllin@mis.nsysu.edu.tw
Bridges, DiPietro, Lovett, & Norman, 2010) such as identification of
strength andweakness, characterization of the nature of their errors or
any recurring patterns if any, assessment of appropriateness of their
study strategies and preparation, etc. Hence, making it impossible to
apply learning analytics for delivering personalized feedback to the
student. Therefore, unlike most of the orchestration technologies,
whichmainly address digital form of educational data (Dillenbourg,
2013), in this work, we propose an educational technology solution
that permits traditional paper delivery method to be able to utilize
advanced learning analytics by analyzing the textual content and
supplying semantic information.

In order to provide additional learning analytics for traditional
paper-based exams in facilitating today's majority classes, we focus
on a targeted domain, programming language learning, and a tar-
geted paper delivery content, paper-based programming exams.
We create an innovative visual analytics system, EduAnalysis, to
analyze the content and to index it to a set of concepts based on the
ontology. EduAnalysis implements an automatic indexing algo-
rithm and interactive visualization interfaces to establish the con-
cepts and exam questions semantic associations. Our core research
question is whether the proposed approach can effectively capture
advanced programming learning analytics to enhance paper-based
programming assessments. Specifically, we hypothesize that the
indexing method can provide richer information to the content and
the indexing approach can facilitate content analysis in traditional
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paper-based programming assessments. To verify these hypothe-
ses, we collect the indexing ground truths from teachers and ex-
perts from the crowd and compare the results with the proposed
algorithmic method.

The main contributions of this work are outlined as following:

� Provide immediate technology support for today's majority
programming classes, particularly (large) blended instruction
classrooms that are instrumenting paper-based formal
assessments;

� Introduce novel intelligent semantic parser to automatically
associate concepts and programming problems;

� Present visual authoring, delivery and presentation interfaces
via semantic analytics visualizations in the targeted context;

� Conduct controlled crowdsourcing experiment to harness
educational ground truth;

� Empirically evaluate the proposed intelligent semantic indexing
method to address a real world problem.

The rest of the paper is structured with literature review on
topics classroom orchestration & learning analytics, semantic
enrichment to enhance learning and visual learning analytics & stu-
dent modeling. In section 3, we present the visual analytics system,
EduAnalysis. In section 4, we lay out our study methodology with
our underlying assumptions and evaluation measures. Finally we
present the evaluation results and discussed study implications,
limitations and future work.
2. Literature review

2.1. Orchestration & learning analytics

In the field of Computer Supported Collaborative Learning
(CSCL), researchers describe course-delivery as a field in transition
for classroom orchestration, which defines how a teacher manages
multilayered activities in real time and in a multi-constraints
context (Dillenbourg, 2013). Orchestration emphasizes attention
to the challenges of classroom use and adoption of research-based
technologies (Roschelle, Dimitriadis, & Hoppe, 2013). It discusses
how and what research-based technologies have been adopted and
should be done in classrooms (Dillenbourg, 2013). We have begun
to see more tabletops, smart classrooms or interactive tools such as
Classroom Response Systems (AKA: Clickers) etc. provide dynamic
feedback and integrative students knowledge updates (Martinez-
Maldonado, 2014; Martinez-Maldonado, Dimitriadis, Martinez-
Mon�es, Kay,& Yacef, 2013; Roschelle, Penuel,& Abrahamson, 2004;
Slotta, Tissenbaum, & Lui, 2013). One of the biggest criticisms of
introducing orchestration technology in class is that it might
potentially add more complexity and time demands of technology
and introduces new and unnecessary complications (Sharples,
2013). Thus, it motivates us to research a less intrusive technolog-
ical solution that taps into blended classes allowing to manage
physical and digital content and to jointly discuss learning analytics.

Vatrapu, Teplovs, Fujita, and Bull (2011) describe a preliminary
framework, Triadic Model of Teaching Analytics (TMTA), discussing
the importance involving three stakeholders in learning analytics:
teaching expert, visual analytics expert and design-based research
expert. The focus of learning analytics has been on the integration
of computational and methodological support for teachers to
properly design, deploy and assess learning activities. In addition,
the focus is also to immerse students in rich, personalized and
varied learning activities in information ecologies and data-rich
classrooms (Vatrapu et al., 2011). One of the pioneer systems that
alignwith TMTA framework is eLab (exploratory Learning Analytics
Toolkit). It was designed to enable teachers to explore and correlate
content usage, to help teachers reflect on their teaching according
to their own interests (Dyckhoff, Zielke, Bültmann, Chatti, &
Schroeder, 2012). ASSISTments (Heffernan & Heffernan, 2014) an
integrative tutoring system includes assistance and assessment
components for students and teachers. The system is built on a
mantra - put the teacher in charge, not the computer, which creates
flexibility to allow teachers to use the tool in organizing the
classroom routines. However, such intelligent tutors or newly
invested orchestration technologies are typically highly customized
to the content or require a large collection of content for teachers to
start using the tools. In this work, we propose and evaluate an
automatic method to enrich content semantics in bridging physical
and digital via visual learning analytics.

2.2. Semantic enrichment to enhance learning support

Semantic approaches have been widely discussed in current
computer-based education. There is a line of ontology related
studies being pursued by a number of researchers in different as-
pects of learning, such as learning content authoring and man-
agement, contextual annotation and support, personalized search
and content composition, learning resource and metadata re-
positories (Tiropanis, Davis, Millard, & Weal, 2009), etc.

AIMS (Aroyo & Dicheva, 2001) and TM4L (Topic Maps for
Learning) (Dicheva, Dichev, Sun, & Nao, 2004) are two good ex-
amples for contextual annotation and support. They both enable
learners to identify related information resources for different tasks
such as course assignments. They provide the complementary
support for learning tasks through subject domain conceptualiza-
tion methods. The project of iHelp Presentation (Bateman, Brooks,
Mccalla, & Brusilovsky, 2007) helps learners to highlight important
parts of the recorded lectures' slides and support them tagging,
annotation, and collaboration features around the recordings.
Research conducted by the LORNET network (Paquette, 2007) of-
fers a semantic framework to manage the learners' competency
portfolios and models in e-learning and knowledge management
environments. The work presented in (Jovanovic et al., 2007)
demonstrates the semantic technologies enable a generic imple-
mentation of feedback for content authors and teachers to aware
about the quality of the learning process based on students' activ-
ities in online learning environments. ArnetMiner team (2008)
developed the system at extracting and mining academic social
networks to expertise search and people association search.
Alomari, Hussain, Turki, and Masud (2015) developed a semantic
model for collaborative learning by graphically representing course
content with semantic meaning.

Assessment in learning can be characterized as an index of
learning guidance or a summary of learners' performance (Basu,
Jacobs, & Vanderwende, 2013). In the context of automatic evalu-
ation, there is a stream of research focuses on the correctness of
syntactical references by using pattern-matching techniques to
verify solutions (i.e. WEB-CAT auto-grading (Edwards & Perez-
Quinones, 2008). There are other streams of work that empha-
sizes on semantic relations, such as TagAssessment (Kardan, Sani,&
Modaberi, 2016), which has been proposed for assessing leaners by
computing the semantic relationship between educational con-
tents and learner's tags on multiple choice questions (MCQ).
Mohler and Mihalcea (2009) applied various measures of lexical
similarity based on WordNeT and Latent Semantic Analysis(LSA) to
automatic short answer grading. Basu et al. (2013) introduce a
semi-automatic grading approach to allow teachers to grade easily
with fewer actions, provide feedback to groups of similar answers,
and discover modalities of students' misunderstanding. Including
our current work, we design a visual analytics system that utilizes
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automatic indexing algorithm and interactive visualization in-
terfaces to analyze paper-based programming content semantics.
Such tool assists programming instructors to be able to continue
instrumenting traditional paper-based formal assessments and be
able to obtain semantic learning analytics.
2.3. Visual learning analytics & student modeling

Visual learning analytics, essentially, extends the scope of in-
formation visualization by using computer-supported techniques
to visualize learning information in amplifying human cognition. It
goes beyond the “footprints” representation of summarizing and
visualizing interactions or behaviors between students and
learning content. Examples like network visualizations in semantic
discourse analysis (De Liddo, Shum, Quinto, Bachler, &
Cannavacciuolo, 2011), dashboard visualizations to provide histor-
ical data in supporting awareness, teaching practices, explore and/
or identify monitor status (Epp& Bull, 2015; Verbert, Duval, Klerkx,
Govaerts, & Santos, 2013). There is a range of visual learning ana-
lytics cases reported in VISual Approaches to Learning Analytics
(VISLA) workshop, in the Fifth International Conference of Learning
Analytics and Knowledge (Duval et al., 2015). For instance, applying
sentence compression technique in analyzing short answer ques-
tions in network visualizations; utilizing predictive modeling to
visualize uncertainty of academic risks; innovative visualizations
for visualizing semantics in discussion forums (Awasthi & Hsiao,
2015) etc. Studies showed that the majority of visual learning an-
alytics discusses visual representations or the system's usefulness
while the core should be focused on real impact to improve
learning or teaching (Verbert et al., 2013).

From student modeling literature, we found several successful
examples presented interactive visualizations in supporting stu-
dents' learning. Such approach is called Open Student Modeling
(OSM). It is a group of approaches that makes traditionally hidden
student models available to the learner for exploration and possible
editing. Representations of the student models vary from display-
ing high-level summaries (such as skill meters) to complex concept
maps or Bayesian networks. A spectrum of OSM benefits have been
reported, such as increasing the learner's awareness of their own
developing knowledge and difficulties in the learning process; as
well as student engagement, motivation, and knowledge reflection
(Bull & Kay, 2016; Bull, 2004; Mitrovic & Martin, 2007; Zapata-
Rivera & Greer, 2000). Several other examples of OSM interfaces
reported promising results too. For instance, interacting with open
learner modeling engages learners in negotiating with the system
during the modeling process (Dimitrova, Self, & Brna, 2001). Pro-
gressor system integrates open learning models with social visu-
alization that can dramatically increase student motivation to work
with non-mandatory educational content (Hsiao, Bakalov,
Brusilovsky, & K€onig-Ries, 2013) and encourage students to start
working sooner. Chen, Chou, Deng, and Chan (2007) investigated
active open learnermodels in order tomotivate learners to improve
their academic performance. Both individual and group open
learner models were studied and demonstrated the increase of
reflection and helpful interactions among teammates. CourseVis
provides various graphical representations of student tracking data
to teachers and learners and helps instructors to identify problems
early on, and to prevent some of the common problems in distance
learning (Mazza & Dimitrova, 2007).
3. Research platform: EduAnalysis - semantic indexing and
visual analytics

We build EduAnalysis, a semantic visual analytics system
specifically designed to extract semantics from physical learning
environment and map onto a virtual setup. EduAnalysis consists of
algorithmic components for automation and interactive visualiza-
tion interfaces for authoring. For a given scenario, a student studies
course related e-textbook and slides online to prepare for an in
class exam, works on online quizzes or other online materials, and
eventually takes a paper-based exam or a quiz in classrooms.
EduAnalysis aims to track all these types of assessment results and
present the performance in visualization by harnessing the
learning content semantics. The following section describes
EduAnalysis' system architecture, design rationales and interfaces
on how it enables creation of enriched formal assessments for the
class, assimilates student data and present the staffs and students
with a detailed semantic analysis of student performance.

3.1. EduAnalysis architecture

EduAnalysis was deployed as a web application. Fig. 1 depicts
the architecture of EduAnalysis. There are three main components,
frontend analytics dashboard and web services to process physical
data input (such as paper exam processing service, manual concept
indexing service etc.), backend consists of an ontology parser, a
concept mapper that maps input content to their corresponding
concepts, and an analytics framework that exposes insights from
data using APIs, and output via dashboard. Modules that are
colored in grey are currently still under development. EduAnalysis
is built using MongoDB as (NoSQL) database, Python Flask as
backend web server and AngularJS for frontend. The application is
deployed on an EC2 instance. This paper focuses on the backend
intelligence design and evaluation.

3.2. EduAnalysis interfaces

3.2.1. Indexing interfaces
Teachers can upload an exam paper with a simple one click

(interface omitted) and EduAnalysis will trigger ExamParser service
to perform automatic concept indexing and immediately lead
teachers to an overview (Fig. 2). It guides teachers to navigate the
entire exam concept distribution. Teachers can opt for further
editing on exam questions or provide concept emphasis configu-
ration. Fig. 3 shows a view of the authoring interface. Left panel
displays each question texts, which enables dynamic editing and
indexing to provide teachers instant feedback of the indexing
performances. Three other parameters can be adjusted here: cor-
rect answer, corresponding marks, and question complexity. All
these parameters are reserved for future auto-grading services and
partial credit assignment based on semantics (Hsiao, 2016). Middle
panel shows an interactive concept authoring circle packing visu-
alization. Teachers can select the bubble to zoom in and out to
examine the fine-grained concepts coverage. Fig. 3 also illustrates a
zoomed in view of fully indexed question. By zooming in and out,
teachers can select/deselect concepts for the corresponding ques-
tionwith a click on the bubble. They can also adjust the slider bar to
configure the concept weights (emphasis).

3.2.2. Dashboard interfaces
Fig. 4 shows a dashboard view of class exam performance with

three-layer information, including (a) a box & whisker plot of the
class performance summary, (2) a stacked bar chart of class' exam
scoring distribution by question, allowing to visualize the aggre-
gated performance per question, in terms of correct/incorrect/
partially correct/no answers with question complexity, and (3)
detail student scoring by quarter. The visualization dashboard re-
flects higher-level feedback on the exam results. Note: sensitive
data (students' names) is blurred in Fig. 4.



Fig. 1. EduAnalysis architecture.

Fig. 2. Exam overview on topics and concepts distribution.
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Finally, Fig. 5 shows the semantic analytics overview from
teacher's perspective (Students will be seeing exactly the same
semantic analytics with anonymized names from the same class.
Teachers have a comprehensive overview of conceptual perfor-
mances for the entire class, including three dimensions of concept
performance: (1) a heat map sorted by topics: the color density of



Fig. 3. A navigational and authoring interface for question concepts. A full indexed question of question1 in exam1.

Fig. 4. Overall performance overview.
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the grid indicates one's conceptual gain, the darker the more con-
ceptual understanding of the topic; (2) a bar chart illustrating
selected student's personal conceptual performances versus group
average and overall goal, where the contrasting bars are intended to
invoke user's goal setting and self-regulated learning and (3) lower-
right corner of semantic overview shows the scrutiny of questions-
and-misconceptions reference links, which displays the semantic
feedback for every erroneous answer on the exam that typically
paper-based exams are hard to do. Meanwhile, students have the
consistent view as the teacher's with anonymous performances
from his/her peer cohorts. The visualization design choices are
made based on several successful open social student modeling
interfaces design (Brusilovsky, Somyürek, Guerra, Hosseini, &
Zadorozhny, 2015; Hsiao & Brusilovsky, 2012; Loboda, Guerra,
Hosseini, & Brusilovsky, 2014).
4. Methodology

This project aimed to study the effectiveness of an intelligent
support for semantic visual analytics and how teachers would
perceive of using it in programming language courses. We hy-
pothesized that intelligent automatic semantic indexer is an
effective method to collect semantic information from course
content.

We call the instance of automatic exam concept indexing ser-
vice, ExamParser, it inherits from generic Topic Facet Model (Hsiao
& Awasthi, 2015), which consists of natural language parser and
domain specific language parser (in this project, we deployed Java
Parser, which was originally developed by Hosseini and Brusilovsky
(2013) and applied in (Hsiao, Sosnovsky, & Brusilovsky, 2010;
Sosnovsky, Hsiao, & Brusilovsky, 2012), where the Java Ontology



Fig. 5. Teacher's semantic analytics view: personal vs. class concept performance heat map, bar chart of self performance versus average and overall goal. Note: sensitive data
(students' names) is blurred.
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can be retrieved here1). It recognizes exam question patterns in a
document and extracts content by indexing each question to cor-
responding concepts (a high level concept topic and sets of facets).
A typical exam question pattern includes:

question_text{phrased as natural language, may or may not
contain domain specifics}

codes{composed as fully or partially of an entire executable
program}

answer_type{ranges from multiple choices, fill-in-the-blanks,
short answers, code writing etc.}

For instance, here's a sample exam question:
“What is the final value of sum displayed to the console?

for(int i ¼ 0; i < 5; iþþ)
1 Sou
{

int sum ¼ 0;

sum ¼ sum þ i;

System.out.println(sum);

}”
This question contains mainly natural language phrased ques-
tion descriptions, a piece of partial executable java codes, and
multiple choices answer type for this question. ExamParser will
translate this question as a set of concepts {ForStatement, Varia-
bleInitialization, ConditionalStatement, LessOperator, IncrementOp-
erator, MethodInvocation, AssignmentOperator, Arithmetics}.
However, do these concepts all weigh equally in this exam ques-
tion? If we purely count the concept appearances, it consists of
three AssignmentOperators and one ForStatement. Does it mean that
ForStatement is less important than AssignmentOperator in this
rce of Java Ontology: http://www.pitt.edu/~paws//ont/java.owl.
question? The answer is it depends! Therefore, we design a dy-
namic concept indexing authoring interface in the parser (Fig. 3). It
labels each parsed concept with the equivalent, default quantity
weights, but the weights are adjustable according to teachers'
emphasis. In the case of using such question in a CS1 midterm
exam, the focus should be on ForStatement, ConditionalStatement
concepts; using the same question in a CS1 final exam, every
concept should weigh equally proportionally. In addition, providing
dynamic concept weight authoring interfaces not only allows
teachers to include or exclude additional or redundant concepts to
exam questions, but also enables dynamic exam content editing
and corresponding concept indexing (Fig. 3). Embedding such dy-
namic authoring mechanism along with intelligent parsing can
help raise teachers' flexibility to configure and coordinate entire
exam topical emphasis, at the same time, complement to algo-
rithmic flaws, in case of any missing concepts.

The concept indexing method enables a scalable framework in
two essential educational technology aspects: (1) systematically
assign partial credits, which they are traditionally provided by
teachers' experiences or generic grading rubrics (such as credits to
right path toward key concepts but erroneous implementation). By
associating each programming problem to weighted concept sets
facilitates an organized fashion to quantitatively distribute partial
credits in semantic level (Hsiao, 2016); and (2) harness different
levels of learning analytics on both individual and group levels,
including strong and weak concept clusters, misconceptions co-
occurrences, conceptual progress over time etc. In this paper, we
focus on aggregating various levels of semantics analytics.

4.1. Data collection

We collected 4 programming introductory courses exams, with
a total 76 exam questions in the subject of Object-Oriented

http://www.pitt.edu/%7Epaws//ont/java.owl
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Programming. Each exam was populated in EduAnalysis; each
question was automatically associated with a set of concepts
through Topic Facet Model algorithm (Hsiao & Awasthi, 2015).

Subject indexing is commonly used for the assignment of mul-
tiple subject terms to represent an item, such as a document, an
image, or a problem. To verify the quality of indexing, indexing
consistency has often been applied as a measure of the quality of a
gold standard or as ameasure of indexing quality without reference
to a gold standard(Rolling, 1981). Medelyan and Witten (2006)
proposed defining the “gold standard” in indexing as a level of
inter-indexer consistency to evaluate a thesaurus-based indexing
algorithm. In order to verify the embedded indexing algorithm
effectiveness, we had collected two baselines of concept indexing
for the targeted corpus (1) teacher judges, and (2) experts from the
crowd.

4.1.1. Indexing by teachers
For teachers' indexing, we refer it to baseline I. There are two

teachers, who both have more than 5 years teaching experiences in
the subject domain. They manually examined every single exam
question from the corpus by selecting concepts from a list of JAVA
ontology and log the associations via spreadsheets. We later
compile the indexed concepts from both spreadsheets and
compute the inter-rater reliability, Cohen's Kappa ¼ 0.386.

4.1.2. Indexing by experts from the crowd
Crowdsourcing has emerged as a popular approach to harvest

collective wisdom from thousands of volunteers in different ap-
plications (Howe, 2008; Surowiecki, 2004). Classic crowdsourcing
tasks are for various practices that involve the crowd via online
platforms, such as correction, labeling, ranking, data cleaning, data
filtering, data collection, and entity linking (Amirkhani & Rahmati,
2014; Demartini, Difallah, & Cudr�e-Mauroux, 2012; Franklin,
Kossmann, Kraska, Ramesh, & Xin, 2011; Marcus, Wu, Karger,
Madden, & Miller., 2011; Park et al., 2012). The approach can
reduce costs dramatically by outsourcing certain process of the
practice to the crowd rather than having the professionals perform
all labor-intensive tasks.

Therefore, we designed a crowdsourcing indexing task to
identify concepts of the given java programming questions for our
study. The indexing task was designed in a survey style format on
Qualtrics2 platform and hosted on Amazon Mechanical Turks
(MTurk).3 Amazon's Mechanical Turk is an online labor market
where requesters post jobs andworkers choosewhich jobs to do for
pay. Amazon's Mechanical Turk service has become an increasingly
popular way to conduct online experiments (anyone with access to
internet can use this service). Subjects on MTurk are from all over
the world and are tagged with different levels of qualifications.
Prior research has shown that respondents in MTurk might be
slightly different from the respondents in a traditional subject pool,
but the data obtained fromMTurk were at least as reliable as those
obtained by traditional methods (Buhrmester, Kwang, & Gosling,
2011; Paolacci, Chandler, & Ipeirotis, 2010). In this study, we
designed three mechanisms prior work (Kapelner & Chandler,
2010; Oppenheimer, Meyvis, & Davidenko, 2009) to filter partici-
pants' qualifications, including:

1. Java basic knowledge: we asked participants a fill-in-the-blank
question. Participants were not expected to answer this ques-
tion completely correctly. However, they should at least pin
point one correct Class from Java Standard Library.
2 https://www.qualtrics.com/.
3 https://www.mturk.com/mturk/welcome.
“What is Wrapper class? Please provide an example from jav-
a.lang package”.

2. “Kapcha” technique: We set a delay for each question, so that
participants were not able to go through all the questions
rapidly. We assumed that a serious and consistent participant
should always give the same response (i.e. the content of an
alternative) to duplicated questions. So twomore filters utilizing
duplicated questions were to rule out these unserious
responses.

3. Duplication filter: In close duplication filter, a duplicated
question of the nth question would appear right after the nth
question or the (nþ1)th question with different order of alter-
natives. Participants were explicitly to be asked to select the
same alternative in the new order.

Based upon your prior knowledge, arrange the sorting

techniques in increasing order of their time complex-

ities (average case scenario).

-Bubble Sort (B)
-Insertion Sort (I)
-Merge Sort (M)
-Quick Sort (Q)

ðaÞ B< ¼ I<M< ¼ Q

ðbÞ I ¼ M ¼ B ¼ Q

ðcÞ M ¼ Q<I ¼ B

ðdÞ B<M<Q<I

We repeat the same question as above, with the same alterna-
tive in new order.

ðaÞ B<M<Q<I

ðbÞ Q ¼ M<B ¼ I

ðcÞ B< ¼ I<M< ¼ Q

Upon completing qualification-filtering survey, participants will
be directed to the task survey to begin indexing concepts to pro-
gramming questions. Every qualified turker is asked to index
Higher level concept(s) and Fine-grained concept(s) for 5 different
questions. Each of participants receives $0.50 upon finishing the
experiment. If participants who failed to do so, they would be
redirected to a page telling them their non-qualifications. Qualified
participants would be redirected to the page showing the consent
form and start the main indexing task survey after filling out the
consent form. The study was hosted on MTurk for 2.5 weeks. There
are 406 turkers attempted the qualifier survey, 149 passed the
qualification filters, and 103 of them completed the indexing tasks.
Each of exam question in the corpus is indexed by at least 2 to 5
experts from the crowd.
4.2. Evaluation metrics

We assumed an effective algorithmwould be able to index more
relevant concepts or at least as many as experts did. In addition, a
good quality algorithm should identifymore key concepts as well as
identify peripheral concepts. To verify our assumptions, we
considered the following measures: Concept Coverage, Concept
Diversity, Concept Distinctiveness & Emphasis and Coherence.

https://www.qualtrics.com/
https://www.mturk.com/mturk/welcome
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4.2.1. Concept coverage
Wedefined the number of concepts indexed for each question as

the concept coverage statistics (Eq. (1)).

coverage ¼ indexed concept
question

(1)

4.2.2. Concept diversity
To gauge concept-indexing quality on exam questions based on

the semantic topic facets generated by the algorithm, we assume
that a meaningful question not only has to achieve high concept
indexing coverage, but also has to encompass as many essential
concepts as possible. We calculated Shannon entropy to estimate
the breadth of semantics in gauging the indexed concept diversity
of a given question (Eq (2)). We used Shannon entropy among
several other diversity measures, such as mean of Euclidean dis-
tance, or standard deviations to measure two entities'separation,
Gini coefficient to measure the disparity, and entropy, the state of
the art measure of variety (Harrison& Klein, 2007) due to the same
measure has been evaluated in similar context (Hsiao & Naveed,
2015; Momeni, Tao, Haslhofer, & Houben, 2013). Thus, concept
diversity is defined as the following where q is the indexed concept
of an exam question, c is a concept, and n is the number of concepts.

EntropyðbqÞ ¼ �
Xn
j¼1

p
�
ci;j

�
logep

�
ci;j

�
(2)

4.2.3. Concept coherence
Since a question is being indexed with more distinct concepts

does not always mean the better quality is achieved. For instance, if
the concept terms are fine-grained concepts that are derived from
the same hierarchy, they essentially represent the same ontological
concepts. Thus, we hypothesized that an effective exam parser will
identify a representative set of concepts to discern crucial seman-
tics. Here is a concrete example with two sets of concept terms
about a same question to illustrate the definition of good quality
concept sets:

Question:“Write an enhanced for loop that iterates through your
ArrayList of decimal numbers and displays their sum to the console.

double sum ¼ 0;

for(Double e: aList)
{

sum ¼ sum þ e;

}

System.out.println(sum);”
4.3. Concept

CA: {SimpleVarible, DoubleDataType, DoubleValue, Varia-
bleInitializationStatement, ForEachStatement, ArrayList, Wrapper-
Class, ArithmeticExpression, ArithmeticAssignmentExpression,

AddExpression, JavaStandardLibraryClass, JavaStandardLibraryObject,
JavaStandardLibraryMethod}

CB: {SimpleVarible, DoubleDataType, DoubleValue, Varia-
bleInitializationStatement, ForEachStatement, ArrayList, Wrapper-

Class, ObjectVariable, ArithmeticExpression,

ArithmeticAssignmentExpression, AutoBoxing, JavaStandardLibrar-
yClass, JavaStandardLibraryMethod}
Both CA and CB had the same concept coverage and diversity.
Both represented a good grasp of concepts in the given question.
Yet, CB was comparably a better quality set to depict the question
than CA. The underlined concepts highlighted the differences be-

tween CA & CB, where the distinct concepts AddExpression and

JavaStandardLibraryObject did not contain any transitive relations
with other concepts in the domain ontology. On the other hand,

ObjectVariable and AutoBoxing in CB appeared to be partOf, hasPart
or relatedTo some other concepts in the domain (i.e. ObjectVariable
is relatedTo ObjectReference, it is also partOf MethodInvocation).
Thus, CB presented higher semantic interrelations, which can be
used to indicate better quality than simple distinct concept fre-
quency counts. In order to capture the concept co-occurrence for a
given question within the corpus, we adopted UMass topic coher-
ence measure (Eq. (3)). Where Q(x, y) counts the number of ques-
tions containing concepts x and y and Q(x) counts the number of
questions containing x in our exams corpus. It is a common mea-
sure for assessing language model based topic coherence by
calculating the pairwise mutual information (Hsiao & Naveed,
2015; Mimno, Wallach, Talley, Leenders, & McCallum, 2011;
Stevens, Kegelmeyer, Andrzejewski, & Buttler, 2012).

scoreUMass
�
ci; cj; ε

� ¼ log
Q
�
ci; cj

�þ ε

QðciÞ
(3)
4.3.1. Concept distinctiveness and emphasis
Based on information theory, we define concept distinctiveness

as how informative the specific concept is for determining the
indexed concepts, versus a randomly selected concept c’ from
ontology (Eq. (4)). For example, if a concept c occurs in all questions,
identifying the concept tells us little about the exam's concept
mixture; thus the concept would receive a low distinctiveness
score. Therefore, we computed Kullback-Leibler divergence
(Kullback & Leibler, 1951), for a given concept c, the conditional
probability P(Tjc) (the likelihood that observed concept c was
generated by latent topic T) and the marginal probability P(T) (the
likelihood that any randomly selected concept c’ was generated by
topic T). By calculating the product of distinctiveness and teachers'
configuration weights P(c), we will obtain the concept emphasis
(Eq. (5)). Such measure has been successfully deployed in detecting
topic model based topical conformity in detecting useful comments
(Mimno et al., 2011), topic saliency to explore large text corpora
themes (Chuang, Manning, & Heer., 2012) and topic sensitivity in
online question answer communities (Zhou, Basu, Mao, & Platt.,
2012).

distinctivenessðcÞ ¼
X
T

PðTjcÞlog PðT jcÞðTÞ (4)

emphasisðcÞ ¼ PðcÞ � distinctivenessðcÞ (5)
5. Evaluation results

To evaluate the proposed intelligent indexing method for pro-
gramming problems, we performed (1) algorithmic evaluation to
measure ExamParser effectiveness in terms of indexed concepts
coverage and quality; (2) content evaluation to examine the se-
mantic approach impacts on exam question content; and (3)
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subjective evaluation by collecting interview feedback from
teachers to understand their concerns and perceived usefulness.
5.1. ExamParser effectiveness

5.1.1. Baselines: experts' differences
We found that, not surprisingly, teachers indexed significantly

fewer concepts than the crowd did (lower coverage), which sup-
ported the claim that teachers tend to point the key concepts for
exam questions. However, we found that even teachers chose fewer
concepts, they were able to achieve significant higher diversity
among those selected concepts than the crowd experts did,
(p < 0.001) per Table 1. The experts' variance suggests that the
crowdmay have indexed several concepts they are essentially close
meaning to one another, while teachers tend to index uniqueness of
the question. The result implies that experts from the crowd may
have attempted to index as more comprehensively as possible. As
we discussed earlier in section 4.2.2, the more doesn't always mean
the better. The best scenario of a indexed question, it must consist
of important concepts as well as secondary ones. Thus, we have to
further look at the automatic indexing effectiveness.
5.1.2. ExamParser indexed more concepts with higher diversity
ExamParser indexed 5.36 concepts per question on average, it

was significantly higher than the teachers, t(75) ¼ 9.465, p < 0.001
(Table 2). It showed that the ExamParser could extract more con-
cepts in general. ExamParser also showed no differences with ex-
perts from the crowd. This demonstrates that ExamParser could
cover as comprehensive as the experts from the crowd. However, as
we discussed earlier in 4.2.2, more concepts did not always repre-
sent a better coverage, if there were a lot repetitions or shallow
concepts, the quantity growth didn't add more value in the se-
mantic level. Thus, we measured the indexed concept diversity to
gauge the comprehensiveness of the concept indexing. We found
that ExamParser outperformed teachers in achieving significant
higher concept entropy, t(75) ¼ 3.433, p < 0.001 (Table 2). In
addition, ExamParser also surpassed experts from the crowd,
tHLC(75) ¼ 7.45, p < 0.001, tFGC(75) ¼ 4.31, p < 0.001. It demonstrated
that the automatic concept indexing method not only extracted
Table 1
Baselines comparisons.

Average Baseline I (Teacher) Baseline II (MTurk)

High-Level Concept Fine-Grained Concept

Coverage 2.35 ± 0.93 6.33 ± 3.05 10.93 ± 7.69
Diversity 3.67 ± 0.44 1.95 ± 1.41 2.01 ± 1.85

Table 2
Concept coverage & diversity.

Average Teacher ExamParser

Coverage 2.35 ± 0.93 5.36 ± 0.17
Diversity 3.67 ± 0.44 4.03 ± 0.86

Table 3
Indexing quality: concept coherence & concept distinctiveness & emphasis.

Average Baseline I (Teacher) Base

HLC

Coherence 2.25 ± 1.84 16.9
Distinctiveness 2.28 ± 0.79 1.74
Emphasis 2.28 ± 0.79 1.74
more concepts, but also extracted more diverse concepts. This is an
encouraging note to traditional paper-based exams courses owing
to the fact that it has always been challenging for teachers to spend
a lot of class time to discuss every single detail of each exam
question. It is common for teachers to focus on selected concepts
(hopefully all key concepts) instead of all concepts. Therefore,
automatic indexing method addresses more comprehensive con-
cepts can systematically provide such concept & question associa-
tions as semantic feedback for exam questions. In addition,
algorithmic indexing method can also be applied in parallel with
human expert's indexing to complement each other as what
teachers may have missed to mention in class. By tracing all these
detail concept & question associations via learning analytics sup-
plies additional learning opportunity allowing students to engage
with realistic and persistent learning performance tracking.
5.1.3. ExamParser made important concepts salient
We have proven that ExamParser can index detail concepts of

exam question semantics. However, did the detail concepts include
essential concepts, in terms of important concepts being recog-
nized from the exam questions, or just a bunch of shallow con-
cepts? To verify the indexed concept quality, we further examined
the extracted concept coherence and the concept distinctiveness to
measure the indexed concept quality. We found that concepts
indexed by ExamParserwere significantly more coherent within the
corpus than they were indexed by experts, t(75) ¼ 11.732, p < 0.001
(Table 3). It was understandable that teacher experts tended to
pinpoint the key concepts of each question instead of listing all
peripheral ones. Thus, not surprisingly, when we looked at the
distinctiveness scores (how informative the indexed concepts are),
we found that teachers actually achieved significantly higher
compared to ExamParser, t(66) ¼ 8.694, p < 0.001. However, there
were no distinctiveness differences between experts from the
crowd and ExamParser, which means automatic indexing method
could perform just as well as experts.

Moreover, EduAnalysis implemented the interactive visualiza-
tion authoring interface for teachers to configure the importance of
indexed concepts, thus preventing crucial concepts from being
missed during exam parsing. Therefore, after configuring the rela-
tive importance weights for questions, we found that emphasis
scores were found significant higher distinction from baseline,
t(66) ¼ 12.529, p < 0.001, where we assumed the distinctiveness of
Baseline I and Baseline II (HLC) have already highlighted the
emphasis. The authoring feature enabled teachers to highlight the
essential concepts of each question, and compliment what algo-
rithms might possibly miss or mis-index. The feature also
empowered the learning analytics to be able to calculate and track
partial credits based on the semantics, rather than individual
grading rubrics provided by instructor.
5.2. Content influences

We consider the following aspects to assess analytics impacts on
domain content: Content Complexity& Content Knowledge Structure.
line II (MTurk) ExamParser

FGC

3 ± 8.59 24.04 ± 14.48 12.91 ± 8.53
± 0.69 1.55 ± 0.49 1.69 ± 0.54
± 0.69 e 11.53 ± 6.06
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5.2.1. Content complexity
According to CS1 course curriculum, depending on the exam foci

topics, we split each exam by three levels of complexities, easy,
moderate and complex. For instance, first exam usually covers
topics from variables, primitive data types, arithmetic operations,
Strings, conditions etc. These topics are usually considered relatively
easy in the entire CS1 curriculum. However, in order to assess
students' knowledge, an early CS1 test usually is devised with a
mixture of difficulty levels questions. Thus, a question comprising
of multiple topics was considered as a complex question in that
exam. We have tabulated two interesting findings (Table 4). Firstly,
baseline I group appeared to have no differences among complexity
levels. It again supported the point that teacher experts tended to
point out key concepts, instead of all concepts. Secondly, Exam-
Parser indexed significantly more concepts in complex questions
than the other two categories (Fig. 6). This result was very
encouraging. More complicated questions were usually the ones
that students made mistakes, which suggested more attention was
demanded. However, as we discussed before, teachers may not
necessarily have the class time to go through details on every single
questions. Even if they did, such as mentioned key concepts of the
tougher questions, the amount of feedback may not be sufficient.
This where the ExamParser can make a difference by supplying
more detail feedback.
5.2.2. Knowledge structure: procedural vs. declarative knowledge
In order to address the cognitive aspects of our approach's

impact on learning content, we analyzed the indexed exam ques-
tions based on their knowledge types, procedural knowledge and
declarative knowledge. A coarse-grained definition on procedural
knowledge explains one knows how to do something; declarative
knowledge approximately defines the knowledge about something.
Thus, we identified the majority of the code writing questions were
to test students' procedural knowledge, and most of the multiple
choices questions were designed to assess declarative knowledge.
However, there were a few exception cases did not follow such
classification. For instance, in one of the code-writing questions,
students were asked to write Java code to “Instantiate an ArrayList
that contains decimal numbers and assign it to an appropriate vari-
able”. The question only involved syntactical tasks of the pro-
gramming language, but excluded the application of syntax to
Table 4
Average # indexed concept by content complexity.

Avg #concept Baseline I ExamParser

Easy 1.943 ± 0.121 4.400 ± 0.541
Moderate 2.318 ± 0.253 4.455 ± 0.443
Complex 2.316 ± 0.410 8.158 ± 0.763

Fig. 6. Average indexed concepts per question by content complexity.
perform further problem solving tasks. Thus, even though it was a
code-writing question, it was classified as declarative question.
Overall, we found 55% procedural questions and 45% declarative
questions in the corpus. Based on the indexed concepts both by
human experts and ExamParser, we found that, both types of
questions had significant higher concepts indexed by ExamParser
than the experts. This was consistent with 5.1.1, where ExamParser
achieved higher coverage. What was interesting to note was that
there were no significant differences between declarative and
procedural knowledge types of questions, no matter who and how
the questions were indexed. It showed the consistency among ex-
perts and the algorithm, which indicated ExamParser's stability.
Although, we anticipated procedural type questions would have
been indexed more concepts due to knowing how to do may
inherently involve some declarative knowledge components in
addition to apply them to solve problems. However, we did not find
such pattern observed. Possible explanations could be declarative
types of questions (i.e. multiple choices) tend to include a range of
meaningful distractor choices to prevent from simple memoriza-
tion tasks. It also explained why there were larger variances in
declarative type of questions compared to procedural ones (Fig. 7&
Table 5).
5.3. Subjective feedback

We conducted a structured interview with two programming
course instructors. Both are currently using Blackboard as course
management platform and both give lectures and paper-based
exams. One teaches medium size of Java courses (20e50 students
averagely) and one teaches large size of courses (>100 students
averagely). We were mostly interested in finding out how do in-
structors analyze students' learning activities outside classrooms if
any. Both instructors provide extra online learning materials (i.e.
problem-solving resources or the sort) for students to perform self-
assessments as non-mandatory resources for their courses. They
encourage students to do more work through the selected online
resources and provide partial credits for their academic perfor-
mance as incentive.

We then allowed both instructors to explore EduAnalysis system
and solicited feedback on the usefulness and potential threats of
current implementation. They were instructed to test on the
Fig. 7. Average indexed concepts per question by knowledge type.

Table 5
Concept coverage by knowledge type.

Concept/question Baseline I ExamParser

Declarative 2.489 ± 1.527 5.531 ± 3.000
Procedural 2.428 ± 0.986 6.336 ± 1.776
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concept indexing procedure for different types of questions. They
tried multiple choices and open-ended questions, and both agreed
that the dynamic concept indexing provided them immediate
feedback on producing more balanced exams. Both instructors re-
ported that they found it convenient to perform one-click to upload
and index exam concepts. They compared the experience with
Blackboard evaluation feature, which requires them to configure
each question one by one. Although the indexing authoring inter-
face is available for every question, instructors considered it as
flexible to assign designated emphasis to accommodate CS1/CS2
exams, or first/final exams. There were two major criticisms from
both instructors: (1) they worried the auto-indexing precision may
not be stable and result in them doing more configurations (which
we proved in previous section, that the ExamParser appeared to be
effective than experts' manual indexing); and (2) the usability was
not conclusive at the moment, at least not until they adopt the tool
for their courses. However, both instructors expressed the current
semantic visual analytics was reasonably useful, and both indicated
extreme interests in using it in their own classes in the future.

6. Discussions and conclusions

In this work, we designed and studied a semantic indexing
method via visual analytics, EduAnalysis., which indexes paper-
based programming problems to sets of concepts. It embeds
intelligent concept indexing support to assist teachers in analyzing
exam semanitc composition in detail. We collected the indexing
ground truths of the targeted set from teachers and experts from
the corwd. We evaluated the effectiveness of the indexing services,
the indexing effects on content and investigated instructors' ex-
periences and perceived usefulness on the system.

We found that current approach could extract significantlymore
and diverse concepts from exams, which enriched more semantic
information. The findings supported our hypothesis that the
intelligent indexing method and interactive visualization interfaces
can facilitate paper-based programming content analysis. Such re-
sults unlock several opportunities to (1) make persistant traces of
learning analytics in semantic level; (2) provide more personalized
feedback for students that is normally difficult to achieve or afford
in a traditional (large) classroom. In addition, we found that
EduAnalysis empowered teachers to configure exam topical
emphasis and the results of indexed concepts appeared to maintain
coherence within exam. It suggested that the proposed ExamParser
approach could potentially make it possible to assign partical
credits by concepts. We also discovered that the ExamParser
indexing effect was especially prevalent for complex content. The
results complemented the cases when teachers could not afford a
lot of class time, but were forced to discuss key concepts on the
tougher problems on a returned exam. Moreover, we also found the
automatic indexing method was consistent with teacher experts in
indexing both procedural and declarative types of questions. Sub-
jective evaluation revealed that dynamic concept indexing pro-
vided teachers immediate feedback on producing more balanced
exams; teachers expressed strong interests in using EduAnalysis for
their own classes. Overall, the semantic enriching approach for
programming problems revealed systematic learning analytics
from the paper exams.

In summary, we tested an intelligent semantic indexing for
paper-based programming problems for orchestrating today's
programming classes, by integrating physical classroom learning
assessment (paper-based exams) to online visual learning analytics.
Results indicated the automatic concept extraction from exams
were promising and could be a potential technological solution to
address a real world issue without tampering teachers' instruction
pedagogy. There were a few limitations under current study setup,
discussions were noted in the following section.

6.1. Limitations

Current exams selection was a sample of CS1 four exams from
first author's home university, which is only a limited pool of
exams. We should consider a wider range of exams and questions,
such as textbook sample exams etc. There were a few evaluation
limitations; such as teacher experts' Cohen Kappa indicated mod-
erate agreement in our baseline I. As a result, the automatic
ExamParser could potentially easily outperform experts. However,
we argued that one of the reasons the inter-raters’ agreement was
low could be due to the nature of indexing challenges and the setup
for experts to pick out concepts from a long list of ontology. In
addition, teachers were used to identifying key concepts even
though they were instructed to be as comprehensive as they could
when indexing. Given that the teachers' ground truth was not
perfectly satisfying, we did not measure indexing error rate at this
moment.

6.2. Future work

In the near future, we need to address the teachers' concerns
and to improve current design and evaluation. We plan to conduct
field studies to collect larger scale of actual classroom usages and
evaluate the semantic learning analytics impacts on students'
learning. For instance, on a returned exam to student, besides
receiving the grademarks, student will receive systematic semantic
feedback based on what kinds of errors they made on the exams.
We anticipate the enriching programming semantics approach will
provide (1) individualized detail conceptual feedback, which nor-
mally can't be done especially in large class size; (2) analytics to
keep persistent traces on students' conceptual growth; (3) oppor-
tunities for students to engage in reflection and self-monitor their
own learning (foster metacognition development). Finally, never-
theless, we will integrate other learning activities for more
comprehensive analysis. More exhaustive evaluation is required.
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