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By means of free fermionic techniques combined with multiple precision arithmetic we study the time
evolution of the average magnetization, #i (¢), of the random transverse-field Ising chain after global
quenches. We observe different relaxation behaviors for quenches starting from different initial states
to the critical point. Starting from a fully ordered initial state, the relaxation is logarithmically slow
described by 77 (t) ~ In” ¢, and in a finite sample of length L the average magnetization saturates at a
size-dependent plateau 77, (L) ~ L~?; here the two exponents satisfy the relation b/a = ¢ = 1/2.
Starting from a fully disordered initial state, the magnetization stays at zero for a period of time until

t = tgwith Inty ~ LY and then starts to increase until it saturates to an asymptotic value

m, (L) ~ LY, with b’ ~ 1.5.For both quenching protocols, finite-size scaling is satisfied in terms of
the scaled variable In /LY. Furthermore, the distribution of long-time limiting values of the
magnetization shows that the typical and the average values scale differently and the average is
governed by rare events. The non-equilibrium dynamical behavior of the magnetization is explained
through semi-classical theory.

1. Introduction

Following the experimental progress in non-equilibrium dynamics of ultracold-atomic gases in optical lattices
[1-11], there are tremendous theoretical efforts aimed at understanding the time-evolution of certain
observables in closed quantum systems after a sudden or smooth change of Hamiltonian parameters. In a
quench process both the functional form of the relaxation and the properties of the long-time, presumably
stationary state are of interest [ 12—69]. In homogeneous systems the order parameter has an exponential
relaxation, while the entanglement entropy between a subsystem and its environment grows linearly in time
after a quench. These phenomena have been explained in the frame of a semi-classical theory. According to the
theory, during the quench process quasi-particles are created uniformly in the sample and move ballistically
[18,36,41,42]. Concerning the long-time limit of the relaxation process integrable and non-integrable systems
show different behaviors. Non-integrable systems are expected to thermalize [16-26], but there are some
counterexamples [62—64]. On the other hand, integrable systems in the stationary state are generally described
by a so-called generalized Gibbs ensemble, which includes all the conserved quantities of the system. Recently it
has been observed that in certain models both local and quasi-local conserved quantities have to be taken into
account to construct an appropriate generalized Gibbs ensemble [57-61, 65-69].

In a system with spatial inhomogeneities, such as defects [70-76], quasi-periodic or aperiodic interactions
[77-79], the non-equilibrium relaxation process becomes qualitatively different from the homogeneous case. In
the semi-classical picture the quasi-particles are also inhomogeneously created and they move in a complex
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diffusive way. With randomness the eigenstates of the Hamiltonian can be localized, which leads to Anderson
localization [80] in non-interacting systems or many-body localization [81] if the particles are interacting; in
these cases the quasi-particles generally move only finite distances away from their place of creation or follow
some ultra-slow diffusive motion. As a result the non-equilibrium long-time stationary state of disordered
systems retains memory of the initial state and therefore thermalization does not take place [82].

Concerning the functional form of the relaxation process after a quench in random quantum systems, there
have been detailed studies about the time-dependence of the entanglement entropy [83—87]. If the system
consists of non-interacting fermions—such as the critical XX-spin chain with bond disorder or the critical
random transverse-field Ising chain—the dynamical entanglement entropy grows ultraslowly in time as

S{t)~alnlnt, (1
and saturates in a finite system at a value
S() ~bln?, )

where ¢ denotes the size of a block in a bipartite system and can be chosen to be proportional to the size of the
system L [84, 87]. These scaling forms can be explained by a strong disorder renormalization-group (SDRG)
approach [88]. Recently, the SDRG method, which was designed as a ground state approach, has been
generalized to take into account excited states [89-91]; this generalized RG method is often abbreviated as
RSRG-X [89]. By this generalized SDRG method the ratio of the prefactors in (1) and (2) is predicted as

b/a = )y, where 1, = 1/2isacritical exponent in the non-equilibrium process and describes the relation
between time-scale and length-scale as

Int ~ LY, 3)

For interacting fermion models due to many-body localization the time-dependence of the dynamical entropy is
S(t) ~ In¥twith w > 1, while the saturation value follows the volume law, S(¢) ~ ¢ [86].

In the present paper we study the relaxation of the order parameter of the random transverse-field Ising
chain after a quench to the critical final state and into a ferromagnetic state. We consider relaxation processes
from an initial ferromagnetic state and from a fully paramagnetic state by a sudden change of the strength of the
transverse field. To circumvent numerical instability as observed in previous calculations for large systems using
eigenvalue solver routines [84, 87], we use multiple precision arithmetic to study the time-evolution through
direct matrix multiplications.

The rest of the paper is organized as follows. The model and the method for calculating the local
magnetization are described in section 2 . The numerical results for relaxation of the magnetization following
different quench protocols are presented and discussed in section 3. A summary is given in section 4. Details of
the time evolution of Majorana fermion operators are given in the appendix.

2. The model and the method

The model we consider is the random transverse-field Ising chain of length L defined by the Hamiltonian:
= 1L
H=—=3Jiofoi, — =y hidf, 4)
24 235

in terms of the Pauli matrices 0% at site i. In this paper we will consider open chains with free boundary
conditions. The couplings, J;, and the transverse fields, h;, are position dependent random numbers taken from
the uniform distributions in the intervals [0, 1]and [0, 1] A, respectively. The strength of the random transverse
field, h, is time-dependent; for ¢ < 0 its value is hy and for ¢ > 0 it changes suddenly to h (=h). The initial and
the final Hamiltonians are denoted by H, and H, respectively. The system for ¢ < 0 is prepared in the ground
state [ (") of the initial Hamiltonian; after the quench for ¢ > 0 the system evolves according to the final
Hamiltonian 7 and the state of the system is described by [Wo(t)) = exp(—1H1)|[¥L”), which is generally not an
eigenstate of . Here and throughout the paper we denote the imaginary unit /—1 by 1to avoid confusion with
the integer index i and set /z = 1. To calculate the time-dependent expectation value A(f) of an observable A, we
work in the Heisenberg picture using Ay () = exp (HHA exp(—1Ht) and evaluate A (t) = (\I/f)o) |Ay () |\11E)0)>.
Time-dependent matrix elements and correlation functions are calculated in a similar way.

The standard way to deal with the Hamiltonian of the transverse field Ising chain is the mapping to spinless

free fermions [92, 93]. The spin operators o;”** are expressed in terms of fermion creation (annihilation)
operators ¢;' (c;) by using the Jordan-Wigner transformation [94]: ¢,/ = a; exp [771237 la]*aj_ ] and

c; = exp [771237 la]*aj_ ]a,»_, where a]-i =(0j £ 10{ ) / 2. The Ising Hamiltonian in (4) can then be written in a
quadratic form in fermion operators:
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L . 1 1 L—1 ) N
H= -, (cg G- 5) — 2 — el + i )
i=1 i=1

In this paper we are interested in the relaxation of the local order parameter (magnetization), 1 (t), at a position
I. Following the method by Yang [95], for a given sample of large length L we define m1(¢) as the off-diagonal
matrix element of the longitudinal magnetization operator: m; (t) = (U |07 (£)|¥{?), where |U{?) is the first
excited state of H). In the free-fermion representation we introduce two Majorana fermion operators, d,;; and
dy; at site i with the definition:

1= c,-T + ¢
i = — 1(c] — ), (6)
which obey the commutation relations:
a” =a;, {ai a;} = 26;. (7)
The spin operators are then expressed in terms of the Majorana operators as:

21-1

of =1 'I] aj. ®)
j=1

The calculation of the magnetization, m(f), involves the evaluation of the determinant ofa 21 x 2I
antisymmetric matrix C with the elements being the correlation functions C;; = <\I/g°>|ai (t)d; (1) |\I/f)0)>, for
i <j<2l,Ciy= (IPV)a; )| ¥),and Cji = —C;;. For details see the appendix of [78].

For arandom system any physical quantity requires an averaging over disorder realizations. We denote the
disorder average by an overbar; accordingly, the average local magnetization is expressed as

m(t) = (Vo7 () [0”). ©)

2.1.In equilibrium

In equilibrium (i.e. for # < 0), the critical behavior of the local magnetization 1 (0) has been analytically studied
by the SDRG method [96], and the random quantum critical point (at by = h. = 1) is found to be controlled by
an infinite-randomness fixed point [88, 97]. In the thermodynamic limit (L — ©0) one needs to discriminate
betweenbulk (I/L = O(1)) and surface (I = O(1)) points, and the corresponding average magnetization is
denoted by 77 and n°, respectively. In the ordered phase, hy < h. = 1, we have 77 > 0, which vanishes at the
critical pointas 71 ~ (h. — ho)? with 3 = (3 — /5) /2. The surface magnetization follows similar behavior,
however with a surface exponent J; = 1. At the critical point of a finite system the scaling of the average
magnetization is governed by rare samples (or rare regions), which have the magnetization of order of O(1),
whereas in typical samples the magnetization behaves as 11y, ~ exp(—A+/L). The fraction of rare events scales
as Bare ~ L7, and the same holds for the average magnetization: #71 ~ L™*; here the exponent x = (/v is
related to the critical exponent v = 2 of the average correlation function. Similarly, the scaling behavior of the
surface magnetization involves the exponent x; = [, /v. Concerning equilibrium dynamical scaling at the
infinite-randomness fixed point, it is extremely space—time anisotropic so that the typical length, &, and the
typical time, 7, is related as

InT ~ €Y, (10)
with an exponent ¢ = 1/2.

2.2. Out-of-equilibrium

Some out-of-equilibrium properties of the random transverse-field Ising chain have been predicted by the
RSRG-X approach [89-91]. For a quench to the critical state, i.e. b = h, in the final Hamiltonian, the relation
between the typical length scale and the typical time scale is in the same form as (10) in the equilibrium case and
even the corresponding exponents are the same ¢ = ), = 1/2 (see (3) and (10)). However, available
numerical results [84, 87] for the relaxation of the entanglement entropy are not in complete agreement with the
RSRG-X prediction.

Here we focus on the relaxation of the magnetization in the random chain, which to our knowledge has not
been previously studied. The crucial point of the method is the calculation of the time evolution of the Majorana
operators introduced in (6), which can be given in a closed form, provided the Hamiltonian is expressed in a
quadratic form in terms of fermion operators, like the form in (5). The calculation for a general quadratic
Hamiltonian is described in the appendix. Defining a(t) as a vector with components 4, (¢) for
m =1, 2,...,2L, we can express the time evolution of the Majorana operators as

3
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a(t) = P(1)a(0), (11)
where the 2L x 2L matrix P(t) is given by
P(t) = exp(Mt), (12)
with an antisymmetric matrix M defined in (A.5). For our model given in (5) the matrix M corresponds to
o ;
—h 0
M = — _th Pg . (13)
E ok
—h 0|

To evaluate the matrix exponential in (12), one can use spectral decomposition of M by diagonalizing the large
2L x 2L matrix. For disordered systems, because of some extremely small eigenvalues standard eigenvalue
solvers would fail to converge for some large-size samples, leading to significant numerical errors. This problem
was observed in our preparatory work. Therefore, we reformulated our numerical procedure to avoid using any
eigenvalue solver routine and instead solve the time-evolution problem by matrix multiplication using multiple
precision arithmetic. In our numerical procedure we first evaluated the matrix exponential at a unit time step,
t« = 1, using the Taylor expansion:

0 n

P(1y) = exp(Mry) = > o, (14)

n=0 M-

and calculated the sum of the first hundred terms with multiple precision arithmetic; the absolute value of the
last term of this sum is less than 2!%° /100! ~ 1.3 x 107! since the eigenvalues of M are in the range [—2, 2]
[98]°. The truncation error in (14) is therefore sufficiently small even for octuple precision. For larger time steps
we used theidentity: P(#)P(t;) = P(# + t,) anditerated itwith = t,, startingfrom = #; = 1 untila given
time step ¢, = 2". We have checked the accumulation of errors by the condition that the matrix P should be
orthogonal. While calculating the dot products of the arrays of P, the off-diagonal products have to be zero. The
sum of the absolute value of the numerically calculated off-diagonal dot products are found to be less than 107,
even after n = 250 iterations, which represents the longest time in our calculation.

3. Relaxation of the magnetization

In this chapter we present our numerical results for the relaxation of the magnetization of the random
transverse-field Ising chain from two different initial states. In the first part the initial state is fully ordered with
ho = 0 for the parameter of the transverse field; in the second part we consider a fully disordered initial state
with 1/hy = 0. Using the method described in section 2 we have considered time dependence of the bulk
magnetization in finite chains of length L = 16, 32, 64, 128 and 256 over a time up to t,,, = 22°%, i.e.

In(In t,,,¢) & 5.15. The bulk magnetization #1,in an open chain was taken in the center of the chainat [ = L/2.
For each system sizes about 10 000 samples were considered to obtain the disorder average. We have used
double-double or quadruple precision arithmetic for our numerical study and also in some cases checked the
accuracy by comparing the results in the large-time limit with those obtained with octuple precision.

3.1. Relaxation from a fully ordered initial state
We first consider quenches starting from a fully ordered initial state with iy = 0.

3.1.1. Ferromagnetic final state
Before we study quenches to the critical point, we first consider the situation in which the system is quenched to
a state within the ferromagnetic state with 1 < 1. In figure 1(a) we present the time dependence of the average
magnetization after a quench to 4 = 0.5 for different chain lengths from L = 16to L = 128. As seen in this
figure, there is first a decay, followed by a plateau extending to time t4, after which (¢ > #4) the magnetization
decays sharply before it saturates at a second plateau; the delay time t4 is L-dependent and scales approximately
asIn(Intg) = InL + const, as shown in the inset of figure 1(a). Similar characteristics is observed for other
values of h < h, (shown in figure 1(b)) when the final state is within the ferromagnetic phase.

To explain the behavior observed in figure 1 we recall that according to a semiclassical theory [18, 36, 41, 42]
the local magnetization at a given site decreases in time if an odd number of quasi-particles, created by the
quench, pass through the site. In a random chain the motion of the quasi-particles is limited within a finite

> The eigenvalues of the operator H, in [98] are the same as those of M in this paper.
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Figure 1. Relaxation of the average magnetization after a quench from a fully ordered state to states within the ferromagnetic phase. (a)
Relaxation for different system sizes with the final parameter of the transverse field h = 0.5; the largest error in these data sets is given
by the error bar (black). The inset shows the delay time t4 when the inflection point of the second decay occurs, as a function of the
system size L; the slope of the straight line is 0.94. (b) Relaxation in a chain of length L = 128 to final states with various values of

h < linthe ferromagnetic phase and also with the critical value h = h, = 1; the first plateau seen in the data for quenches toa
ferromagnetic phase with small 1 — / is smeared out as the final state approaches the critical point with i = 1. The largest errors in
each data set are indicated by the error bars.
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Figure 2. Relaxation of the magnetization after a quench from a fully ordered state to the critical point. (a) The straight line indicating
the decay in the transient region has a slope a = 0.14. The long-time limiting values as a function of L are shown in the inset in alog—

log plot; the slope of the straight line is given by b = 0.069. The largest errors in each data set are given by the error bars (red). (b) A
scaling plot of the data in (a), with the parameters b = 0.069 and ¢y = 0.5.

localization length & (h), which depends on /and grows as the critical point is approached; thus the decay of
the magnetization stops at some point of time when the travel distance of the quasi-particles is reached, which
explains the presence of the first plateau and why this plateau is smeared out when h approaches the critical point
(figure 1(b)). The second decay of the magnetization is related to the lowest excitation. In the ferromagnetic
phase, the lowest energy gap vanishes exponentially with the system size as €y (L) ~ exp(—L/¢),  being the
correlation length, thus the corresponding time scale tg ~ 1/¢, grows exponentially with L, as shown in the
inset of figure 1(a). At the critical point, the lowest excitation vanishes as ¢y (L) ~ exp(—AL'/?) (see (10)); thus,
different relaxation behavior is expected for a quench to the critical point and this is discussed in the following
subsection.

3.1.2. Critical final state

Relaxation of the average magnetization from the fully ordered initial state to the critical point is shown in
figure 2 for various chain lengths. Here the first plateau observed in a ferromagnetic final state is missing, and
instead there is a transient region showing a linear relation between In 77 (¢) and In(In ¢) with aslope a = 0.14,
corresponding to alogarithmically show decay:

() ~ (Int)~?. (15)

This transient regime terminates at a delay time, 4 (L), which is an increasing function of L. For t > t4(L) the
magnetization decays faster and then saturates to a plateau with large-time limiting value 777, (L), which has a
power-law L-dependence as
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Figure 3. (a) Distribution of the large-time limiting values 11, of the dynamical magnetization after a quench from a fully ordered state
to the critical point for different chain lengths L. (b) A scaling plot for the data in (a) with b = 0.069.

a1, (L) ~ LY (16)

the exponent b is estimated as b = 0.069 in the inset of figure 2(a). Since the two expressions in (15) and (16)
should matchat t = t4(L), wearrive at the relation: In t4 (L) ~ L'/®. Comparing with (3), we have ¢, = b/a,
agreeing, within error bars, with the RSRG-X prediction: 1, = % = 0.5. This result s illustrated in figure 2(b)
in which the scaled magnetization, L' () is plotted against the scaling combination In ¢ /L"; with the
exponents measured in figure 2(a) we obtain an excellent scaling collapse. Here we comment on the logarithmic
decay described in (15). A similar logarithmic decay is also present in the XX-chain with bond disorder, where a
larger exponenta = 2 is found [87, 90]. The critical states of the random-bond XX-chain and the random
transverse-field Ising chain are both governed by an infinite-randomness fixed point in SDRG language. The
slower decay (corresponding to a smaller exponent a) for the random transverse-field Ising chain is due to
effective spin clusters formed during renormalization. In the semi-classical picture [42], relaxation of the order
parameter is contributed by quasi-particles created during the quench; a spin is flipped if the trajectory of a
quasi-particle crosses the given site at a later time. For the relaxation of a larger cluster more quasi-particles are
needed, which takes more time. The magnetic moment of an effective spin cluster of the random transverse-field
Ising chain scales as y ~ L%, with a fractal dimension dy > 0. The process of formation of spin clusters is
missing in the SDRG procedure for the XX-chain, where only random singlets are formed, corresponding to

dg = 0. The different SDRG procedures for the Ising chain and the XX-chain lead to different functional forms
of the decay.

In a random system the distributions of some observables are also of interest. Here we focus on the
distributions of the large-time limiting values m1, of the magnetization. In figure 3(a) we plot the distribution of
the logarithmic values In(r,) for t 2 exp(exp(4.5)) for different system sizes. The distribution of the
logarithmic variable is broad and becomes broader with increasing L. A good scaling collapse can be obtained in
terms of the scaled variable y = In(m,) L™, thus

Py(Inm,) = L~*P(In(m,)L™), (17)

asillustrated in figure 3(b), with an estimated exponent o = 0.069 equaling the exponent b in (16) for the scaling
of the average value. Furthermore, the typical value m,'? is exponentially small and scales as m,’? ~ exp(—CL?),
where Cis a constant; comparing with the average value in (16), it is then obvious that the average value is
determined by rare events (or samples), in which the large-time limiting value of the magnetization is

m, (L) = O(1). Consequently, the average value of m,,(L) is determined by the behavior of the distribution
function in the limit of y — 07, which is assumed to be in a power-law form:

P(y) ~ (=), (18)
with x = 0inour case shown in figure 3(b). The average of 11, is then given by
iy = L° f dm, P(In(m,) L)

~ L [ dmy [inGmp) L6~ L0005 (19)

thus, with &« = band y = 0 we recover the relation m, ~ LY as givenin (16).

6
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Figure 4. (a) Time-dependent average magnetization in finite chains after a quench from a fully disordered state to the critical point. In
the inset the large-time limiting values are shown as a function of L in alog-log plot. The slope of the straight line is given by b’ = 1.46.
(b) A scaling plot of the data in (a) with the parameters b’ = 1.46 and 1) = 0.5.
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Figure 5. (a) Distribution of the large-time limiting values of the dynamical magnetization after a quench from a fully disordered state
to the critical point calculated for different chain lengths; inset: a scaling plot, assuming In 1, ~ L% with o/ = 0.5. (b) The
asymptotic behavior of the scaled distribution in terms of y = Inm, //L in the limit of y — 0~. The red solid line corresponds to

P(y) ~ (=p)*

3.2. Relaxation from a fully disordered initial state
Now we turn to the case in which the system is quenched from a fully disordered initial state (hy = 00) to the
critical point (h = 1).

Looking at the time-dependent average magnetization for various system sizes plotted in figure 4(a), there is
aperiodoftime 0 < t < t4(L) justafter the quench where the magnetization stays negligible and practically
corresponds to the initial magnetization before the quench. After this delay time 4, which is L-dependent, the
average magnetization starts to increase rapidly and in the large-time limit it approaches a plateau, the value of

which has a power-law L-dependence:

(L) ~ L7, (20)

with b’ = 1.46, as measured in the inset of figure 4(a). Using the scaled variables #L" and Int /LY, weachievea
good data collapse for the time-dependent magnetization in the scaling plot shown in figure 4(b). The increase of
the average magnetization in the disordered chain after the quench is unexpected since semiclassical theory
predicts a monotonous decrease of the dynamical magnetization in a homogeneous system.

To understand the mechanism behind the increase of the average magnetization, we have studied the
distribution of the large-time limiting values 11,(L), which is presented in figure 5(a). The distribution is
extremely broad even on the logarithmic scale and it gets broader with increasing system size; in terms of a
scaling combination y = Inm, L™ with o’ = 0.5, the inset of figure 5(a) shows a scaling plot with good data
collapse. We can then conclude that the typical value scales with Las m ;,yp ~ exp(—C L%y and is much smaller
than the average given in (20). Thus also in this quench process the average value is determined by rare events, in
which the large-time limiting values of the magnetization are m, (L) = (O(1). Similar to the situation fora
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quench from an ordered state as discussed in section 3.1, we have found a power-law form P(y) ~ (— y)X’ for
y — 0~ with an estimated exponent x’ = 2.0 (shown in figure 5(b)). Thus, we have found the size-dependence
of the average magnetization in (19) as 7, (L) ~ L0 — 115 \which agrees with (20) within the
error bars.

The scaling behavior of the large-time limiting value of the dynamical order parameter can be better
understood if the boundary site (I = 1) of an open chain is considered. The large-time limiting value of the
surface magnetization, m,, can be exactly calculated (see equation (16) in [78]):

L
my = D1 Y P ()H V(). @n

j=1
Here:

=1 7.
&)= o] 2,

i=1 Ji

L-11 h: 212
o()=|1+>]] (—1) ) (22)

I=1j=1 Jj

For ®{%( 7) in the large-h, limit we have PO () = b1,,j» where I,,, is the position of the largest transverse field in
the sample®. Thus

In—1 .
my = [®(1)]? I1 [%]; (23)
j=1 \Jj
where @, (1) = my, is the equilibrium value of the surface magnetization of the chain [99, 100], evaluated in the
final state, i.e. with b = h.. Itis known that the typical value of m_ at the critical point scales as exp(— CL/?)
[100, 101] and the same scaling form holds for m;; thus the proper scaling combination for mls, is
y = In(my) L~'/2, which in the same form for bulk spins discussed above. Concerning the scaling behavior of
the average value m_;, itis dominated by rare events. As described in [100], there is a close analogy between the
random transverse-field Ising chain and a one-dimensional random walk: to a given sample with a set of
couplings J;, and transverse fields /;, i = 1, 2, ... L, one can assign a one-dimensional random walk which starts
at the origin and takes consecutive steps, the length of the ith step being In (h; /J;). For a rare realization of m;

eq’
the associated random walk has a surviving character, i.e. it stays at positive position for all steps. Concerning 1,

here for a rare realization both m,, and the product Hﬂ-”gl (%) should be of order of O(1); in the language of
]

random walks, this means that the walk is surviving and returns after /,,, steps. This particular event has the
probability: P(l,,) ~ I, /2(L = 1,2 and its average value scale as: >, Pl / L ~ L3/2 which means that
m_;(L) ~ L73/2.The numerically observed scaling behavior for the bulk magnetization in (20) is similar to

this form.

4, Conclusions

In this paper we have studied numerically the time dependent magnetization of the random transverse-field
Ising chain after a quench. In order to obtain accurate numerical results we have mainly performed matrix
product operations with multiple precision arithmetics in our calculations, instead of any eigenvalue solver
routine. In this way we obtained our finite-size results up to length L = 256 free from numerical instability. We
note that some problems with numerical instability using eigenvalue solvers occurred when studying the
entanglement entropy in large systems like L = 256 [84, 87].

For a quench from a fully ordered initial state to a state within the ferromagnetic phase, the average
magnetization is shown to relax first to a plateau value, followed by a second relaxation after a delay time
tq ~ exp(cL) toasecond plateau value. This second relaxation is attributed to quasi-localized modes which are
present in finite systems in the ferromagnetic phase. Both plateau values are #-dependent, and finite because in
the free-fermionic picture the emitted quasi-particles are localized and travel only a finite distance, which
reduces the initial order parameter by a finite fraction only. This behavior is similar to that observed in the
Aubry—André model when the quench is performed to the localized phase [79].

When the system is quenched from a fully ordered initial state to the critical finale state, the relaxation of the
average magnetization is logarithmically slow (see (15)), and the large-time limiting value decays as a power of L
(see (16)). Between the time scale () and the length scale (L) we have found the same relation as in equilibrium,

6 It can be seen in [100], by solving the eigenvalue problem in equation (2.2) with J;=0,i=1,2,...,L.
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Int ~ /L, aspredicted by the RSRG-X approach [89-91]. We have also studied the distribution of large-time
limiting values of the magnetization: the typical value decreases exponentially with the system size as
exp (— CL%), more rapidly than the average value, which decays as a power-law and is determined by rare
realizations. The relaxation process after the quench can be explained by the diffusion of quasi-particlesin a
random environment; the travel distance (¢) of the quasi-particles within time ¢ scales like In(¢) ~ Je.

In a quench process from a fully disordered initial state to the critical point, one observes a delay time,
tq ~ exp(CIL'/?),in which the average magnetization is negligible, and for t > t, a rapid increase of the average
magnetization toward an asymptotic large-time limiting value, which has a power-law L-dependence (see (20)).
The distribution of the large-time limiting magnetizations shows that the typical and the average values scale
differently, and the average is determined by rare events. Qualitatively and even quantitatively similar behavior is
found for the time dependence of the surface magnetization, which has exact scaling arguments. It has been
explicitly shown that there are rare samples, in which after a delay time a stationary surface magnetization of
order of O(1) develops. These rare samples will then dominate the average value. Such a phenomenon is similar
to phase ordering dynamics in classical systems [102], but not expected in closed homogeneous quantum
systems.
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Appendix. Time evolution of Majorana operators in quadratic fermionic systems

Let us consider a general Hamiltonian, H, which is quadratic in terms of fermion creation, c,j', and annihilation,
¢y, operators and is given for ¢ > 0 as:

L
" 1 . .
H = Z I:Ck'AleI + E(Cki BleII + h.C.)]. (A1)
k=1
Here Ay = (A)y = A and By = (B)y = — By arereal numbers, and k, [ are the sites of a lattice. In the initial

state, i.e. for t < 0, the parameters of the initial Hamiltonian (H () are different, say A,Elo) and B,EIO), and the
ground state of the initial Hamiltonian is denoted by [¥{").
For ¢ > 0 the Heisenberg equation of motion for the operators ¢ y (¢) and c,i o (t) are given by

d + .
T = 1[H, ¢ )] ie.

d
Eck,H(t) =—1) [Auau() + BszlTH(t)],
1

d . .
(= 1> [Ancy (®) + Bucu ()], (A2)
!

which are linear since H is quadratic. For the Majorana fermion operators d,,_; and dyy at site k as defined in (6)
the time evolution is given by:

L () = — S [Aw — Bl 1an (o),
1

dr
d . .
Eazk(t) =>"[Au + Bul()1da—1(0), (A.3)
1
which can be rewritten as
d 2L
_dm(t) = *Zanén(t)- (A4)
dt n=1
witha 2L x 2L antisymmetric matrix M defined by
Mo—101=— Majok—1 = — (A — Br),
Mok = My—12k—1 = 0. (A.5)
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The time dependent Majorana operators are related to the initial operators through

2L
am(t) = men () (0), (A.6)

n=1

with B,,,(0) = - Inserting (A.6) into (A.4) we obtain a set of differential equations for the time evolution of
the parameters:

2L
B ®) SN P (s (A7)
dr k=1

with the initial condition B,,,,(0) = 8,,,,- The solution as a shorthand matrix notation is given in (12), in which
the exponential can be evaluated by using the spectral decomposition of M. Indeed, the eigenvalues of M are
given by the energies of the free-fermionic modes of H in (A.1), which can be seen by forming M? and
comparing it with the results in [92] . Details of the calculation using the spectral decomposition of M are
presented in the appendix of [78].
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