Proof by model: a new knowledge-based reachability analysis methodology for Petri net

Daniel Yuh Chao, Yen-Ping Chi, Tsung-Hsien Yu* and Li-Chit Yu
Department of Management Information Systems, National Chengchi University, No. 64, Section 2, ZhiNan Road, Wenshan District, Taipei City 11605, Taiwan, R.O.C
*Corresponding author. Email: yutsunghsien@gmail.com

AND
Mike Y. J. Lee
Department of Management Information Systems, National Chengchi University, No. 64, Section 2, ZhiNan Road, Wenshan District, Taipei City 11605 and Department of Business Administration, China University of Technology, No. 56, Section 3, Xinglong Road, Wenshan District, Taipei City 11695, Taiwan, R.O.C.

[Received on 15 June 2015; revised on 22 December 2015; accepted on 7 April 2016]

Abstract

To solve the state explosion problem in the reachability analysis of Petri nets, Chao recently broke the NP (nondeterministic polynomial time)-complete barrier by developing the first closed-form solution of the number of Control Related States for the k th-order system. In this paper, we propose a new proof methodology known as proof by model, which is based on the validated information of the reverse net, to simplify and accelerate the construction of the closed-form solution for Petri nets. Here, we apply this methodology to the proof procedure of Top-Right systems with one non-sharing resource placed in the top position of the right-side process. The core theoretical and data basis are that any forbidden (resp. live) state in a Petri net is non-reachable (resp. live) in its reverse net; and the validated information of the Bottom-Right system, the reverse net of Top-Right.

Keywords: control systems; discrete event systems; flexible manufacturing systems; petri nets.

1. Introduction

Petri nets (PNs) have been widely applied for modelling and analysing flexible manufacturing systems or resource allocation systems (Ezpeleta et al., 1995; Chao, 2005, 2006, 2011a,b,c, 2012; Lee et al., 2005; Uzam \& Zhou, 2006; Shih \& Chao, 2010; Zimmermann, 2015) Reachability analysis (Ichikawa et al., 1985; Hiraishi \& Ichikawa, 1988; Lee et al., 1990; Ferrarini, 1994; Kostin, 2003; Mizuno et al., 2007; Miyamoto \& Horiguchi, 2011) can be used to verify system properties, such as liveness, boundedness and reversibility. However, the large number of states generated (called the state explosion problem) is the persistent problem of using PNs to model various systems. Lee et al. (1990) have shown that the reachability problem (i.e. whether a marking is reachable) is NP-complete for even a live and safe Free Choice net. It is of theoretical interest and significance to find the exact number \breve{R} of the reachable states of the research target PNs, because previous approaches have only found bounds (e.g. TimeNet tool; Zimmermann 2015). Another challenge of reachability problems is to know how to narrow the computation time to obtain reachable states and other information, which is an NP-complete problem,
within a reasonable waiting time for a large PN. To the best of our knowledge, there is nothing in the literature that addresses such an issue. This problem is highly difficult, even for a marked graph. We (Liang \& Chao, 2012; Chao, 2014) have successfully solved the problem by the construction of a closed-form solution for particular PNs.

Chao (2014) defined the k th-order system (defined in Definition 1) which is the simplest class of $S^{3} P R$ (Systems of Simple Sequential Processes with Resources); by applying the concept of the complete reachability graph, split the reachability graph of the control net into reachable, forbidden, deadlock non-reachable and non-reachable+empty-siphon states (below, we call all of the different types of states Control Related States); integrating graph theory and combinatorial mathematics, pioneered the first closed-form solution to compute the number of Control Related States for a k th-order system. Notably, this solution reduces the computation time for the exponential increase $\left(O\left(2^{k}\right)\right.$) of a k th-order system's Control Related States to intra-seconds. We have also extended and applied Chao's (2014) key methodology in enumerating the number of Control Related States of Top-Right (Chao \& Yu, 2013) and Bottom-Right (Chao \& Yu, 2014) by the viewpoint of letting the left process be the master control process.

Chao (2015) showed that it needs an additional 10 controllers for the deadlocks prevention policy of a fifth-order system. Due to the contributions of the closed-form solution listed above, we Chao \& Yu (2015b,c) propose a new concept, the moment to launch resource allocation (MLR), to launch a partial deadlock avoidance/prevention policy for a real-time and large system to save the cost of deadlock prevention policy for reducing both the number of controllers and their allocation time. Presently, we can use the future deadlock ratio of the current state (i.e. the number of deadlock states/the number of reachable states), which can be derived in real-time by closed-form formulae, as the indicator to launch resource allocation.

However, the main problem is that without a knowledge-based relationship between PNs, both for the construction of a closed-form solution and for structural analysis-based deadlock prevention policy by siphon computation, N different structure nets need N times the independent analysis efforts. This is an important research issue for real-time, dynamic resource allocation systems because the new allocated resource creates a new net structure, new reachable states and also the new deadlock states derived from the new reachable states. Besides, the innovation of robot systems, Internet of Things and cloud computing system will let N be a very large number; gradually, even an unlimited number. However, few studies have been conducted on knowledge-based analysis for PNs. Furthermore, we also found that the complicated proof procedures by siphon concept are barriers to comprehend the whole methodology in Bottom-Right (Chao \& Yu, 2014). We need a more brief and theoretical proof procedure to simplify the construction of closed-form formulae for more complicated systems.

To solve the problems listed above, we propose a new proof methodology called 'proof by model'. Chao (2014) showed the relationship of forbidden and non-reachable states between a PN and its reverse net in Lemmas 1 and 2. Based on Lemmas 1 and 2, in this paper we first prove that a reverse state of a live state in a PN is also a live state and that the number of live states in a PN and its reverse net are the same in Theorem 2. Here, we construct the knowledge-based analysis methodology for the construction of a closed-form solution of PNs presently based on Lemmas 1 and 2 and Theorem 2 and validated closedform solution information of its reverse net. According to this methodology, to construct the closed-form solution, we can directly omit the effort of the computation for live states based on Theorem 2. We also show how to apply this methodology to the theoretical proof procedure marked by 'proof by model'. Here, we do not redo the whole construction effort of the closed-form formulae of the Top-Right system purely according to structure analysis by the siphon concept again.

The approach is explained as follows. Let \breve{R}, L and F be the number of reachable, live and forbidden states of a k th-order system, respectively. Chao (2014) proved that the total number of states in a k thorder system is 3^{k}; the number of non-reachable states is $3^{k}-\breve{R} ; F=\breve{R}-L$. For Bottom-Right (denoted as B in this section), we have proven that the number of reachable states in $B=2 \breve{R}+\Theta$, where Θ is the number of non-reachable markings in a k th-order system that are reachable states in B; the number of live states is $2 L+A+C$, where A (resp. C) is the number of non-reachable (resp. forbidden) markings in a k th-order system that are live states in B. In Theorem 2, we prove that a PN N and its reverse net N^{r} have the same number of live states and that the live states in N are exactly the reverse states of live states in N^{r}. Hence, applying 'proof by model' with the given and validated closed-form solution information of N^{r} to compute the Control Related States of N can allow us to only focus on reachable and deadlock states due to $F=\breve{R}-L$, where L is known and validated.

To identify N and N^{r} clearly, we will investigate the proof procedure of the Top-Right k th-order system as the case study. In Appendix C, we apply our methodology to a Top-Left k-net system, which is more complicated and has a different net structure to the Top-Right system.

The rest of the paper is organized as follows. Section 2 presents the definition of a variant $k t h$-order system and the closed-form solution of k th-order system's Control Related States. In Section 3, we show the known and validated characteristics of the Bottom-Right kth-order system proven in Chao \& Yu (2014). Based on the results obtained and the methodology applied in Sections 2 and 3, we list the proof procedures of the closed-form solution of Control Related States in a Top-Right system mainly by 'proof by model' in Section 4; partial regular proof procedures are listed in Appendix B. Finally, Section 5 presents the paper's conclusions. Appendix A presents the preliminaries concerning PNs, which is optional for experts in PNs. In Appendix C, we apply our methodology to a Top-Left k-net.

2. The closed-form solution of Control Related States of kth-order systems

Here, we redefine the k th-order system (Chao, 2014) with one non-sharing resource place, in which each resource place carries only one token for different structure systems.

Definition 1 A variant k th-order system is a subclass of $S^{3} \mathrm{PR}$, with k resource places $r_{1}, r_{2}, \ldots, r_{k}$ shared between two processes N_{1} and N_{2} and one non-sharing resource place $r_{\text {gen }}^{\prime}\left(=r^{*}\right)$ used by an operation place p^{*} in p_{2}.
(1) $M_{0}\left(r^{*}\right)=1$ and $\forall r \in P_{\mathrm{R}}, M_{0}(r)=1$.
(2) N_{1} (resp. N_{2}) uses $r_{1}, r_{2}, \ldots, r_{k}$ (resp. $r_{k}, r_{k-1}, \ldots, r_{2}, r_{1}$) in that order.
(3) $M_{0}\left(p_{0}\right)=k, M_{0}\left(p_{0}^{\prime}\right)=k+1$, where p_{0} and p_{0}^{\prime} are the idle places in the processes N_{1} and N_{2}, respectively.
(4) Holder places of r_{j} in N_{1} and N_{2} are denoted as p_{j} and p_{j}^{\prime}, respectively.
(5) The compound circuit containing $r_{i}, r_{i+1}, \ldots, r_{j-1}, r_{j}$ is called the $\left(r_{i}-r_{j}\right)$-region.
(6) If $r_{\text {gen }}^{\prime}$ does not exist, then it is called a k th-order system. The location of $r_{\text {gen }}^{\prime}$ is between r_{gen} and $r_{\mathrm{gen}+1}$.
(7) There are three possibilities for the token initially at r_{i} to sit at: $p_{i}\left(N_{1}\right), p_{i}^{\prime}\left(N_{2}\right)$ and r_{i}. The corresponding token or r_{i} state is denoted by $1,-1$ and 0 , respectively.
(8) x^{y} means $r_{\text {gen }}$ is at x state $(x=1,0,-1)$ and $r_{\text {gen }}^{\prime}$ is at y state $(y=0,-1)$, where subscript 'gen' is the location of a non-sharing resource being used by an operation place p^{*}. The system is denoted as a Top-Right k th-order system when gen $=1$; Bottom-Right k th-order system when gen $=k-1$.

Examples are shown in Figs. 1, 2, 3(a) and 4(a).

Fig. 1. Third-order system.

Fig. 2. Fourth-order system.

(b)

Fig. 3. Third-order Top-Right system (a) N and (b) reverse N^{r}.

Fig. 4. Third-order Bottom-Right system (a) N and (b) reverse N^{r}.

2.1. The classification of Control Related States

Definition 2 (Chao, 2014) $s=\left(x_{1} x_{2} \ldots x_{k}\right), x_{i}=1,0$ or $-1, i=1$ to k, is a state for a k th-order system N, x_{i} is the token initially at r_{i} to sit at: $p_{i}\left(N_{1}\right), r_{i}$ or $p_{i}^{\prime}\left(N_{2}\right)$, respectively. $\left(x_{i} x_{i+1} \ldots x_{q} x_{q+1}\right), k \geq i$ $\geq 1, k \geq q \geq i \geq 1$ (embedded in s) is a substate of s.

By Definitions 1 and 2, we transform the notation of states from the viewpoint of the token distribution between the 'place's into the viewpoint of 'resource's. In (7) of Definition 1, we define r_{i} state denoted by 1 (token at $\left.p_{i}\right),-1$ (token at p_{i}^{\prime}) and 0 (token at r_{i}). By this state notation, we not only shorten the

Fig. 5. The mapping diagram of Bottom-Right and reverse net of Top-Right.
representation of states in INA (Integrated Net Analyser, 1992), but also it is easy to link it to the figures shown in this paper. For example, a state $(1-1-1)$ in Fig. 1 can clearly show that operation places p_{1} in left process, p_{2}^{\prime} and p_{3}^{\prime} in right process contain the tokens and is a deadlock state due to the empty siphon in a third-order system, while in INA using the tokens distribution of 11 operation/resource places to show a state with the number of tokens in $p_{1}=1, p_{2}^{\prime}=1$ and $p_{3}^{\prime}=1$ and is hardly associated with a deadlock state.

Let N be a PN and N^{r} be the reverse net of $N . N^{r}$ is the net where all of the input arcs in N are reversed to output arcs; output arcs are reversed to input arcs. The net in Fig. 3(b) (resp. 4(b)) is the reverse net of 3(a) (resp. 4(a)). Rebuilding the index number of transitions ($t_{1}, t_{2}, t_{3}, t_{4}$) as $\left(t_{4}, t_{3}, t_{2}, t_{1}\right)$, $\left(t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{*}, t_{3}^{\prime}, t_{4}^{\prime}\right)$ as $\left(t_{4}^{\prime}, t_{3}^{\prime}, t_{2}^{\prime}, t_{1}^{*}, t_{1}^{\prime}\right)$ and the index number of resources $\left(r_{1}, r_{2}, r_{3}\right)$ as $\left(r_{3}, r_{2}, r_{1}\right)$ in Fig. 4(a), we can find that Bottom-Right and the reverse net of Top-Right are the same structure nets, as shown in Fig. 5. That is, the reverse net N^{r} of Top-Right (Fig. 3(b)) is Bottom-Right (Fig. 4(a)); also, the reverse net N^{r} of Bottom-Right (Fig. 4(b)) is Top-Right (Fig. 3(a)). In addition, a reverse state of state (abc) in N is (cba) in N^{r}.

By enumerating the token flow of each resource place, Chao (2014) proposed the concept of a complete reachability graph (Fig. 6), which lists all states and all paths from which any state can be reachable for all states in a k th-order system. Letting $\left(0_{1} \ldots 0_{k}\right)$ be the initial state, based on a complete reachability graph of a k th-order system, we can say that a state is a reachable state if there is a directed path from the initial state $\left(0_{1} \ldots 0_{k}\right)$; a live state if there is a directed path from a state to the initial state; a deadlock state is a state that has no output arc; a forbidden state is a state that has no directed path to the initial state but has a directed path to a deadlock state; non-reachable states are the states that have no directed path from the initial state; non-reachable + empty-siphon states are states that are non-reachable from the initial state in both N and the reverse net of N.

FIg. 6. Complete reachability graph of a third-order system (Fig. 1).

According to graph theory, Chao (2014) found the important Lemmas 1 and 2 and Theorem 1.
Lemma 1 (Chao, 2014) Any forbidden state in N is non-reachable in N^{r}.
Lemma 2 (Chao, 2014) Any non-reachable state in N is a forbidden one or a non-reachable one in N^{r}.
Theorem 1 (Chao, 2014) $\vartheta(k)=¥(k)-B(k)$, where $\vartheta(k), ¥(k)$ and $B(k)$ are the number of forbidden, non-reachable and non-reachable+empty-siphon states in a k th-order system, respectively.

Extending Lemmas 1 and 2, we have
Theorem 2 Any reverse state of a live state in N is a live state in N^{r}, and the number of live states in N is equal to the number of live states in N^{r}.

Proof. Assume that the reverse state s_{L}^{r} of a live state s_{L} in N is not a live state in N^{r}, being perhaps a forbidden state or non-reachable state instead. This assumption means that s_{L}^{r} is a forbidden or a nonreachable state in N^{r} but s_{L} is a live state in N, which violates Lemma 1 or Lemma 2. Hence, s_{L}^{r} must be a live state in N^{r}. Assume that the number of live states in N and N^{r} is not equal. This means that there is a state s_{L} with its reverse state s_{L}^{r} being not a live state in both N and N^{r}, which also violates Lemma 1 or Lemma 2. Hence, the number of live states in N is equal to the number of live states in N^{r}.

In Fig. 6, there is a directed path from the initial state (000) to the deadlock state $(1-1-1)$ in N : $(000) \rightarrow(00-1) \rightarrow(10-1) \rightarrow(1-10) \rightarrow(1-1-1)$. In N^{r}, we can find that there is a path from the $(-1-11)$ state to the initial state $(000):(-1-11) \rightarrow(0-11) \rightarrow(-101) \rightarrow(-100) \rightarrow(00$ 0), where $(-1-11)$ is the reverse state of $(1-1-1)$. Hence, we have Theorem 3.

THEOREM 3 A state s_{R} in N is a reachable state if and only if the reverse state of s_{R} (maybe a non-reachable state) is reachable to the initial state and contains no forbidden substate in N^{r}.

Proof. A reachable state s_{R} in N is a state that is reachable from the initial state through a directed path σ. Reversing all of the input arcs of σ, we can find that there is also a directed path σ^{\prime} from the reverse state of s_{R} to the initial state in N^{r}. A state s_{R}^{\prime} that belongs to N^{r} and contains a forbidden substate will be reachable to a deadlock state but not the initial state so that the reverse state of s_{R}^{\prime} will be a non-reachable state in N. Hence, s_{R}, the reverse state of s_{R}^{\prime} which contains a forbidden substate, is not a reachable state in N.

Below, we list the important properties of Control Related States in a k th-order system (Chao, 2014). For the third-order system, there are three types of unmarked (resp. non-reachable) siphon states: $(1-1 x),(x 1-1)$ and $(10-1)[$ resp. $(-11 x),(x-11)$ and $(-101)]$, where $x=-1,0,1$.

By Definition 2, we have some characteristics of non-reachable and forbidden states of a k th-order system.

A substate of $(-1 \times x \times \ldots x)(x=1,0,-1)$ corresponds to a non-reachable state (Chao, 2014).
A substate of $(1 \times x \ldots x-1)(x=1,0,-1)$ corresponds to a forbidden or a non-reachable state (Chao, 2014).

State $s=(x x \ldots x 1 x x \ldots x-1 x x \ldots x 1 x x \ldots x-1 x x \ldots x)$ cannot be a reachable state. This means that a reachable state cannot have two substates of $(1 x x \ldots x-1)$ (Chao, 2014).

If $s=\left(x_{1} x_{2} \ldots x_{i-1} 1_{i} x_{i+1} x_{i+2} \ldots x_{k}\right)$ does not carry a substate of $\left(1_{g} x_{g+1} x_{g+2} \ldots x_{k}\right), g>i$, then s with $x_{m}=0$ or $1, m=1$ to $i-1$ and $x_{j}=0$ or $-1, j=i+1$ to k are the only reachable states (Chao, 2014).

2.2. Computation of the number of reachable states

By enumerating the token distribution of a k th-order system, Chao (2014) has proven:
Lemma 3 (Chao, 2014)
(1) s is a live state if and only if $s=\left\{\left(y_{1} \ldots y_{k}\right) \mid y_{i}=-1\right.$ or 0$\}$, or $s=\left\{\left(x_{1} \ldots x_{k}\right) \mid x_{i}=1\right.$ or 0$\}$.
(2) The set of live states $L_{k}=\left\{\left(x_{1} \ldots x_{k}\right) \mid x_{i}=1\right.$ or 0$\} \cup\left\{\left(y_{1} \ldots y_{k}\right) \mid y_{i}=-1\right.$ or 0$\}=L_{a} \cup L_{b}$.
(3) The total number of live states is $2^{k+1}-1$.

Theorem 4 (Chao, 2014)
(1) The possible reachable states are $s=\left\{\left(x_{1} x_{2} \ldots x_{j} y_{j+1} \ldots y_{k}\right) \mid 0 \leq j \leq k\right\}=\left\{\left(x_{1} \ldots x_{j} 1 y_{j+2} \ldots y_{k}\right) \mid 1 \leq\right.$ $j \leq k\} \cup\left\{\left(y_{1} \ldots y_{k}\right)\right\}$, where $x_{i}=1$ or $0(i=1$ to $j)$ and $y_{p}=0$ or $-1(p=j+2$ to $k)=L_{c} \cup L_{d}$.
(2) The total number of reachable states is $(k+2) 2^{(k-1)}$.

Corollary 1 (Chao, 2014)
(1) The number of forbidden states $\vartheta(k)=(k-2) 2^{(k-1)}+1$.
(2) The number of non-reachable states $¥(k)=3^{k}-(k+2) 2^{(k-1)}$.
(3) The number of non-reachable+empty-siphon states $B(k)=3^{k}-k 2^{k}-1$.

Theorem 5 (Chao, 2014) In a k th-order system, a deadlock state has the pattern: $\left(1_{1} 1_{2} \ldots 1_{m}-1_{m+1}-\right.$ $\left.1_{m+2} \ldots-1_{k}\right), 1 \leq m<k$. The total number of deadlock states $D(k)=k-1$.

To sum up, the total number of each type of Control Related States in a k th-order system in Chao (2014) is shown below.

The total number of states is 3^{k}.
The total number of live states $L(k)=2^{k+1}-1$.
The total number of reachable states $R(k)=(k+2) 2^{(k-1)}$.
The number of forbidden states $\vartheta(k)=R(k)-L(k)=(k-2) 2^{(k-1)}+1$.
The number of non-reachable states $¥(k)=3^{k}-R(k)=3^{k}-(k+2) 2^{(k-1)}$.
The number of non-reachable + empty-siphon states $B(k)=¥(k)-\vartheta(k)=3^{k}-k 2^{k}-1$.
The total number of deadlock states $D(k)=k-1$.

3. Methodology to enumerate the Control Related States of a Bottom-Right kth-order system

We first define the equivalent (defined in Definition 3) of a net. By this instrument, we can analyse the effect of a non-sharing resource in a k th-order system.

Definition 3 (Chao \& Yu, 2014) The equivalent $N^{e}=\left(P^{e} \cup P_{\mathrm{R}}^{e}, T^{e}, F^{e}, W^{e}\right)$ of a net $N=(P \cup$ $\left.P_{\mathrm{R}}, T, F, W\right)\left(P_{\mathrm{NR}}\right.$ is the set of non-sharing places) is defined as
(1) $P^{e}{ }_{\mathrm{R}}=P_{\mathrm{R}} \backslash P_{\mathrm{NR}}$;
(2) $P^{e}=P \backslash \bigcup_{r \in P_{\mathrm{NR}}} H(r)$;
(3) $T^{e}=T \backslash \bigcup_{r \in P_{\mathrm{NR}}} r^{\bullet}$;
(4) $F^{e}=\left(F \bigcup_{r \in P_{\mathrm{NR}}}\left({ }^{\bullet} r, r^{\bullet \bullet}\right) \cup\left({ }^{\bullet}\left(r^{\bullet}\right),{ }^{\bullet} r\right) \backslash \bigcup_{r \in P_{\mathrm{NR}}}\left[\left(H(r), H(r)^{\bullet}\right)\right.\right.$;
$\left.\cup\left({ }^{\bullet} H(r), H(r)\right) \cup\left({ }^{\bullet} r, r\right) \cup\left(r, r^{\bullet}\right) \cup\left(r^{\bullet}, r^{\bullet}\right) \cup\left({ }^{\bullet}\left(r^{\bullet}\right), r^{\bullet}\right)\right]$
(5) $W^{e}: F^{e} \rightarrow Z$.

We say that the net in Fig. 1 is the equivalent of the net in Figs. 3(a) and 4(a) because the net is exactly the same as the net except that the net has one non-sharing resource place r^{*}.

Definition 4 (Chao \& Yu, 2014) The reverse net of N^{e} is denoted as $N^{e r}$.
In this article, we denote N^{e} as a k th-order system and N as a variant k th-order system that contains a non-sharing resource (for example, Bottom-Right). Let state sin N^{e} be $\left(x_{1} x_{2} \ldots x_{k-1} x_{k}\right)$. By Definition 1, the state of Top-Right will be $\left(x_{1}^{y} \ldots x_{k-1} x_{k}\right)$; Bottom-Right will be $\left(x_{1} \ldots x_{k-1}^{y} x_{k}\right)$, where $y=0$ or -1 . According to the reverse net concept in Section 2, the state ($x_{1}^{y} \ldots x_{k-1} x_{k}$) in Top-Right and state $\left(x_{k} \ldots x_{2}^{y} x_{1}\right)$ in Bottom-Right are the reverse states of each other, where $y=0$ or -1 .

For every reachable (resp. live) state $s(x x \ldots x x)$ in N^{e} (akth-order system), both states ($x x x \ldots x^{0} x$) and $\left(x x x \ldots x^{-1} x\right)$ in Bottom-Right are reachable (resp. live) states. We (Chao \& Yu, 2014) have shown that, in N, the number of reachable states $\left(R^{\prime}\right)>2 R$ and the number of live states $\left(L^{\prime}\right)>2 L$.

Because of a non-sharing resource, we have shown the following: (1) markings that are non-reachable in N^{e} may become reachable in $N\left(\right.$ the number of which is denoted as Θ); (2) forbidden markings in N^{e} may be live in N (the number of which is denoted as $C(k)$); and (3) non-reachable markings in N^{e} may be live in N (the number of which is denoted as $A(k)$). Thus, we have:

$$
\begin{align*}
& R^{\prime}=2 R+\Theta \tag{1}\\
& L^{\prime}=2 L+A(k)+C(k) \tag{2}
\end{align*}
$$

3.1. The characteristics of a Bottom-Right kth-order system

Let N^{e} be a k th-order system and N^{B} be a Bottom-Right k th-order system in this section. Here, we list the important characteristics of Bottom-Right in Chao \& Yu (2014).

For the Bottom-Right third-order system, there are three types of unmarked (resp. non-reachable) siphon states: $\left(1-1^{-1} x\right),\left(x 1^{-1}-1\right)$ and $\left(10^{-1}-1\right)\left[\right.$ resp. $\left(-11^{-1} x\right),\left(x-1^{-1} 1\right)$ and $\left.\left(-10^{-1} 1\right)\right]$, where $x=-1,0,1$.

Lemma 4 A substate of $\left(-1 x x \ldots x^{-1} 1\right)(x=1,0,-1)$ corresponds to a non-reachable state.
Corollary 2 A substate of $\left(1 x x \ldots x^{-1}-1\right)(x=1,0,-1)$ corresponds to a forbidden or non-reachable state.

Lemma 5 Both $s=\left(\begin{array}{llllll}1 & 0_{2} & 0_{3} & 0_{4} \ldots 0_{k-1}^{-1} & 0_{k}\end{array}\right)$ and $s^{\prime}=\left(-10_{2} 0_{3} 0_{4} \ldots 0_{k-1}^{-1} 0_{k}\right)$ correspond to two legal markings M.

Lemma 6 Let $s=\left(x_{1} x_{2} x_{3} x_{4} \ldots-1_{i} 0_{i+1} \ldots 0_{k-1}^{0} 1_{k}\right)$, where $i=1$ to $k-1 ; x_{j}=0, j=i+1$ to $k-1 ; x_{n}=0$ or $1,0 \leq n<i-1$, be such that only the bottom $r_{i}-r_{k}$ siphon in $N^{e r}$ is unmarked.
(1) M is non-reachable in N^{e}.
(2) $M^{*}=M+r^{*}$ is reachable in N^{B}.
(3) The total number of such M^{*} is $2^{k-1}-1$.

Theorem 6 The total number of reachable states in Bottom-Right is $2 R+2^{k-1}-1=2(k+2) 2^{(k-1)}+$ $2^{(k-1)}-1=(2 k+5) 2^{(k-1)}-1$.

By Lemma 13 in Chao \& Yu (2014), $s=\left(x_{1} x_{2} \ldots 1_{j} \ldots 0_{k-2} 0_{k-1}^{0}-1_{k}\right)$ is a live state in Bottom-Right, where $x_{i}=0$ or $1, i=1$ to $j-1 ; s$ is a non-reachable state where $x_{i}=-1, i=1$ to $j-1$. The total number of possible live states is $2^{(j-1)}$.

Theorem 7 The total number of forbidden markings in N^{e} that may be live in N^{B} is $C_{\mathrm{B}}(k)=2^{k-1}-1$.

By Lemma 14 in Chao \& Yu (2014), $s=\left(x_{1} x_{2} \ldots-1_{k-2} 0_{k-1}^{0} 1_{k}\right)$ is a non-reachable state in BottomRight, where $x_{i}=-1, i=1$ to $k-3$; s is a live state where $x_{i}=0, i=1$ to $k-3$; s is a forbidden state where $x_{i}=1, i=1$ to $k-3$. The total number of possible live states is 1 .

By Lemma 15 in Chao \& Yu (2014), $s=\left(x_{1} x_{2} \ldots-1_{j} \ldots 0_{k-1}^{0} 1_{k}\right)$ is a live state in Bottom-Right, where $x_{i}=0, i=1$ to $j-1$; a non-reachable state where $x_{i}=-1, i=1$ to $j-1$; a forbidden state where $x_{i}=1, i=1$ to $j-1$. The total number of possible live states is 1 .

Theorem 8 The total number of non-reachable markings in N^{e} that may be live in N^{B} is $A_{B}(k)=k-1$.
Theorem 9 The total number of live states in Bottom-Right is $18 \times 2^{k-2}+k-4$.

4. Computation of Control Related States of a Top-Right kth-order system

Let N^{e} be a k th-order system and N^{T} be a Top-Right k th-order system in this section.
Observation 1 (Chao \& Yu, 2013)
(1) Any unmarked siphon state carries a substate $\left(1^{-1} 00 \ldots 0-1\right)$.
(2) Any non-reachable state carries a substate $\left(-1^{-1} 00 \ldots 01\right)$, where the number ' 0 ' goes from 0 to $k-2$.

Note that the $\left(1^{0} 00 \ldots 0-1\right)$ obtained by replacing 1^{-1} with 1^{0} is not an unmarked siphon state because r_{2} is not used by any process and t_{1}^{*} is potentially firable in Fig. 3(a).

For the third-order system, there are three types of unmarked (resp. non-reachable) siphon states: $\left(1^{-1}-1 x\right),(x 1-1)$ and $\left(1^{-1} 0-1\right)\left[\right.$ resp. $\left(-1^{-1} 1 x\right),(x-11)$ and $\left.\left(-1^{-1} 01\right)\right]$, where $x=-1,0,1$.

Lemma 7 (Chao \& Yu, 2013) A substate of $\left(-1^{-1} x \times \ldots x 1\right)(x=1,0,-1)$ corresponds to a nonreachable state, where the number 1 of x's goes from 0 to $k-2 ; l=0$ to $k-2$.

Proof by model. According to Corollary 2, a substate of $\left(1 x x \ldots x^{-1}-1\right)(x=1,0,-1)$ corresponds to a forbidden or non-reachable state of the Bottom-Right system. Hence, the reverse substate $\left(-1^{-1} x x \ldots \ldots 1\right)$ in Top-Right is a non-reachable state according to Lemmas 1 and 2.

Corollary 3 (Chao \& Yu, 2013) A substate of $\left(1^{-1} x x \ldots x-1\right)(x=1,0,-1)$ corresponds to a forbidden or non-reachable state, where the number 1 of x 's goes from 0 to $k-2 ; l=0$ to $k-2$.

Proof by model. According to Lemma 4, a substate of $\left(-1 x x \ldots x^{-1} 1\right)(x=1,0,-1)$ corresponds to a non-reachable state in Bottom-Right. Hence, the reverse substate $\left(1^{-1} x x \ldots x-1\right)$ in Top-Right corresponds to a forbidden or non-reachable state according to Lemmas 1 and 2.

Lemma 8 (Chao \& Yu, 2013) Let M be a reachable marking in N^{e}; then, both $M^{*}=M+r^{*}$ and $M^{\prime}=M+p^{*}$ are reachable in N^{T}.

Proof. There are no unmarked siphons in $N^{e r}$ because M is reachable in N^{e}. There are also no unmarked siphons under both M^{\prime} and M^{*} in N^{T}. Hence, they are both reachable in N^{T}.

The following lemma helps to prove in the sequel that some states are legal.

Lemma 9 (Chao \& Yu, 2013) Both $s=\left(1^{-1} 0_{2} 0_{3} 0_{4} \ldots 0_{j-1} 0_{j}\right)$ and $s^{\prime}=\left(-1^{0} 1_{2} 0_{3} 0_{4} \ldots 0_{j-1} 0_{j}\right)$ correspond to two legal markings M.

Proof. Let $\sigma=t_{2} t_{3} \ldots t_{n-1} t_{n} t_{1}^{*}$. Then, $M\left[\sigma>M_{0}\right.$; hence, M is a legal marking because M does not necessarily evolve to a deadlock state.

Markings that are non-reachable in N^{e} may become reachable in N^{T}.

Lemma 10 (Chao \& Yu, 2013) Let M be such that only the top $r_{1}-r_{2}$ region in $N^{e r}$ is unmarked.
(1) M is non-reachable in N^{e}.
(2) $M^{*}=M+r^{*}$ is reachable in N^{T}.

Proof. (1) By Lemma 1, M is non-reachable in N^{e}.
(2) Under M^{*}, there are no unmarked siphons in N^{T}; hence, $M^{*}=M+r^{*}$ is reachable in N^{T}.

In general, we have

Lemma 11 (Chao \& Yu, 2013) Let $s=\left(-1^{0} 0_{2} 0_{3} 0_{4} \ldots 0_{j-1} 1_{j} x_{j+1} x_{j+2} \ldots x_{k}\right)$ be such that only the top $r_{1}-r_{j}$ siphon in $N^{e r}$ is unmarked.
(1) M is non-reachable in N^{e}.
(2) $M^{*}=M+r^{*}$ is reachable in N^{T}.
(3) The total number of such M^{*} is $R(k-j)$.

Proof by model. Let $s^{\prime}=\left(x_{k} \ldots x_{j+2} x_{j+1} 1_{j} 0_{j-1} \ldots 0_{4} 0_{3} 0_{2}^{0}-1\right)$ be the reverse state of s. By Lemma 13 in Chao \& Yu (2013), s^{\prime} is a live state, where $x_{i}=0$ or $1, i=j+1$ to k; by Theorem 3, s is a reachable state if and only if s^{\prime} is reachable to the initial state $\left(0_{k} \ldots 0_{j+2} 0_{j+1} 0_{j} 0_{j-1} \ldots 0_{4} 0_{3} 0_{2}^{0} 0\right)$. Hence, the total number of such M^{*} is dependent on the number of possibilities such that the $\left(r_{k}-r_{j+1}\right)$ region can be reachable to $\left(0_{k} \ldots 0_{j+2} 0_{j+1}\right)$, which equals $R(k-j)$.

Theorem 10 (Chao \& Yu, 2013) The total number of reachable states in N^{T} is $R^{\prime}(k)=2 R(k)+\Theta(k-2)$, where $\Theta(k-2)=\sum_{j=2 \text { to } k} R(k-j)$.

Proof. There are two cases:
(1) M is reachable in N^{e}.

By Lemma 8, both $M^{*}=M+r^{*}$ and $M^{\prime}=M+p^{*}$ are reachable in N^{T}. Hence, there are $2 R$ such states because there are R reachable states in N^{T}.
(2) M is non-reachable in N^{e}.

By Lemma 11, there are $\Theta(k-2)=\sum_{j=2 \text { to } k} R(k-j)$ states that are non-reachable in N^{e} but are reachable in N^{T}.

Combining (1)-(2), we have $R^{\prime}(k)=2 R(k)+\Theta(k-2)$.

Corollary 4 (Chao \& Yu, 2013) $R^{\prime}(k)=2(k+2) 2^{(k-1)}+\Theta(k-2)=(5 k+7) 2^{k-2}$.

Proof.

$$
\begin{aligned}
R^{\prime}(k) & =2(k+2) 2^{(k-1)}+\Theta(k-2)=2 R(k)-(R(k)-3 R(k-1)) \\
& =R(k)+3 R(k-1)=(k+2) 2^{k-1}+3(k+1) 2^{k-2}=(5 k+7) 2^{k-2}
\end{aligned}
$$

According to Theorems 2 and 9, we can derive the number of live states of Top-Right system as $18 \times 2^{k-2}+k-4$. For the integrity of proof procedure and to validate Theorem 2, we list the Lemmas B3-B6 and Theorems B1-B3 in Appendix B to show how to enumerate the number of live states of Top-Right system.

Theorem 11 (Chao \& Yu, 2013) $\vartheta^{\prime}(k)=(5 k-11) 2^{k-2}-(k-4)$.

Proof.

$$
\begin{aligned}
\vartheta^{\prime}(k) & =R^{\prime}(k)-L^{\prime}(k) \\
& =(5 k+7) 2^{k-2}-\left(18 \times 2^{k-2}+k-4\right) \\
& =(5 k-11) 2^{k-2}-(k-4) .
\end{aligned}
$$

Theorem 12 (Chao \& Yu, 2013) $¥^{\prime}(k)=2 \times 3^{k}-(5 k+7) 2^{k-2}$

Proof.

$$
\begin{aligned}
¥^{\prime}(k) & =2 \times 3^{k}-R^{\prime}(k) \\
& =2 \times 3^{k}-(5 k+7) 2^{k-2} .
\end{aligned}
$$

Theorem 13 (Chao \& Yu, 2013) Denote $D^{\prime}(k)$ as the total number of deadlock states in N^{T}, where $D^{\prime}(k)=D(k)+D(k-1)=2 k-3$.

Proof. p^{*} is a trap of strict minimal siphon (SMS) s^{*}, which contains a non-sharing resource r^{*} (Fig. 3(a)); the deadlock pattern of N^{T} must include two situations: $M\left(p^{*}\right)=0\left(s^{*}\right.$ is not an empty siphon) and $M\left(p^{*}\right)=1\left(s^{*}\right.$ may be an empty siphon $)$.
(1) $M\left(p^{*}\right)=1$: The deadlock pattern of $N^{\mathrm{T}}\left(1_{1}^{-1} 1_{2} \ldots 1_{i} \ldots 1_{j}-1_{j+1} \ldots-1_{k}\right), 1 \leq j \leq k-1$ is reachable. In this situation, the number of deadlock states is $D(k)$, determined by N^{e}.
(2) $M\left(p^{*}\right)=0: M\left(p_{1}\right)=1$ (trap of s^{*}), t_{1}^{*} cannot be enabled; $M\left(p_{2}\right)=1$ (siphon of s^{*}), t_{2}^{\prime} cannot be enabled. Because p_{2} is the trap of the next SMS $\left\{p_{3}, r_{2}, r_{3}, p_{2}^{\prime}\right\}$, the deadlock condition of subnet $\left(x_{2} \ldots x_{k}\right)$ must be met. In this case, the total number of deadlock states is $D(k-1)$, which is determined by a $(k-1)$ th-order system.

Hence, $D^{\prime}(k)=D(k)+D(k-1)=k-1+k-2=2 k-3$.

The formulae of Control Related States listed above are consistent with the reachability analysis using the INA (Starke 1992) tool.

Application: In Appendix C, we extend our methodology to a Top-Left k-net system, where any resource place is shared between μ processes (called k-net; Top-Left k-net is a k-net with a Top nonsharing resource place in the left process). The total number of live states is $\mathrm{Ł}_{k}=2^{k}+(\mu)^{k}-2\left[\biguplus_{k}^{\prime}=\right.$ $2 Ł_{k}+(\mu)^{k-1}-1+(\mu-1)(k-1)$ for the Top-Left k-net]. The total number of reachable states can be similarly analysed as $\mathrm{R}_{k}=2^{k}+(\mu-1) 2^{(k-1)}\left(1-x^{k}\right) /(1-x), x=\mu / 2\left[\mathrm{R}_{k}^{\prime}=2 \mathrm{R}_{k}+\left((\mu)^{k-1}-1\right)\right.$ for the Top-Left k-net]. $\vartheta_{k}=Ł_{k}-\mathrm{R}_{\kappa}$. See Appendix C for an explanation.

5. Conclusions

Based on Lemmas 1 and 2, we first derive Theorems 2 and 3 to prove that a reverse state of a live state in a PN is also a live state in its reverse net; a reverse state of a reachable state in a PN will contain no forbidden sub-states. Due to the contributions of Lemmas 1 and 2, Theorems $1-3$, we propose a new knowledgebased analysis concept, 'proof by model', for the construction of a closed-form solution of a PN based on the validated information of its reverse net. This concept is especially significant for the oncoming socalled Industry 4.0 intelligent manufacturing era, because when a resource is dynamically allocated, we should not re-analyse the whole system by siphon computation for a new deadlock avoidance/prevention policy of a new PN model, but rather reuse the validated information to construct the policy. The 'proof by model' based on the reverse net concept is our first step towards knowledge-based analysis of the PN reachability problem.

Here, we demonstrate how to apply 'proof by model' to the proof procedures of closed-form formulae construction for a Top-Right k th-order system with validated information from a Bottom-Right system, which is the reverse net of Top-Right. Some regular proof procedures by siphon concept are shown in Appendix B for comparison. Applying the 'proof by model' concept, the analysis effort can be reduced to focus only on the computation of the number of reachable and deadlock states only because according to Theorem 2 both Top-Right and Bottom-Right systems have the same number of live states, which is the validated information of Bottom-Right system. Hence, Lemmas B3-B6 and Theorems B1-B3 that are applied for enumerating the number of live states of Top-Right are redundant, but we show them here for the integrity of the proof procedure and the validation of Theorem 2.

According to the knowledge-based analysis concept, we can also construct the knowledge of a validated sub-states information system, by which more complicated PNs can be constructed. Moreover, many future research works can be extended from this concept, such as the effects of adding non-sharing resources, processes or tokens into a PN such that with the new elements listed above, the system could possibly be a 'self-learning' knowledge-based reachability analysis system of PN.

References

Chao, D. Y. (2005) Reachability of nonsynchronized choice petri nets and its applications. IEEE Trans. Syst. Man Cybern. B., 35, 1203-1213.
Chaо, D. Y. (2006) Computation of elementary siphons in Petri nets for deadlock control. Comput. J., 49, 470-479.
Cнао, D. Y. (2011a) A simple modification of deadlock prevention policy of S3PR based on elementary siphons. Trans. Inst. Measurement Control, 33, 93-115.
Chao, D. Y. (2011b) Enumeration of lost states of a suboptimal control model of a well-known S3PR. IET Control Theory Appl., 5, 1277-1286.
Chao, D. Y. (2011c). Improvement of suboptimal siphon- and FBM-based control model of a well-known S ${ }^{3}$ PR. IEEE Trans. Autom. Sci. Eng., 8, 404-411.

Chao, D. Y. (2012) Recursive solution of number of reachable states of a simple subclass of FMS. Int J Syst Sci, 45, 702-710.
Chao D. Y. \& Yu T. H. (2013) Enumeration of reachable (forbidden, live, and deadlock) states of top k-th order system (with a non-sharing resource place) of Petri nets. IECON 2013-39th Annual Conference on IEEE Industrial Electronics Society, 10-13, Nov. 2013, Vienna, IEEE, (pp. 3517-3523).
Chao, D. Y. (2014) Enumeration of reachable (forbidden, live, and deadlock) states of K-th order system of Petri nets. IMA J Math Control Inf, dnu025, 32, 823-837.
Chao, D. Y., \& Yu, T. H. (2014) Computation of control related states of bottom k-th order system (with a non-sharing resource place) of Petri nets. Trans. Inst. Measurement Control, 37, 382-395.
Chao, D. Y. (2015) Closed-form solution of controller synthesis for infinitely large systems of resource sharing systems of a subclass of Petri nets. Trans. Inst. Measurement Control, 38, 83-92.
Chao, D. Y. \& Yu T. H. (2015a) Closed form formula construction to enumerate control related states of bottom left k-net S3PR system (with a Bottom Left side non-sharing resource place) of Petri Nets Networking, Sensing and Control (ICNSC), 2015 IEEE 12th International Conference on 9-11 April 2015, Taipei, IEEE, (pp. 480-485).
Chao, D. Y. \& Yu T. H. (2015b) The fundamental closed-form solution of control-related states of k th order S3PR system with left-side non-sharing resource places of Petri nets. Int. J. Control, 89, 169-178.
Chao, D. Y. \& Yu T. H. (2015c) MLR: a new concept to launch a partial deadlock avoidance policy for k-th order system of Petri netsIECON 2015-41th Annual Conference on IEEE Industrial Electronics Society, 9-12, Nov. 2015, Yokohama, IEEE, (pp. 003148-003152).
Ezpeleta, J. J., Colom, M., \& Martinez, J. (1995) A Petri net based deadlock prevention policy for flexible manufacturing systems. IEEE Trans. Robotics Autom., 11, 173-184.
Ferrarini, L. (1994) On the reachability and reversibility problems in a class of Petri nets. IEEE Trans Syst Man Cybern, 24, 1474-1482.
Hiraishi, K., \& Ichikawa, A. (1988) A class of Petri Nets that a necessary and sufficient condition for reachability is obtainable. Trans. Soc. Inst. Control Eng., 24, 635-640.
Ichikawa, A., Yokoyama, K., \& Kurogi, S. (1985) Control of event-driven systems-reachability and control of conflict-free Petri nets. Trans. Soc. Inst. Control Eng., 21, 324-330.
Kostin, A. E. (2003) Reachability analysis in T-invariant-less Petri nets. IEEE Trans. Autom. Control, 48, 10191024.

Lee, D. I., Kumagai, S., \& Kodama, S. (1990) Reachability of LSFC nets. IEEE Int. Symp. Circuits Syst., 4, 2666-2669.
Lee, J. S., Zhou, M. C., \& Hsu, P. L. (2005) An application of Petri nets to supervisory control for human-computer interactive systems. IEEE Trans. Ind. Electr., 52, 1220-1226.
Liang, H., \& Chao, D. Y. (2012) Enumeration of Reachable States for Arbitrary Marked Graphs. IET Control Theory Appl., 6, 1536-1543.
MiYamoto, T., \& Horiguchi, K. (2011) Modular reachability analysis in fundamental class of multi-agent nets. IECON2011-37th Annual Conference on IEEE Industrial Electronics Society, Melbourne, Australia, 7-10, November 2011, IEEE, pp. 3782-3787.
Mizuno, N., Ohta, A., \& Tsuif, K. (2007) Reachability problem of marked graphs with batch processing arcs. IECON 2007. 33rd Annual Conference of IEEE Industrial Electronics, Taipei, Taiwan, 5-8, November 2007, IEEE, pp. 70-75.
Shit, Y. Y. \& Chao, D. Y. (2010) Sequence of control in S³PMR. Comp. J., 53, 1691-1703. Starke, P. H. (1992) INA: Integrated Net Analyzer, Handbuch, Germany.
Uzam, M., \& Zhou, M. C. (2006) An improved iterative synthesis method for liveness enforcing supervisors of flexible manufacturing systems. Int. J. Prod. Res., 44, 1987-2030.
Zimmermann, A. (2015) TimeNeT, Technische Universitat Ilmenau, System and Software Engineering Ilmenau, Germany. http://www.tu-ilmenau.de/TimeNeT (accessed 22 December 2015).

A. Preliminaries about Petri nets

A Petri net is a four-tuple $N=(P, T, F, W)$, where P is the set of places, T is the set of transitions, $F \subseteq(P \times T) \cup(T \times P)$ is called flow relation of the net, which is represented by arcs with arrows from places to transitions or vice versa, and $W: F \rightarrow \mathrm{Z}$ (the set of nonnegative integers) is a mapping that assigns a weight to an arc. $M_{0}: P \rightarrow Z$ is the initial marking assigned to each place $p \in P, M_{0}(p)$ tokens. (N, M_{0}) is called a marked net or a net system. In the special case where W maps onto $\{0,1\}$, the PN is said to be ordinary (otherwise, general). $N^{\prime}=\left(P^{\prime}, T^{\prime}, F^{\prime}, W^{\prime}\right)$ is called a subnet of N where $P^{\prime} \subseteq P, T^{\prime} \subseteq T, F^{\prime}=F \cap\left(\left(P^{\prime} \times T^{\prime}\right) \cup\left(T^{\prime} \times P^{\prime}\right)\right.$ and $W: F^{\prime} \rightarrow \mathrm{Z}$.

The set of input (resp. output) transitions of a place p is denoted by ${ }^{\bullet} p$ (resp. p^{\bullet}). Similarly, the set of input (resp. output) places of a transition t is denoted by ${ }^{\bullet} t$ (resp. t^{\bullet}). Finally, an ordinary PN such that (s.t.) $\forall t \in T,\left|t^{\bullet}\right|=\left.\right|^{\bullet} t \mid=1$ is called a State Machine (SM). It is called a Marked Graph if $\forall p \in{ }^{\bullet} P,\left|p^{\bullet}\right|=\left.\right|^{\bullet} p \mid=1$. A PN is strongly connected if $\forall x, x^{\prime} \in(P \cup T)$ such that $x \neq x^{\prime}$ and there is a direct path from x to x^{\prime}. A node x in $N=(P, T, F, W)$ is either $p \in P$ or $t \in T$. An elementary direct path Γ in N is a graphical object containing a sequence of nodes such that there is an arc between each two successive nodes in the sequence with the notation: $\Gamma=\left[n_{1} n_{2} \ldots n_{k}\right], k \geq 1$, where $n_{i} \neq n_{j}$ for $i \neq j$. N^{r} is the reverse net of N obtained by reversing the direction of all arcs in N with the initial marking unchanged. A is the incidence matrix of a net with m places and n transitions: $A=\left[a_{i j}\right]$; a matrix of integers and its typical entry are given by $a_{i j}=a_{i j}^{+}-a_{i j}^{-}$, where $a_{i j}^{-}=W(i, j)$ is the weight of the arc from transition i to its output place j and $a_{i j}^{+}=W(j, i)$ is the weight of the arc to transition i from its input place $j . A^{r}=-A$, where A^{r} is the incidence matrix of the reverse net N^{r} of N.

Given a marking M, a transition t is enabled if $\forall p \in{ }^{\bullet} t, M(p) \geq W(p, t)$; this is denoted by $M[t>$. Firing an enabled transition t results in a new marking M_{1}, which is obtained by removing $W(p, t)$ tokens from each place $p \in{ }^{\bullet} t$ and placing $W\left(t, p^{\prime}\right)$ tokens into each place $p^{\prime} \in t^{\bullet}$, moving the system state from M_{0} to M_{1}. Repeating this process, the state reaches M^{\prime} by firing a sequence $\sigma=t_{1} t_{2} \ldots t_{k}$ of transitions. M^{\prime} is said to be reachable from M_{0}; i.e. $M_{0}\left[\sigma>M^{\prime} . M_{0}\right.$ is reached in N^{r} by firing a sequence $\sigma^{r}=t_{k} t_{k-1} \ldots t_{2} t_{1}$ of transitions from M^{\prime}; i.e. $M^{\prime}\left[\sigma^{r}>M_{0}\right.$ in N^{r} and $M_{0}=M^{\prime}+A^{r} \bullet x\left(\sigma^{r}\right)$, where $x\left(\sigma^{r}\right)$ is the firing vector to reach M_{0} from $M^{\prime} . R\left(N, M_{0}\right)$ is the set of markings reachable from M_{0}. A forbidden (resp. live) marking or state is one that is (resp. not), or necessarily evolves into, a deadlock marking.

A transition $t \in T$ is live at M_{0} if $\forall M \in R\left(N, M_{0}\right), \exists M^{\prime} \in R(N, M), t$ is enabled at M^{\prime}. A PN is live at M_{0} if $\forall t \in T, t$ is live at M_{0}. A PN is said to be deadlock-free if at least one transition is enabled at every reachable marking.

For a Petri net (N, M_{0}), a non-empty subset S (resp. τ) of places is called a siphon (resp. trap) if ${ }^{\bullet} S \subseteq S^{\bullet}$ (resp. $\tau^{\bullet} \subseteq^{\bullet} \tau$), i.e. every transition having an output (resp. input) place in S has an input (resp. output) place in S (resp. τ). A siphon is a set of places where tokens can continuously flow out such that $M_{0}(S)=\sum_{p \in S} M_{0}(p)=0$, where S is called an empty siphon or unmarked siphon at M_{0}; all output transitions of S are permanently dead. A minimal siphon does not contain a siphon as a proper subset. It is called a strict minimal siphon (SMS), denoted by S, if it does not contain a trap.

An integer vector Y (with components $Y(p), p \in P$), denoted by $Y=\sum Y(p) p$, is called a P-invariant if $Y \neq 0$ and $Y^{\mathrm{T}} \bullet A=0$, where A is the incidence matrix. $\|Y\|=\{p \in P \mid Y(p) \neq 0\}$ is the support of Y. A minimal P -invariant does not contain another P -invariant as its proper subset. If a siphon $S \subset\|Y\|$, then $[S]=\|Y\| \backslash S$ is called the complementary siphon of S and $S \cup[S]$ is the support of a P-invariant.

Definition A1 (Ezpeleta et al., 1995) A simple sequential process $\left(S^{2} P\right)$ is a net $N=\left(P \cup\left\{p^{0}\right\}, T, F\right)$ where (1) $P \neq \emptyset p^{0} \notin P\left(p^{0}\right.$ is called the process idle or initial or final operation place), (2) N is a strongly connected SM and (3) every circuit of N contains the place p^{0}.

Transitions in $p^{0 \bullet}$ and ${ }^{\bullet} p^{0}$ are called source and sink transitions, respectively.
Definition A2 (Ezpeleta et al., 1995) A simple sequential process with resources ($S^{2} P R$), also called a working process, is a net $N=\left(P \cup\left\{p^{0}\right\} \cup P_{\mathrm{R}}, T, F\right)$ such that (1) the subnet generated by $X=P \cup\left\{p^{0}\right\} \cup T$ is an $S^{2} P$; (2) $P_{\mathrm{R}} \neq \emptyset$ and $P \cup\left\{p^{0}\right\} \cap P_{\mathrm{R}}=\emptyset$; (3) $\forall p \in P, \forall t \in{ }^{\bullet} p, \forall t^{\prime} \in p^{\bullet}, \exists r_{p} \in P_{\mathrm{R}},{ }^{\bullet} t \cap P_{\mathrm{R}}=t^{\bullet} \cap P_{\mathrm{R}}=$ $\left\{r_{p}\right\}$; (4) the two following statements are verified: $\forall r \in P_{\mathrm{R}}:(\mathrm{a})^{\bullet \bullet} r \cap P=r^{\bullet \bullet} \cap P \neq \emptyset$ and (b) ${ }^{\bullet} r \cap r^{\bullet}=\emptyset$; and (5) ${ }^{\bullet \bullet}\left(p^{0}\right) \cap P_{\mathrm{R}}=\left(p^{0}\right)^{\bullet \bullet} \cap P_{\mathrm{R}}=\emptyset . \forall p \in P$, where p is called an operation place. $\forall r \in P_{\mathrm{R}}$, where r is called a resource place. $H(r)={ }^{\bullet \bullet} r \cap P$ denotes the set of holders of r (i.e. operation places that use r). Any resource r is associated with a minimal P-invariant whose support is denoted by $\rho(r)=\{r\} \cup H(r)$.

Definition A3 (Ezpeleta et al., 1995) A system of $S^{2} \mathrm{PR}\left(S^{3} P R\right)$ is defined recursively as follows: (1) An $S^{2} \mathrm{PR}$ is defined as an $S^{3} \mathrm{PR}$ and (2) Let $N_{i}=\left(P_{i} \cup P_{i}^{0} \cup P_{R i}, T_{i}, F_{i}\right), i \in\{1,2\}$ be two $S^{3} \mathrm{PR}$ such that $\left(P_{1} \cup P_{1}^{0}\right) \cap\left(P_{2} \cup P_{2}^{0}\right)=\emptyset . P_{R 1} \cap P_{R 2}=P_{C}(\neq \emptyset)$ and $T_{1} \cap T_{2}=\emptyset$. The net $N=\left(P \cup P^{0} \cup P_{\mathrm{R}}, T, F\right)$ resulting from the composition of N_{1} and N_{2} via P_{C} (denoted by $N_{1} o N_{2}$) is defined as follows: (1) $P=P_{1} \cup P_{2}$; (2) $P^{0}=P_{1}^{0} \cup P_{2}^{0}$; (3) $P_{\mathrm{R}}=P_{R 1} \cup P_{R 2}$; (4) $T=T_{1} \cup T_{2}$; and (5) $F=F_{1} \cup F_{2}$ is also an $S^{3} \mathrm{PR}$.

B. Regular proof procedure of Top-Right

Lemma B1 A substate of $\left(-1^{-1} x x \ldots x 1\right)(x=1,0,-1)$ corresponds to a non-reachable state, where the number l of x 's goes from 0 to $k-2 ; l=0$ to $k-2$.

Proof. This is proven by induction. The lemma holds for the case of $l=0$ because $\left(-1^{-1} 1\right)$ is a nonreachable state, as discussed above. Now, assuming that the lemma holds for $l=0$ to $i-1$, we need to prove that it also holds for $l=i+1$. There are three possible values of the last x in the substate:
(1) $x=-1$: Then, we have the substate of $(x 1)=(-11)$, which corresponds to a non-reachable state.
(2) $x=1$: The problem is reduced to the substate of $\left(-1^{-1} x x \ldots x 1\right)$ with $l=i$, which has been assumed to correspond to a non-reachable state.
(3) $x=0$: Then, we consider the penultimate x. The arguments repeat and, eventually, the substate becomes $\left(-1^{-1} 00 \ldots 01\right)$, which is a non-reachable state according to Observation 1(2).

Lemma B2 Let $s=\left(-1^{0} 0_{2} 0_{3} 0_{4} \ldots 0_{j-1} 1_{j} x_{j+1} x_{j+2} \ldots x_{k}\right)$ be such that only the top $r_{1}-r_{j}$ siphon in $N^{e r}$ is unmarked.
(1) M is non-reachable in N^{e}.
(2) $M^{*}=M+r^{*}$ is reachable in N^{T}.
(3) The total number of such M^{*} is $R(k-j)$.

Proof. The proofs of (1) and (2) are similar to that of Lemma 10. (3) $s=\left(x_{j+1} x_{j+2} \ldots x_{k}\right)$ is a substate of M for the $\left(r_{j+1}-r_{k}\right)$ subnet. If there are no unmarked siphons in the reverse of containing the ($r_{j+1}-r_{k}$) subnet, so neither will be the reverse of the $\left(r_{j+1}-r_{k}\right)$ subnet. Thus, any unmarked siphon in $N^{e r}$ must include r_{1} and r_{2}, which is impossible for the same reason as that held in (1). Thus, the total number of M^{*} is the same as the number of reachable states in $\left(r_{j+1}-r_{k}\right)$, which equals $R(k-j)$.

Lemma B3 (Chao \& Yu, 2013) Let M be a live marking in N^{e}; then, both $M^{*}=M+r^{*}$ and $M^{\prime}=M+p^{*}$ are live in N^{T}.

Proof. There are no unmarked siphons in N^{e} because M is live in N^{e}. There are also no unmarked siphons under both M^{\prime} and M^{*} in N^{T}. Hence, they are both live in N^{T}.

The number of markings for $C(k)$ and $A(k)$ of Top-Right is computed by the following lemma.
Lemma B4 (Chao \& Yu, 2013) Let $s=\left(1^{0} 0-1_{3} x_{4} \ldots x_{k-2} x_{k-1} x_{k}\right)$ correspond to marking M such that there are unmarked siphons in only the top $r_{1}-r_{3}$ region in N^{e}.
(1) If $M\left(p_{4}^{\prime}\right)=1\left(x_{4}=-1\right)$, then $M^{\prime}=M+r^{*}$ is a forbidden marking (necessarily evolving into an unmarked state) in $N^{\mathrm{T}} . M^{\prime}$ is a non-live marking in N^{T}.
(2) If $M\left(r_{4}\right)=1\left(x_{4}=0\right)$, then no SMS is unmarked under $M^{\prime}=M+r^{*}$ in $N^{\mathrm{T}} . M^{\prime}$ may be a live marking in N^{T}.
(3) If $M\left(p_{4}\right)=1\left(x_{4}=1\right)$, then $M^{\prime}=M+r^{*}$ is a non-reachable state in N^{T}.
(4) The total number of possible live markings under M is 1 .

Proof by model. By Lemma 14 in (Chao \& Yu, 2014), $s_{\mathrm{B}}=\left(x_{k} x_{k-1} \ldots-1_{3} 0_{2}^{0} 1_{1}\right)$ is a non-reachable state in Bottom-Right, where $x_{i}=-1, i=4$ to k; a live state where $x_{i}=0, i=4$ to k; a forbidden state where $x_{i}=1, i=4$ to k. The total number of possible live states is 1 . The reverse state of $s_{\mathrm{B}}=\left(x_{k} x_{k-1} \ldots-1_{3} 0_{2}^{0} 1_{1}\right)$ is $s_{\mathrm{T}}=\left(1^{0} 0-1_{3} x_{4} \ldots x_{k-2} x_{k-1} x_{k}\right)$. By Theorem 2, we have the total number of possible live markings under M being 1 , where $x_{i}=0, i=4$ to k.

Proof (by siphon concept). (1) Let $t_{2}^{\prime} \in r^{* \bullet}$. Fire t_{2}^{\prime} at M to reach a new state $s^{\prime}=\left(1^{-1} 0_{2} 0_{3}-\right.$ ${ }_{4} x_{4} \ldots x_{k-2} x_{k-1} x_{k}$), which corresponds to an unmarked siphon state and is forbidden. (2) Fire t_{1}^{*} at M^{\prime} again to reach a new state $s^{\prime \prime}=\left(1^{-1} 00_{3} 0_{4} x_{5} \ldots x_{k-2} x_{k-1} x_{k}\right)$, which corresponds to a legal marking if $x_{5}=x_{6}=\ldots=x_{k-2}=x_{k-1}=x_{k}=0$ based on Lemma 9. Hence, M^{\prime} may be a live marking in N. (3) $\left(-1_{3} 1_{4}\right)$ is a substate of an unmarked siphon in $N^{e r}$. Hence, $M^{\prime}=M+r^{*}$ is a non-reachable state in N^{T}. (4) This follows from parts of (1)-(3) of this lemma.

Remark of the proof of Lemma B4: (1) By Lemma 2, when $x_{4}=-1$ in s_{B} (a non-reachable state), s_{T} will be a forbidden state in Top-Right because s_{T} is a reachable state. (2) When $x_{4}=1$ in s_{T}, by Lemma $1, s_{\mathrm{T}}$ will be non-reachable because the reverse state s_{B} is a forbidden state.

Lemma B5 (Chao \& Yu, 2013) Let $s=\left(1^{0} 00_{3} 0_{4} \ldots 0_{j-1}-1_{j} x_{j+1} x_{j+2} \ldots x_{k}\right)$ correspond to marking M such that there are unmarked siphons in only the top $r_{1}-r_{j}$ siphon in N^{e}.
(1) If $M\left(p_{j+1}^{\prime}\right)=1\left(x_{j+1}=-1\right)$, then $M^{\prime}=M+r^{*}$ is a forbidden marking (necessarily evolving into an unmarked state) in $N . M^{\prime}$ is a non-live marking in N^{T}.
(2) If $M\left(r_{j+1}\right)=1\left(x_{j+1}=0\right)$, then no SMS is unmarked under $M^{\prime}=M+r^{*}$ in $N^{\mathrm{T}} . M^{\prime}$ may be a live marking in N^{T}.
(3) If $M\left(p_{j+1}\right)=1\left(x_{j+1}=1\right)$, then $M^{\prime}=M+r^{*}$ is a non-reachable state in N^{T}.
(4) The total number of possible live markings under M is 1^{k-j}.

Proof by model. The proof is similar to that for Lemma B4.
Proof (by siphon concept). (1) Let $t_{2}^{\prime} \in r^{* \bullet}$. Fire $t_{j}^{\prime} t_{j-1}^{\prime} \ldots t_{3}^{\prime} t_{2}^{\prime}$ at M to reach a new state $s^{\prime}=$ $\left(1^{-1} 00_{3} 0_{4} \ldots 0_{j}-1_{j+1} x_{j+2} \ldots x_{k}\right.$), which corresponds to an unmarked siphon state and is forbidden. (2) Fire at M^{\prime} again to reach a new state $s^{\prime \prime}=\left(1^{-1} 00_{3} 0_{4} \ldots 0_{j} 0_{j+1} x_{j+2} \ldots x_{k}\right)$, which corresponds to a legal marking if $x_{j+2}=x_{j+3}=\ldots=x_{k-2}=x_{k-1}=x_{k}=0$ based on Lemma 9. (3) $\left(-1_{j} 1_{j+1}\right)$ is a substate of an unmarked siphon in $N^{e r}$. Hence, $M^{\prime}=M+r^{*}$ is a non-reachable state in N^{T}. (4) Based on parts of (1)-(3) of this lemma, for M^{\prime} to be a live marking in $N^{\mathrm{T}}, x_{j+1}=x_{j+2}=\ldots=x_{k}=0$. Hence, the total number of possible live markings under M is 1^{k-j}.

Theorem B1 (Chao \& Yu, 2013) The total number of forbidden markings in N^{T} that may be live in N^{e} is $C_{T}(k)=k-1$.

Proof. By summing $1^{k-j}($ Lemma B5 $)$ from $j=2$ to k, we have $C_{T}(k)=1+1+\cdots+1=\sum_{j=2 \text { to } k} 1^{j-2}=$ $k-1$.

Lemma B6 (Chao \& Yu, 2013) Let $s=\left(-1^{0} 0_{2} 0_{3} 0_{4} \ldots 0_{j-1} 1_{j} x_{j+1} x_{j+2} \ldots x_{k}\right)$ correspond to marking M such that there are unmarked siphons in only the top $r_{1}-r_{j}$ siphon in $N^{e r}$.
(1) If $M\left(p_{j+1}^{\prime}\right)=1\left(x_{j+1}=-1\right)$, then $M^{\prime}=M+r^{*}$ is a non-live marking in N^{T}.
(2) If $M\left(r_{j+1}\right)=1\left(x_{j+1}=0\right)$, then no SMS is unmarked under $M^{\prime}=M+r^{*}$ in $N^{\mathrm{T}} . M^{\prime}$ is a legal marking in N^{T}.
(3) If $M\left(p_{j+1}\right)=1\left(x_{j+1}=1\right)$, then $M^{\prime}=M+r^{*}$ is an unmarked state in $N^{r} . M^{\prime}$ is a legal marking in N^{T}.
(4) The total number of possible live markings under M is 2^{k-j}.

Proof by model. By Lemma 13 in Chao \& Yu (2014), $s_{\mathrm{B}}=\left(x_{k} x_{k-1} \ldots 1_{j} \ldots 0_{3} 0_{2}^{0}-1_{1}\right)$ is a live state in Bottom-Right, where $x_{i}=0$ or $1, i=j-1$ to k; a non-reachable state where $x_{i}=-1, i=j-1$ to k; the total number of possible live states is $2^{(k-j)}$. The reverse state of $s_{\mathrm{B}}=\left(x_{k} x_{k-1} \ldots 1_{j} \ldots 0_{3} 0_{2}^{0}-1_{1}\right)$ is $s_{\mathrm{T}}=\left(-1^{0} 0_{2} 0_{3} \ldots 1_{j} \ldots x_{k-2} x_{k-1} x_{k}\right)$. By Theorem 2, we have the total number of possible live markings under M being $2^{(k-j)}$, where $x_{i}=0$ or $1, i=j-1$ to k.

Proof (by siphon concept). (1) $\left(1_{j}-1_{j+1}\right)$ is a substate of an unmarked siphon in N^{T}. Hence, $M^{\prime}=M+r^{*}$ is a non-live state in N^{T}.
(2) This corresponds to a legal marking if $x_{j+2}=x_{j+3}=\ldots=x_{k-2}=x_{k-1}=x_{k}=0$ based on Lemma 9 .
(3) $M=\left(-1^{0} 00_{3} 0_{4} \ldots 0_{j-1} 1_{j} 1_{j+1} x_{j+2} \ldots x_{k}\right) \cdot M^{\prime \prime}=M+r^{*}$ has no unmarked siphons in N^{r} just as $M^{\prime}=M+r^{*}$. Hence, $M^{\prime}=M+r^{*}$ is a live state in N^{T}.
(4) Based on parts of (1)-(3) of this lemma, for M^{\prime} to be a live marking in $N^{\mathrm{T}}, x_{j+1}=x_{j+2}=\ldots=$ $x_{k}=0$ or 1 . Hence, the total number of possible live markings under M is 2^{k-j}.

Theorem B2 (Chao \& Yu, 2013) The total number of non-reachable markings in N^{e} that may be live in N^{T} is $A_{\mathrm{T}}(k)=2^{k-1}-1$.

Proof. By summing 2^{k-j} from $j=2$ to k, we have $A_{\mathrm{T}}(k)=1+2+2^{2}+\ldots+2^{k-2}=\sum_{j=2 \text { to } k} 2^{j-2}=$ $2^{k-1}-1$.

By Lemma 1, the forbidden markings in Top-Right are non-reachable markings in Bottom-Right. Hence, $C_{\mathrm{T}}(k)$ of Top-Right=A $A_{\mathrm{B}}(k)$ of Bottom-Right; $A_{\mathrm{T}}(k)$ of Top-Right=C $\mathrm{C}_{\mathrm{B}}(k)$ of Bottom-Right.

Theorem B3 (Chao \& Yu, 2013) $L^{\prime}(k)=18 \times 2^{k-2}+k-4$.

Proof.

$$
\begin{aligned}
L^{\prime}(k) & =2 L(k)+A_{\mathrm{T}}(k)+C_{\mathrm{T}}(k)=2\left(\left(2^{k+1}\right)-1\right)+2^{k-1}-1+(k-1) \\
& =2^{k+2}+2^{k-1}+k-4 \\
& =16 \times 2^{k-2}+2 \times 2^{k-2}+k-4 \\
& =18 \times 2^{k-2}+k-4 .
\end{aligned}
$$

C. Applying to k-net and Top-Left k-net

In k-net, Top-Left k-net and Bottom-Left k-net, let y_{i}^{j} denote the i th token state at Process $j(>1) . y_{i}^{j}=-1$ means the i th token is at operation place p_{i} of Process j and not at operation place p_{i} of other processes. Hence, $y_{i}^{2}+y_{i}^{3}+\cdots+y_{i}^{\mu}=y_{i}=-1$ with $(\mu-1)$ possibilities; i.e. exactly one of $y_{i}^{2}, y_{i}^{3}, \ldots, y_{i}^{\mu}$ equals -1 ; the rest are $0 . y_{i}^{j}=0$ means that the i th token is at resource place r_{i}. Thus, $y_{i} \leq 0$.

Chao (2014) constructed the formulae of \biguplus_{k} and R_{k} for the k-net in Theorems C 1 and C2, as extracted, respectively, below:

Theorem C1 (Chao, 2014) For a k-net with μ processes, the total number of live states is $\mathrm{Ł}_{k}=$ $2^{k}+(\mu)^{k}-1$.

Theorem C2 (Chao, 2014) For a k-net with μ processes, the total number of reachable states is $\mathrm{R}_{k}=$ $2^{k}+(\mu-1) y\left(1-x^{k}\right) /(1-x)$, where $x=\mu / 2$ and $y=2^{(k-1)}$.

Rebuilding the index number of transitions $\left(t_{5}^{1}, t_{4}^{1}, t_{3}^{*}, t_{3}^{1}, t_{2}^{1}, t_{1}^{1}\right)$ as $\left(t_{1}^{1}, t_{1}^{*}, t_{2}^{1}, t_{3}^{1}, t_{4}^{1}, t_{5}^{1}\right)$, etc., and the index number of resources $\left(r_{1}, r_{2}, r_{3}, r_{4}\right)$ as $\left(r_{4}, r_{3}, r_{2}, r_{1}\right)$ in Fig. A.1.(b), we can find that the Bottom-Left k-net (Chao \& Yu, 2015a) is the reverse net of the Top-Left k-net, as shown in Fig. A.1.

Here, we extend to construct the formulae of \biguplus_{k}^{\prime} and $\mathrm{R}_{\substack{\prime}}^{\text {for the Top-Left } k \text {-net based on these results. }}$ The presence of the non-sharing resource place increases the number of states by a factor of 2 . Based on Theorem B3, we can extend to $Ł_{k}^{\prime}=2 \mathrm{Ł}_{k}+A^{\prime}(k)+C^{\prime}(k)$, where $A^{\prime}(k)$ and $C^{\prime}(k)$ are as defined below:

FIG. A.1. (a) Fourth Top-Left k-net system. (b) Fourth Bottom-Left k-net system.

Theorem C3 For a k-net with μ processes,

(1) the total number of forbidden markings in the k-net that may be live in the Top-Left k-net is $C^{\prime}(k)=(\mu)^{k-1}-1$.
(2) the total number of non-reachable markings in the k-net that may be live in the Top-Left k-net is $A^{\prime}(k)=(\mu-1)(k-1)$.

Proof. There are $(\mu-1)$ possible top (resp. but non) empty siphons in the Top-Left k-net (resp. k-net) containing r_{1}, r_{2} and r^{*}.
(1) $s=\left(1_{1}^{0} x_{2} x_{3} x_{4} \ldots x_{i} \ldots x_{k-1} x_{k}\right) x_{i}=0$, or y_{i}^{2}, \ldots or y_{i}^{μ}, we have the total number is $\left(u^{(i)}\right)$. Because $2 \leq i \leq k$, and we have to exclude substate $\left(0_{2} 0_{3} \ldots 0_{k}\right)$. Hence, $C^{\prime}(k)=\left[(\mu)^{k-1}-1\right]$.
(2) For each such state, there are $(k-1)$ states that may be live. Hence, $A^{\prime}(k)=(\mu-1)(k-1)$.

Theorem C4 For a Top-Left k-net with μ processes, the total number of live markings $Ł_{k}^{\prime}=2 Ł_{k}+$ $(\mu)^{k-1}-1+(\mu-1)(k-1)$.

Proof.

$$
\begin{aligned}
\biguplus_{k}^{\prime} & =2 Ł_{k}+A^{\prime}(k)+C^{\prime}(k) \\
& =2 Ł_{k}+(\mu)^{k-1}-1+(\mu-1)(k-1) .
\end{aligned}
$$

We have revised the number of $C^{\prime}(k)$ and $A^{\prime}(k)$ of Bottom-Left k-net (Chao \& Yu, 2014) in Chao \& Yu (2015a) due to the inconsistent analysis from the viewpoint of Bottom-Right: (1) the total number of forbidden markings in the k-net that may be live in the Bottom-Left k-net is $C^{\prime}(k)=(\mu-1)(k-1)$;
(2) the total number of non-reachable markings in the k-net that may be live in the Bottom-Left k-net is $A^{\prime}(k)=(\mu)^{k-1}-1$. Based on Lemma 1, the forbidden markings in the Top-Left k-net are non-reachable markings in the Bottom-Left k-net. Hence, $C^{\prime}(k)$ of the Top-Left k-net $=A^{\prime}(k)$ of the Bottom-Left k-net; $A^{\prime}(k)$ of the Top-Left k-net= $\mathrm{C}^{\prime}(k)$ of the Bottom-Left k-net.

Theorem C5 For a Top-Left k-net with μ processes, the total number of reachable markings $\mathrm{R}_{k}^{\prime}=$ $2 \mathrm{R}_{k}+\left((\mu)^{k-1}-1\right)$.

Proof. Let $s=\left(x_{1}^{0} \ldots 0 \ldots 1_{j} \ldots x_{k}\right) 2 \leq j \leq k$ be the states pattern of the reachable states of which are non-reachable markings in the k-net but reachable markings in Top-Left k-net. The condition are: (1) $x_{m}=0, y_{m}^{2}, y_{m}^{3}, \ldots, y_{m}^{\mu}, j+1 \leq m \leq k$ and (2) $x_{m}=y_{m}^{2}, y_{m}^{3}, \ldots y_{m}^{\mu}, m=1$. The total number of such states is $(\mu-1)\left((\mu)^{k-2}+(\mu)^{k-3}+\cdots+0\right)=(\mu-1)\left((\mu)^{k-1}-1\right) /(\mu-1)=\left((\mu)^{k-1}-1\right)$. Hence, $\mathrm{R}_{k}^{\prime}=2 \mathrm{R}_{k}+\left((\mu)^{k-1}-1\right)$.

