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To solve the state explosion problem in the reachability analysis of Petri nets, Chao recently broke the
NP(nondeterministic polynomial time)-complete barrier by developing the first closed-form solution of
the number of Control Related States for the kth-order system. In this paper, we propose a new proof
methodology known as proof by model, which is based on the validated information of the reverse net,
to simplify and accelerate the construction of the closed-form solution for Petri nets. Here, we apply this
methodology to the proof procedure of Top-Right systems with one non-sharing resource placed in the
top position of the right-side process. The core theoretical and data basis are that any forbidden (resp.
live) state in a Petri net is non-reachable (resp. live) in its reverse net; and the validated information of
the Bottom-Right system, the reverse net of Top-Right.

Keywords: control systems; discrete event systems; flexible manufacturing systems; petri nets.

1. Introduction

Petri nets (PNs) have been widely applied for modelling and analysing flexible manufacturing systems or
resource allocation systems (Ezpeleta et al., 1995; Chao, 2005, 2006, 2011a,b,c, 2012; Lee et al., 2005;
Uzam & Zhou, 2006; Shih & Chao, 2010; Zimmermann, 2015) Reachability analysis (Ichikawa et al.,
1985; Hiraishi & Ichikawa, 1988; Lee et al., 1990; Ferrarini, 1994; Kostin, 2003; Mizuno et al., 2007;
Miyamoto & Horiguchi, 2011) can be used to verify system properties, such as liveness, boundedness
and reversibility. However, the large number of states generated (called the state explosion problem)
is the persistent problem of using PNs to model various systems. Lee et al. (1990) have shown that
the reachability problem (i.e. whether a marking is reachable) is NP-complete for even a live and safe
Free Choice net. It is of theoretical interest and significance to find the exact number R̆ of the reachable
states of the research target PNs, because previous approaches have only found bounds (e.g. TimeNet
tool; Zimmermann 2015). Another challenge of reachability problems is to know how to narrow the
computation time to obtain reachable states and other information, which is an NP-complete problem,
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2 D. Y. CHAO ET AL.

within a reasonable waiting time for a large PN. To the best of our knowledge, there is nothing in
the literature that addresses such an issue. This problem is highly difficult, even for a marked graph.
We (Liang & Chao, 2012; Chao, 2014) have successfully solved the problem by the construction of a
closed-form solution for particular PNs.

Chao (2014) defined the kth-order system (defined in Definition 1) which is the simplest class of
S3PR (Systems of Simple Sequential Processes with Resources); by applying the concept of the complete
reachability graph, split the reachability graph of the control net into reachable, forbidden, deadlock
non-reachable and non-reachable+empty-siphon states (below, we call all of the different types of
states Control Related States); integrating graph theory and combinatorial mathematics, pioneered the
first closed-form solution to compute the number of Control Related States for a kth-order system.
Notably, this solution reduces the computation time for the exponential increase (O(2k)) of a kth-order
system’s Control Related States to intra-seconds. We have also extended and applied Chao’s (2014) key
methodology in enumerating the number of Control Related States of Top-Right (Chao & Yu, 2013)
and Bottom-Right (Chao & Yu, 2014) by the viewpoint of letting the left process be the master control
process.

Chao (2015) showed that it needs an additional 10 controllers for the deadlocks prevention policy of
a fifth-order system. Due to the contributions of the closed-form solution listed above, we Chao & Yu
(2015b,c) propose a new concept, the moment to launch resource allocation (MLR), to launch a partial
deadlock avoidance/prevention policy for a real-time and large system to save the cost of deadlock
prevention policy for reducing both the number of controllers and their allocation time. Presently, we
can use the future deadlock ratio of the current state (i.e. the number of deadlock states/the number of
reachable states), which can be derived in real-time by closed-form formulae, as the indicator to launch
resource allocation.

However, the main problem is that without a knowledge-based relationship between PNs, both for
the construction of a closed-form solution and for structural analysis-based deadlock prevention pol-
icy by siphon computation, N different structure nets need N times the independent analysis efforts.
This is an important research issue for real-time, dynamic resource allocation systems because the new
allocated resource creates a new net structure, new reachable states and also the new deadlock states
derived from the new reachable states. Besides, the innovation of robot systems, Internet of Things
and cloud computing system will let N be a very large number; gradually, even an unlimited num-
ber. However, few studies have been conducted on knowledge-based analysis for PNs. Furthermore,
we also found that the complicated proof procedures by siphon concept are barriers to comprehend
the whole methodology in Bottom-Right (Chao & Yu, 2014). We need a more brief and theoret-
ical proof procedure to simplify the construction of closed-form formulae for more complicated
systems.

To solve the problems listed above, we propose a new proof methodology called ‘proof by model’.
Chao (2014) showed the relationship of forbidden and non-reachable states between a PN and its reverse
net in Lemmas 1 and 2. Based on Lemmas 1 and 2, in this paper we first prove that a reverse state of a live
state in a PN is also a live state and that the number of live states in a PN and its reverse net are the same
in Theorem 2. Here, we construct the knowledge-based analysis methodology for the construction of a
closed-form solution of PNs presently based on Lemmas 1 and 2 and Theorem 2 and validated closed-
form solution information of its reverse net. According to this methodology, to construct the closed-form
solution, we can directly omit the effort of the computation for live states based on Theorem 2. We also
show how to apply this methodology to the theoretical proof procedure marked by ‘proof by model’.
Here, we do not redo the whole construction effort of the closed-form formulae of the Top-Right system
purely according to structure analysis by the siphon concept again.
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The approach is explained as follows. Let R̆, L and F be the number of reachable, live and forbidden
states of a kth-order system, respectively. Chao (2014) proved that the total number of states in a kth-
order system is 3k; the number of non-reachable states is 3k − R̆; F = R̆ − L. For Bottom-Right (denoted
as B in this section), we have proven that the number of reachable states in B = 2R̆ + �, where � is the
number of non-reachable markings in a kth-order system that are reachable states in B; the number of
live states is 2L + A + C, where A (resp. C) is the number of non-reachable (resp. forbidden) markings
in a kth-order system that are live states in B. In Theorem 2, we prove that a PN N and its reverse net
Nr have the same number of live states and that the live states in N are exactly the reverse states of
live states in Nr . Hence, applying ‘proof by model’ with the given and validated closed-form solution
information of Nr to compute the Control Related States of N can allow us to only focus on reachable
and deadlock states due to F = R̆ − L, where L is known and validated.

To identify N and Nr clearly, we will investigate the proof procedure of the Top-Right kth-order
system as the case study. In Appendix C, we apply our methodology to a Top-Left k-net system, which
is more complicated and has a different net structure to the Top-Right system.

The rest of the paper is organized as follows. Section 2 presents the definition of a variant kth-order
system and the closed-form solution of kth-order system’s Control Related States. In Section 3, we
show the known and validated characteristics of the Bottom-Right kth-order system proven in Chao &
Yu (2014). Based on the results obtained and the methodology applied in Sections 2 and 3, we list the
proof procedures of the closed-form solution of Control Related States in a Top-Right system mainly by
‘proof by model’ in Section 4; partial regular proof procedures are listed in Appendix B. Finally, Section
5 presents the paper’s conclusions. Appendix A presents the preliminaries concerning PNs, which is
optional for experts in PNs. In Appendix C, we apply our methodology to a Top-Left k-net.

2. The closed-form solution of Control Related States of kth-order systems

Here, we redefine the kth-order system (Chao, 2014) with one non-sharing resource place, in which each
resource place carries only one token for different structure systems.

Definition 1 A variant kth-order system is a subclass of S3PR, with k resource places r1, r2, . . . , rk

shared between two processes N1 and N2 and one non-sharing resource place r ′
gen(= r∗) used by an

operation place p∗ in p2.

(1) M0(r∗) = 1 and ∀r ∈ PR, M0(r) = 1.

(2) N1 (resp. N2) uses r1, r2, . . . , rk (resp. rk , rk−1, . . . , r2, r1) in that order.

(3) M0(p0) = k, M0(p′
0) = k + 1, where p0 and p′

0 are the idle places in the processes N1 and N2,
respectively.

(4) Holder places of rj in N1 and N2 are denoted as pj and p′
j, respectively.

(5) The compound circuit containing ri, ri+1, . . . , rj−1, rj is called the (ri−rj)-region.

(6) If r ′
gen does not exist, then it is called a kth-order system. The location of r ′

gen is between rgen and
rgen+1.

(7) There are three possibilities for the token initially at ri to sit at: pi(N1), p′
i(N2) and ri. The

corresponding token or ri state is denoted by 1, −1 and 0, respectively.
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4 D. Y. CHAO ET AL.

(8) xy means rgen is at x state (x = 1, 0, −1) and r ′
gen is at y state (y = 0, −1), where subscript ‘gen’ is

the location of a non-sharing resource being used by an operation place p∗. The system is denoted
as a Top-Right kth-order system when gen = 1; Bottom-Right kth-order system when gen = k −1.

Examples are shown in Figs. 1, 2, 3(a) and 4(a).
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Fig. 1. Third-order system.
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Fig. 2. Fourth-order system.
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Fig. 3. Third-order Top-Right system (a) N and (b) reverse Nr .
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Fig. 4. Third-order Bottom-Right system (a) N and (b) reverse Nr .

2.1. The classification of Control Related States

Definition 2 (Chao, 2014) s = (x1x2 . . . xk), xi = 1, 0 or −1, i = 1 to k, is a state for a kth-order
system N , xi is the token initially at ri to sit at: pi(N1), ri or p′

i(N2), respectively. (xixi+1 . . . xqxq+1), k ≥ i
≥ 1, k ≥ q ≥ i ≥ 1 (embedded in s) is a substate of s.

By Definitions 1 and 2, we transform the notation of states from the viewpoint of the token distribution
between the ‘place’s into the viewpoint of ‘resource’s. In (7) of Definition 1, we define ri state denoted
by 1(token at pi), −1(token at p′

i) and 0 (token at ri). By this state notation, we not only shorten the
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Figure 4(a) 3rd order Bottom-Right

system N (Chao and Yu 2014). 

Figure 3(b) 3rd order Top-Right system 

reverse Nr (Chao and Yu 2013). 
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Fig. 5. The mapping diagram of Bottom-Right and reverse net of Top-Right.

representation of states in INA (Integrated Net Analyser, 1992), but also it is easy to link it to the figures
shown in this paper. For example, a state (1 −1 −1) in Fig. 1 can clearly show that operation places p1 in
left process, p′

2 and p′
3in right process contain the tokens and is a deadlock state due to the empty siphon

in a third-order system, while in INA using the tokens distribution of 11 operation/resource places to
show a state with the number of tokens in p1 = 1, p′

2 = 1 and p′
3 = 1 and is hardly associated with a

deadlock state.
Let N be a PN and Nr be the reverse net of N . Nr is the net where all of the input arcs in N are

reversed to output arcs; output arcs are reversed to input arcs. The net in Fig. 3(b) (resp. 4(b)) is the
reverse net of 3(a) (resp. 4(a)). Rebuilding the index number of transitions (t1, t2, t3, t4) as (t4, t3, t2, t1),
(t′1, t′2, t∗3 , t′3, t′4) as (t′4, t′3, t′2, t∗1 , t′1) and the index number of resources (r1, r2, r3) as (r3, r2, r1) in Fig. 4(a),
we can find that Bottom-Right and the reverse net of Top-Right are the same structure nets, as shown in
Fig. 5. That is, the reverse net Nr of Top-Right (Fig. 3(b)) is Bottom-Right (Fig. 4(a)); also, the reverse
net Nr of Bottom-Right (Fig. 4(b)) is Top-Right (Fig. 3(a)). In addition, a reverse state of state (abc) in
N is (cba) in Nr .

By enumerating the token flow of each resource place, Chao (2014) proposed the concept of a
complete reachability graph (Fig. 6), which lists all states and all paths from which any state can be
reachable for all states in a kth-order system. Letting (01 . . . 0k) be the initial state, based on a complete
reachability graph of a kth-order system, we can say that a state is a reachable state if there is a directed
path from the initial state (01 . . . 0k); a live state if there is a directed path from a state to the initial
state; a deadlock state is a state that has no output arc; a forbidden state is a state that has no directed
path to the initial state but has a directed path to a deadlock state; non-reachable states are the states
that have no directed path from the initial state; non-reachable + empty-siphon states are states that are
non-reachable from the initial state in both N and the reverse net of N .
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Fig. 6. Complete reachability graph of a third-order system (Fig. 1).

According to graph theory, Chao (2014) found the important Lemmas 1 and 2 and Theorem 1.

Lemma 1 (Chao, 2014) Any forbidden state in N is non-reachable in Nr .

Lemma 2 (Chao, 2014) Any non-reachable state in N is a forbidden one or a non-reachable one in Nr .

Theorem 1 (Chao, 2014) ϑ(k) = �(k)−B(k), where ϑ(k), �(k) and B(k) are the number of forbidden,
non-reachable and non-reachable+empty-siphon states in a kth-order system, respectively.

Extending Lemmas 1 and 2, we have

Theorem 2 Any reverse state of a live state in N is a live state in Nr , and the number of live states in N
is equal to the number of live states in Nr .

Proof. Assume that the reverse state sr
L of a live state sL in N is not a live state in Nr , being perhaps a

forbidden state or non-reachable state instead. This assumption means that sr
L is a forbidden or a non-

reachable state in Nr but sL is a live state in N , which violates Lemma 1 or Lemma 2. Hence, sr
L must be

a live state in Nr . Assume that the number of live states in N and Nr is not equal. This means that there
is a state sL with its reverse state sr

L being not a live state in both N and Nr , which also violates Lemma
1 or Lemma 2. Hence, the number of live states in N is equal to the number of live states in Nr . �

In Fig. 6, there is a directed path from the initial state (0 0 0) to the deadlock state (1 −1 −1) in N :
(0 0 0) → (0 0 −1) → (1 0 −1) → (1 −1 0) → (1 −1 −1). In Nr , we can find that there is a path from
the (−1 −1 1) state to the initial state (0 0 0): (−1 −1 1) → (0 −1 1) → (−1 0 1) → (−1 0 0) → (0 0
0), where (−1 −1 1) is the reverse state of (1 −1 −1). Hence, we have Theorem 3.
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Theorem 3 A state sR in N is a reachable state if and only if the reverse state of sR (maybe a non-reachable
state) is reachable to the initial state and contains no forbidden substate in Nr .

Proof. A reachable state sR in N is a state that is reachable from the initial state through a directed path
σ . Reversing all of the input arcs of σ , we can find that there is also a directed path σ ′ from the reverse
state of sR to the initial state in Nr . A state s′

R that belongs to Nr and contains a forbidden substate will be
reachable to a deadlock state but not the initial state so that the reverse state of s′

R will be a non-reachable
state in N . Hence, sR, the reverse state of s′

R which contains a forbidden substate, is not a reachable state
in N . �

Below, we list the important properties of Control Related States in a kth-order system (Chao, 2014).
For the third-order system, there are three types of unmarked (resp. non-reachable) siphon states:

(1 − 1 x), (x 1 − 1) and (1 0 − 1) [resp. (−1 1 x), (x − 1 1) and (−1 0 1)], where x = −1, 0, 1.
By Definition 2, we have some characteristics of non-reachable and forbidden states of a kth-order

system.
A substate of (−1 x x . . . x 1)(x = 1, 0, −1) corresponds to a non-reachable state (Chao, 2014).
A substate of (1 x x . . . x − 1)(x = 1, 0, −1) corresponds to a forbidden or a non-reachable state

(Chao, 2014).
State s = (x x . . . x 1 x x . . . x − 1 x x . . . x 1 x x . . . x − 1 x x . . . x) cannot be a reachable state. This

means that a reachable state cannot have two substates of (1 x x . . . x − 1) (Chao, 2014).
If s = (x1x2 . . . xi−11ixi+1xi+2 . . . xk) does not carry a substate of (1gxg+1xg+2 . . . xk), g > i, then s with

xm = 0 or 1, m = 1 to i − 1 and xj = 0 or −1, j = i + 1 to k are the only reachable states (Chao, 2014).

2.2. Computation of the number of reachable states

By enumerating the token distribution of a kth-order system, Chao (2014) has proven:

Lemma 3 (Chao, 2014)

(1) s is a live state if and only if s = {(y1 . . . yk)|yi = −1 or 0}, or s = {(x1 . . . xk)|xi = 1 or 0}.
(2) The set of live states Lk = {(x1. . .xk)|xi = 1 or 0} ∪ {(y1 . . . yk)|yi = −1 or 0} = La ∪ Lb.

(3) The total number of live states is 2k+1 − 1.

Theorem 4 (Chao, 2014)

(1) The possible reachable states are s = {(x1x2 . . . xjyj+1 . . . yk)|0 ≤ j ≤ k} = {(x1. . .xj1yj+2. . .yk)|1 ≤
j ≤ k} ∪ {(y1. . .yk)}, where xi = 1 or 0(i = 1 to j) and yp = 0 or −1(p = j + 2 to k) = Lc ∪ Ld .

(2) The total number of reachable states is (k + 2)2(k−1).

Corollary 1 (Chao, 2014)

(1) The number of forbidden states ϑ(k) = (k − 2)2(k−1) + 1.

(2) The number of non-reachable states �(k) = 3k − (k + 2)2(k−1).

(3) The number of non-reachable+empty-siphon states B(k) = 3k − k2k − 1.
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Theorem 5 (Chao, 2014) In a kth-order system, a deadlock state has the pattern: (1112 . . . 1m − 1m+1 −
1m+2 . . . − 1k), 1 ≤ m < k. The total number of deadlock states D(k) = k − 1.

To sum up, the total number of each type of Control Related States in a kth-order system in Chao
(2014) is shown below.

The total number of states is 3k .

The total number of live states L(k) = 2k+1 − 1.

The total number of reachable states R(k) = (k + 2)2(k−1).

The number of forbidden states ϑ(k) = R(k) − L(k) = (k − 2)2(k−1) + 1.

The number of non-reachable states �(k) = 3k − R(k) = 3k − (k + 2)2(k−1).

The number of non-reachable + empty-siphon states B(k) = �(k) − ϑ(k) = 3k − k2k − 1.

The total number of deadlock states D(k) = k − 1.

3. Methodology to enumerate the Control Related States of a Bottom-Right kth-order system

We first define the equivalent (defined in Definition 3) of a net. By this instrument, we can analyse the
effect of a non-sharing resource in a kth-order system.

Definition 3 (Chao & Yu, 2014) The equivalent Ne = (Pe ∪ Pe
R, T e, Fe, We) of a net N = (P ∪

PR, T , F, W) (PNR is the set of non-sharing places) is defined as

(1) Pe
R = PR\PNR;

(2) Pe = P\ ⋃
r∈PNR

H(r);

(3) T e = T\ ⋃
r∈PNR

r•;

(4) Fe = (F
⋃

r∈PNR
(•r, r••

) ∪ (•(r•), •r)\ ⋃
r∈PNR

[(H(r), H(r)•);

∪(•H(r), H(r)) ∪ (•r, r) ∪ (r, r•) ∪ (r•, r••
) ∪ (•(r•), r•)]

(5) We : Fe → Z .

We say that the net in Fig. 1 is the equivalent of the net in Figs. 3(a) and 4(a) because the net is
exactly the same as the net except that the net has one non-sharing resource place r∗.

Definition 4 (Chao & Yu, 2014) The reverse net of Ne is denoted as Ner .

In this article, we denote Ne as a kth-order system and N as a variant kth-order system that contains
a non-sharing resource (for example, Bottom-Right). Let state s in Ne be(x1x2 . . . xk−1xk). By Definition
1, the state of Top-Right will be (xy

1 . . . xk−1xk); Bottom-Right will be (x1 . . . xy
k−1xk), where y = 0 or

−1. According to the reverse net concept in Section 2, the state (xy
1 . . . xk−1xk) in Top-Right and state

(xk . . . xy
2x1) in Bottom-Right are the reverse states of each other, where y = 0 or −1.

For every reachable (resp. live) state s(x x . . . x x) in Ne (a kth-order system), both states (x x x . . . x0 x)
and (x x x . . . x−1 x) in Bottom-Right are reachable (resp. live) states. We (Chao & Yu, 2014) have shown
that, in N , the number of reachable states (R′) > 2R and the number of live states (L′) > 2L.
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10 D. Y. CHAO ET AL.

Because of a non-sharing resource, we have shown the following: (1) markings that are non-reachable
in Ne may become reachable in N(the number of which is denoted as �); (2) forbidden markings in Ne

may be live in N (the number of which is denoted as C(k)); and (3) non-reachable markings in Ne may
be live in N(the number of which is denoted as A(k)). Thus, we have:

R′ = 2R + �, (1)

L′ = 2L + A(k) + C(k). (2)

3.1. The characteristics of a Bottom-Right kth-order system

Let Ne be a kth-order system and NB be a Bottom-Right kth-order system in this section. Here, we list
the important characteristics of Bottom-Right in Chao & Yu (2014).

For the Bottom-Right third-order system, there are three types of unmarked (resp. non-reachable)
siphon states: (1 − 1−1 x), (x 1−1 − 1) and (1 0−1 − 1) [resp. (−1 1−1 x), (x − 1−1 1) and (−1 0−1 1)],
where x = −1, 0, 1.

Lemma 4 A substate of (−1 x x. . .x−1 1) (x = 1, 0, −1) corresponds to a non-reachable state.

Corollary 2 A substate of (1 x x. . .x−1 −1)(x = 1, 0, −1) corresponds to a forbidden or non-reachable
state.

Lemma 5 Both s = (1 02 03 04 . . . 0−1
k−1 0k) and s′ = (−1 02 03 04 . . . 0−1

k−1 0k) correspond to two legal
markings M.

Lemma 6 Let s = (x1x2x3x4 . . .−1i0i+1 . . . 00
k−11k), where i = 1 to k−1; xj = 0, j = i+1 to k−1; xn = 0

or 1, 0 ≤ n < i − 1, be such that only the bottom ri − rk siphon in Ner is unmarked.

(1) M is non-reachable in Ne.

(2) M∗ = M + r∗ is reachable in NB.

(3) The total number of such M∗ is 2k−1 − 1.

Theorem 6 The total number of reachable states in Bottom-Right is 2R + 2k−1 − 1 = 2(k + 2)2(k−1) +
2(k−1) − 1 = (2k + 5)2(k−1) − 1.

By Lemma 13 in Chao & Yu (2014), s = (x1x2 . . . 1j . . . 0k−200
k−1 −1k) is a live state in Bottom-Right,

where xi = 0 or 1, i = 1 to j − 1; s is a non-reachable state where xi = −1, i = 1 to j − 1. The total
number of possible live states is 2(j−1).

Theorem 7 The total number of forbidden markings in Ne that may be live in NB is CB(k) = 2k−1 − 1.

By Lemma 14 in Chao & Yu (2014), s = (x1x2 . . . − 1k−200
k−11k) is a non-reachable state in Bottom-

Right, where xi = −1, i = 1 to k − 3; s is a live state where xi = 0, i = 1 to k − 3; s is a forbidden state
where xi = 1, i = 1 to k − 3. The total number of possible live states is 1.
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ANALYSIS METHODOLOGY FOR PN 11

By Lemma 15 in Chao & Yu (2014), s = (x1x2 . . . − 1j . . . 00
k−11k) is a live state in Bottom-Right,

where xi = 0, i = 1 to j − 1; a non-reachable state where xi = −1, i = 1 to j − 1; a forbidden state
where xi = 1, i = 1 to j − 1. The total number of possible live states is 1.

Theorem 8 The total number of non-reachable markings in Ne that may be live in NB is AB(k) = k −1.

Theorem 9 The total number of live states in Bottom-Right is 18 × 2k−2 + k − 4.

4. Computation of Control Related States of a Top-Right kth-order system

Let Ne be a kth-order system and NT be a Top-Right kth-order system in this section.

Observation 1 (Chao & Yu, 2013)

(1) Any unmarked siphon state carries a substate (1−100 . . . 0 − 1).

(2) Any non-reachable state carries a substate (−1−100 . . . 01), where the number ‘0’ goes from 0 to
k − 2.

Note that the (1000 . . . 0 − 1) obtained by replacing 1−1 with 10 is not an unmarked siphon state
because r2 is not used by any process and t∗1 is potentially firable in Fig. 3(a).

For the third-order system, there are three types of unmarked (resp. non-reachable) siphon states:
(1−1 −1 x), (x 1 −1) and (1−1 0 −1) [resp. (−1−1 1 x), (x −1 1) and (−1−1 0 1)], where x = −1, 0, 1.

Lemma 7 (Chao & Yu, 2013) A substate of (−1−1 x x. . .x 1)(x = 1, 0, −1) corresponds to a non-
reachable state, where the number l of x’s goes from 0 to k − 2; l = 0 to k − 2.

Proof by model. According to Corollary 2, a substate of (1 x x. . .x−1 −1)(x = 1, 0, −1) corresponds to a
forbidden or non-reachable state of the Bottom-Right system. Hence, the reverse substate (−1−1 x x. . .x 1)

in Top-Right is a non-reachable state according to Lemmas 1 and 2. �

Corollary 3 (Chao & Yu, 2013) A substate of (1−1 x x. . .x − 1)(x = 1, 0, −1) corresponds to a
forbidden or non-reachable state, where the number l of x’s goes from 0 to k − 2; l = 0 to k − 2.

Proof by model. According to Lemma 4, a substate of (−1 x x. . .x−1 1)(x = 1, 0, −1) corresponds
to a non-reachable state in Bottom-Right. Hence, the reverse substate (1−1 x x. . .x − 1) in Top-Right
corresponds to a forbidden or non-reachable state according to Lemmas 1 and 2. �

Lemma 8 (Chao & Yu, 2013) Let M be a reachable marking in Ne; then, both M∗ = M + r∗ and
M ′ = M + p∗ are reachable in NT.

Proof. There are no unmarked siphons in Ner because M is reachable in Ne. There are also no unmarked
siphons under both M ′ and M∗ in NT. Hence, they are both reachable in NT. �

The following lemma helps to prove in the sequel that some states are legal.
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12 D. Y. CHAO ET AL.

Lemma 9 (Chao & Yu, 2013) Both s = (1−1 02 03 04 . . . 0j−1 0j) and s′ = (−10 12 03 04 . . . 0j−1 0j)

correspond to two legal markings M.

Proof. Let σ = t2t3 . . . tn−1tnt∗1 . Then, M[σ > M0; hence, M is a legal marking because M does not
necessarily evolve to a deadlock state. �

Markings that are non-reachable in Ne may become reachable in NT.

Lemma 10 (Chao & Yu, 2013) Let M be such that only the top r1 − r2 region in Ner is unmarked.

(1) M is non-reachable in Ne.

(2) M∗ = M + r∗ is reachable in NT.

Proof. (1) By Lemma 1, M is non-reachable in Ne.

(2) Under M∗, there are no unmarked siphons in NT; hence, M∗ = M + r∗ is reachable in NT. �

In general, we have

Lemma 11 (Chao & Yu, 2013) Let s = (−10020304 . . . 0j−11jxj+1xj+2 . . . xk) be such that only the top
r1 − rj siphon in Ner is unmarked.

(1) M is non-reachable in Ne.

(2) M∗ = M + r∗ is reachable in NT.

(3) The total number of such M∗ is R(k − j).

Proof by model. Let s′ = (xk . . . xj+2 xj+1 1j 0j−1 . . . 04 03 00
2 −1) be the reverse state of s. By Lemma 13

in Chao & Yu (2013) , s′ is a live state, where xi = 0 or 1, i = j + 1 to k; by Theorem 3, s is a reachable
state if and only if s′ is reachable to the initial state (0k . . . 0j+2 0j+1 0j 0j−1 . . . 04 03 00

2 0). Hence, the
total number of such M∗ is dependent on the number of possibilities such that the (rk − rj+1) region can
be reachable to (0k . . . 0j+2 0j+1), which equals R(k − j). �

Theorem 10 (Chao & Yu, 2013) The total number of reachable states in NT is R′(k) = 2R(k)+�(k−2),
where �(k − 2) = ∑

j=2 to k R(k − j).

Proof. There are two cases:
(1) M is reachable in Ne.
By Lemma 8, both M∗ = M + r∗ and M ′ = M + p∗ are reachable in NT. Hence, there are 2R such

states because there are R reachable states in NT.
(2) M is non-reachable in Ne.
By Lemma 11, there are �(k − 2) = ∑

j=2 to k R(k − j) states that are non-reachable in Ne but are
reachable inNT.

Combining (1)–(2), we have R′(k) = 2R(k) + �(k − 2). �
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Corollary 4 (Chao & Yu, 2013) R′(k) = 2(k + 2)2(k−1) + �(k − 2) = (5k + 7)2k−2.

Proof.

R′(k) = 2(k + 2)2(k−1) + �(k − 2) = 2R(k) − (R(k) − 3R(k − 1))

= R(k) + 3R(k − 1) = (k + 2)2k−1 + 3(k + 1)2k−2 = (5k + 7)2k−2. �

According to Theorems 2 and 9, we can derive the number of live states of Top-Right system as
18 × 2k−2 + k − 4. For the integrity of proof procedure and to validate Theorem 2, we list the Lemmas
B3–B6 and Theorems B1–B3 in Appendix B to show how to enumerate the number of live states of
Top-Right system.

Theorem 11 (Chao & Yu, 2013) ϑ ′(k) = (5k − 11)2k−2 − (k − 4).

Proof.

ϑ ′(k) = R′(k) − L′(k)

= (5k + 7)2k−2 − (18 × 2k−2 + k − 4)

= (5k − 11)2k−2 − (k − 4). �

Theorem 12 (Chao & Yu, 2013) �′(k) = 2 × 3k − (5k + 7)2k−2

Proof.

�′(k) = 2 × 3k − R′(k)

= 2 × 3k − (5k + 7)2k−2. �

Theorem 13 (Chao & Yu, 2013) Denote D′(k) as the total number of deadlock states in NT, where
D′(k) = D(k) + D(k − 1) = 2k − 3.

Proof. p∗ is a trap of strict minimal siphon (SMS) s∗, which contains a non-sharing resource r∗ (Fig. 3(a));
the deadlock pattern of NT must include two situations: M(p∗) = 0(s∗ is not an empty siphon) and
M(p∗) = 1(s∗ may be an empty siphon).

(1) M(p∗) = 1: The deadlock pattern of NT(1−1
1 12 . . . 1i . . . 1j − 1j+1 . . . − 1k), 1 ≤ j ≤ k − 1 is

reachable. In this situation, the number of deadlock states is D(k), determined by Ne.

(2) M(p∗) = 0 : M(p1) = 1 (trap of s∗), t∗1 cannot be enabled; M(p2) = 1 (siphon of s∗), t′2 cannot be
enabled. Because p2 is the trap of the next SMS {p3, r2, r3, p′

2}, the deadlock condition of subnet
(x2 . . . xk) must be met. In this case, the total number of deadlock states is D(k − 1), which is
determined by a (k − 1)th-order system.

Hence, D′(k) = D(k) + D(k − 1) = k − 1 + k − 2 = 2k − 3. �
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14 D. Y. CHAO ET AL.

The formulae of Control Related States listed above are consistent with the reachability analysis
using the INA (Starke 1992) tool.

Application: In Appendix C, we extend our methodology to a Top-Left k-net system, where any
resource place is shared between μ processes (called k-net; Top-Left k-net is a k-net with a Top non-
sharing resource place in the left process). The total number of live states is Łk = 2k + (μ)k − 2[Ł′

k =
2Łk + (μ)k−1 − 1 + (μ − 1)(k − 1) for the Top-Left k-net]. The total number of reachable states can be
similarly analysed as Ŗk = 2k + (μ − 1)2(k−1)(1 − xk)/(1 − x), x = μ/2[Ŗ′

k = 2Ŗk + ((μ)k−1 − 1) for
the Top-Left k-net]. ϑk = Łk − Ŗk . See Appendix C for an explanation.

5. Conclusions

Based on Lemmas 1 and 2, we first derive Theorems 2 and 3 to prove that a reverse state of a live state in a
PN is also a live state in its reverse net; a reverse state of a reachable state in a PN will contain no forbidden
sub-states. Due to the contributions of Lemmas 1 and 2, Theorems 1–3, we propose a new knowledge-
based analysis concept, ‘proof by model’, for the construction of a closed-form solution of a PN based
on the validated information of its reverse net. This concept is especially significant for the oncoming so-
called Industry 4.0 intelligent manufacturing era, because when a resource is dynamically allocated, we
should not re-analyse the whole system by siphon computation for a new deadlock avoidance/prevention
policy of a new PN model, but rather reuse the validated information to construct the policy. The ‘proof
by model’ based on the reverse net concept is our first step towards knowledge-based analysis of the PN
reachability problem.

Here, we demonstrate how to apply ‘proof by model’ to the proof procedures of closed-form formulae
construction for a Top-Right kth-order system with validated information from a Bottom-Right system,
which is the reverse net of Top-Right. Some regular proof procedures by siphon concept are shown in
Appendix B for comparison. Applying the ‘proof by model’ concept, the analysis effort can be reduced
to focus only on the computation of the number of reachable and deadlock states only because according
to Theorem 2 both Top-Right and Bottom-Right systems have the same number of live states, which is
the validated information of Bottom-Right system. Hence, Lemmas B3–B6 and Theorems B1–B3 that
are applied for enumerating the number of live states of Top-Right are redundant, but we show them
here for the integrity of the proof procedure and the validation of Theorem 2.

According to the knowledge-based analysis concept, we can also construct the knowledge of a
validated sub-states information system, by which more complicated PNs can be constructed. Moreover,
many future research works can be extended from this concept, such as the effects of adding non-sharing
resources, processes or tokens into a PN such that with the new elements listed above, the system could
possibly be a ‘self-learning’ knowledge-based reachability analysis system of PN.
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A. Preliminaries about Petri nets

A Petri net is a four-tuple N = (P, T , F, W), where P is the set of places, T is the set of transitions,
F ⊆ (P × T) ∪ (T × P) is called flow relation of the net, which is represented by arcs with arrows
from places to transitions or vice versa, and W : F → Z (the set of nonnegative integers) is a mapping
that assigns a weight to an arc. M0: P → Z is the initial marking assigned to each place p ∈ P, M0(p)

tokens. (N , M0) is called a marked net or a net system. In the special case where W maps onto {0, 1},
the PN is said to be ordinary (otherwise, general). N ′ = (P′, T ′, F ′, W ′) is called a subnet of N where
P′ ⊆ P, T ′ ⊆ T , F ′ = F ∩ ((P′ × T ′) ∪ (T ′ × P′) and W : F ′ → Z.

The set of input (resp. output) transitions of a place p is denoted by •p (resp. p•). Similarly, the
set of input (resp. output) places of a transition t is denoted by •t (resp. t•). Finally, an ordinary PN
such that (s.t.) ∀t ∈ T , |t•| = |•t| = 1 is called a State Machine (SM). It is called a Marked Graph if
∀p ∈ •P, |p•| = |•p| = 1. A PN is strongly connected if ∀x, x′ ∈ (P ∪ T) such that x �= x′ and there is a
direct path from x to x′. A node x in N = (P, T , F, W) is either p ∈ P or t ∈ T . An elementary direct path
� in N is a graphical object containing a sequence of nodes such that there is an arc between each two
successive nodes in the sequence with the notation: � = [n1n2 . . . nk], k ≥ 1, where ni �= nj for i �= j.
Nr is the reverse net of N obtained by reversing the direction of all arcs in N with the initial marking
unchanged. A is the incidence matrix of a net with m places and n transitions: A = [aij]; a matrix of
integers and its typical entry are given by aij = a+

ij —a−
ij , where a−

ij = W(i, j) is the weight of the arc
from transition i to its output place j and a+

ij = W(j, i) is the weight of the arc to transition i from its
input place j. Ar = −A, where Ar is the incidence matrix of the reverse net Nr of N .

Given a marking M, a transition t is enabled if ∀p ∈ •t, M(p) ≥ W(p, t); this is denoted by M[t >.
Firing an enabled transition t results in a new marking M1, which is obtained by removing W(p, t)
tokens from each place p ∈ •t and placing W(t, p′) tokens into each place p′ ∈ t•, moving the system
state from M0 to M1. Repeating this process, the state reaches M ′ by firing a sequence σ = t1t2 . . . tk of
transitions. M ′ is said to be reachable from M0; i.e. M0[σ > M ′. M0 is reached in Nr by firing a sequence
σ r = tktk−1 . . . t2t1 of transitions from M ′; i.e. M ′[σ r > M0 in Nr and M0 = M ′ +Ar •x(σ r), where x(σ r)

is the firing vector to reach M0 from M ′. R(N , M0) is the set of markings reachable from M0. A forbidden
(resp. live) marking or state is one that is (resp. not), or necessarily evolves into, a deadlock marking.

A transition t ∈ T is live at M0 if ∀M ∈ R(N , M0), ∃M ′ ∈ R(N , M), t is enabled at M ′. A PN is live
at M0 if ∀t ∈ T , t is live at M0. A PN is said to be deadlock-free if at least one transition is enabled at
every reachable marking.

For a Petri net (N , M0), a non-empty subset S (resp. τ ) of places is called a siphon (resp. trap) if
•S ⊆ S• (resp. τ • ⊆• τ ), i.e. every transition having an output (resp. input) place in S has an input (resp.
output) place in S (resp. τ ). A siphon is a set of places where tokens can continuously flow out such
that M0(S) = ∑

p∈S M0(p) = 0, where S is called an empty siphon or unmarked siphon at M0; all output
transitions of S are permanently dead. A minimal siphon does not contain a siphon as a proper subset.
It is called a strict minimal siphon (SMS), denoted by S, if it does not contain a trap.

An integer vector Y (with components Y(p), p ∈ P), denoted by Y = ∑
Y(p)p, is called a P-invariant

if Y �= 0 and Y T • A = 0, where A is the incidence matrix. ‖Y‖ = {p ∈ P|Y(p) �= 0} is the support of
Y . A minimal P-invariant does not contain another P-invariant as its proper subset. If a siphon S ⊂ ‖Y‖,
then [S] = ‖Y‖\S is called the complementary siphon of S and S ∪ [S] is the support of a P-invariant.

Definition A1 (Ezpeleta et al., 1995) A simple sequential process (S2P) is a net N = (P ∪ {p0}, T , F)

where (1) P �= ∅ p0 /∈ P (p0 is called the process idle or initial or final operation place), (2) N is a
strongly connected SM and (3) every circuit of N contains the place p0.
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Transitions in p0• and •p0 are called source and sink transitions, respectively.

Definition A2 (Ezpeleta et al., 1995) A simple sequential process with resources (S2PR), also called a
working process, is a net N = (P∪{p0}∪PR, T , F) such that (1) the subnet generated by X = P∪{p0}∪T
is an S2P; (2) PR �= ∅ and P∪{p0}∩PR = ∅; (3) ∀p ∈ P, ∀t ∈ •p, ∀t′ ∈ p•, ∃rp ∈ PR, •t∩PR = t′•∩PR =
{rp}; (4) the two following statements are verified: ∀r ∈ PR: (a) ••r∩P = r••∩P �= ∅ and (b) •r∩r• = ∅;
and (5) ••(p0)∩PR = (p0)•• ∩PR = ∅. ∀p ∈ P, where p is called an operation place. ∀r ∈ PR, where r is
called a resource place. H(r) = ••r ∩ P denotes the set of holders of r (i.e. operation places that use r).
Any resource r is associated with a minimal P-invariant whose support is denoted by ρ(r) = {r}∪H(r).

Definition A3 (Ezpeleta et al., 1995) A system of S2PR (S3PR) is defined recursively as follows: (1)
An S2PR is defined as an S3 PR and (2) Let Ni = (Pi ∪ P0

i ∪ PRi, Ti, Fi), i ∈ {1, 2} be two S3 PR such that
(P1 ∪ P0

1) ∩ (P2 ∪ P0
2) = ∅. PR1 ∩ PR2 = PC(�= ∅) and T1 ∩ T2 = ∅. The net N = (P ∪ P0 ∪ PR, T , F)

resulting from the composition of N1 and N2 via PC (denoted by N1oN2) is defined as follows: (1)
P = P1 ∪ P2; (2) P0 = P0

1 ∪ P0
2; (3) PR = PR1 ∪ PR2; (4) T = T1 ∪ T2; and (5) F = F1 ∪ F2 is also

an S3 PR.

B. Regular proof procedure of Top-Right

Lemma B1 A substate of (−1−1xx. . .x1)(x = 1, 0, −1) corresponds to a non-reachable state, where the
number l of x’s goes from 0 to k − 2; l = 0 to k − 2.

Proof. This is proven by induction. The lemma holds for the case of l = 0 because (−1−11) is a non-
reachable state, as discussed above. Now, assuming that the lemma holds for l = 0 to i − 1, we need to
prove that it also holds for l = i + 1. There are three possible values of the last x in the substate:

(1) x = −1: Then, we have the substate of (x1) = (−11), which corresponds to a non-reachable state.

(2) x = 1: The problem is reduced to the substate of (−1−1xx . . . x1) with l = i, which has been
assumed to correspond to a non-reachable state.

(3) x = 0: Then, we consider the penultimate x. The arguments repeat and, eventually, the substate
becomes (−1−100 . . . 01), which is a non-reachable state according to Observation 1(2). �

Lemma B2 Let s = (−10020304 . . . 0j−11jxj+1xj+2 . . . xk) be such that only the top r1 − rj siphon in Ner

is unmarked.

(1) M is non-reachable in Ne.

(2) M∗ = M + r∗ is reachable in NT.

(3) The total number of such M∗ is R(k − j).

Proof. The proofs of (1) and (2) are similar to that of Lemma 10. (3) s = (xj+1xj+2 . . . xk) is a substate of
M for the (rj+1 − rk) subnet. If there are no unmarked siphons in the reverse of containing the (rj+1 − rk)

subnet, so neither will be the reverse of the (rj+1 − rk) subnet. Thus, any unmarked siphon in Ner must
include r1 and r2, which is impossible for the same reason as that held in (1). Thus, the total number of
M∗ is the same as the number of reachable states in (rj+1 − rk), which equals R(k − j). �
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Lemma B3 (Chao & Yu, 2013) Let M be a live marking in Ne; then, both M∗ = M +r∗ and M ′ = M +p∗

are live in NT.

Proof. There are no unmarked siphons in Ne because M is live in Ne. There are also no unmarked
siphons under both M ′ and M∗ in NT. Hence, they are both live in NT. �

The number of markings for C(k) and A(k) of Top-Right is computed by the following lemma.

Lemma B4 (Chao & Yu, 2013) Let s = (100 − 13x4 . . . xk−2xk−1xk) correspond to marking M such that
there are unmarked siphons in only the top r1 − r3 region in Ne.

(1) If M(p′
4) = 1(x4 = −1), then M ′ = M + r∗ is a forbidden marking (necessarily evolving into an

unmarked state) in NT. M ′ is a non-live marking in NT.

(2) If M(r4) = 1(x4 = 0), then no SMS is unmarked under M ′ = M + r∗ in NT. M ′ may be a live
marking in NT.

(3) If M(p4) = 1(x4 = 1), then M ′ = M + r∗ is a non-reachable state in NT.

(4) The total number of possible live markings under M is 1.

Proof by model. By Lemma 14 in (Chao & Yu, 2014), sB = (xkxk−1 . . . − 1300
211) is a non-reachable

state in Bottom-Right, where xi = −1, i = 4 to k; a live state where xi = 0, i = 4 to k; a forbidden
state where xi = 1, i = 4 to k. The total number of possible live states is 1. The reverse state of
sB = (xkxk−1 . . . − 1300

211) is sT = (100 − 13x4 . . . xk−2xk−1xk). By Theorem 2, we have the total number
of possible live markings under M being 1, where xi = 0, i = 4 to k. �

Proof (by siphon concept). (1) Let t′2 ∈ r∗•. Fire t′2 at M to reach a new state s′ = (1−10203 −
14x4 . . . xk−2xk−1xk), which corresponds to an unmarked siphon state and is forbidden. (2) Fire t∗1 at
M ′ again to reach a new state s′′ = (1−100304x5 . . . xk−2xk−1xk), which corresponds to a legal marking if
x5 = x6 = . . . = xk−2 = xk−1 = xk = 0 based on Lemma 9. Hence, M ′ may be a live marking in N . (3)
(−1314) is a substate of an unmarked siphon in Ner . Hence, M ′ = M + r∗ is a non-reachable state in
NT. (4) This follows from parts of (1)–(3) of this lemma. �

Remark of the proof of Lemma B4: (1) By Lemma 2, when x4 = −1 in sB (a non-reachable state), sT

will be a forbidden state in Top-Right because sT is a reachable state. (2) When x4 = 1 in sT, by Lemma
1, sT will be non-reachable because the reverse state sB is a forbidden state.

Lemma B5 (Chao & Yu, 2013) Let s = (10 0 03 04 . . . 0j−1 − 1j xj+1 xj+2 . . . xk) correspond to marking
M such that there are unmarked siphons in only the top r1 − rj siphon in Ne.

(1) If M(p′
j+1) = 1(xj+1 = −1), then M ′ = M + r∗ is a forbidden marking (necessarily evolving into

an unmarked state) in N . M ′ is a non-live marking in NT.

(2) If M(rj+1) = 1(xj+1 = 0), then no SMS is unmarked under M ′ = M + r∗ in NT. M ′ may be a live
marking in NT.
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(3) If M(pj+1) = 1(xj+1 = 1), then M ′ = M + r∗ is a non-reachable state in NT.

(4) The total number of possible live markings under M is 1k−j.

Proof by model. The proof is similar to that for Lemma B4. �

Proof (by siphon concept). (1) Let t′2 ∈ r∗•. Fire t′j t
′
j−1 . . . t′3t′2 at M to reach a new state s′ =

(1−1 0 03 04 . . . 0j − 1j+1 xj+2 . . . xk), which corresponds to an unmarked siphon state and is forbid-
den. (2) Fire at M ′ again to reach a new state s′′ = (1−1 0 03 04 . . . 0j 0j+1 xj+2 . . . xk), which corresponds
to a legal marking if xj+2 = xj+3 = . . . = xk−2 = xk−1 = xk = 0 based on Lemma 9. (3) (−1j1j+1) is a
substate of an unmarked siphon in Ner . Hence, M ′ = M + r∗ is a non-reachable state in NT. (4) Based
on parts of (1)–(3) of this lemma, for M ′ to be a live marking in NT, xj+1 = xj+2 = . . . = xk = 0. Hence,
the total number of possible live markings under M is 1k−j. �

Theorem B1 (Chao & Yu, 2013) The total number of forbidden markings in NT that may be live in Ne

is CT (k) = k − 1.

Proof. By summing 1k−j (Lemma B5) from j = 2 to k, we have CT (k) = 1+1+· · ·+1 = ∑
j=2 to k 1j−2 =

k − 1. �

Lemma B6 (Chao & Yu, 2013) Let s = (−10 02 03 04 . . . 0j−1 1j xj+1 xj+2 . . . xk) correspond to marking
M such that there are unmarked siphons in only the top r1 − rj siphon in Ner .

(1) If M(p′
j+1) = 1(xj+1 = −1), then M ′ = M + r∗ is a non-live marking in NT.

(2) If M(rj+1) = 1(xj+1 = 0), then no SMS is unmarked under M ′ = M+r∗ in NT. M ′ is a legal marking
in NT.

(3) If M(pj+1) = 1(xj+1 = 1), then M ′ = M + r∗ is an unmarked state in Nr . M ′ is a legal marking
in NT.

(4) The total number of possible live markings under M is 2k−j.

Proof by model. By Lemma 13 in Chao & Yu (2014), sB = (xk xk−1 . . . 1j . . . 03 00
2 − 11) is a live state

in Bottom-Right, where xi = 0 or 1, i = j − 1 to k; a non-reachable state where xi = −1, i = j − 1 to k;
the total number of possible live states is 2(k−j). The reverse state of sB = (xk xk−1 . . . 1j . . . 03 00

2 − 11)

is sT = (−10 02 03 . . . 1j . . . xk−2 xk−1 xk). By Theorem 2, we have the total number of possible live
markings under M being 2(k−j), where xi = 0 or 1, i = j − 1 to k. �

Proof (by siphon concept). (1) (1j−1j+1) is a substate of an unmarked siphon in NT. Hence, M ′ = M+r∗

is a non-live state in NT.
(2) This corresponds to a legal marking if xj+2 = xj+3 = . . . = xk−2 = xk−1 = xk = 0 based on

Lemma 9.
(3) M = (−1000304 . . . 0j−11j1j+1xj+2 . . . xk). M ′,′ = M + r∗ has no unmarked siphons in Nr just as

M ′ = M + r∗. Hence, M′ = M + r∗ is a live state in NT.
(4) Based on parts of (1)–(3) of this lemma, for M ′ to be a live marking in NT, xj+1 = xj+2 = . . . =

xk = 0 or 1. Hence, the total number of possible live markings under M is 2k−j. �

 by guest on Septem
ber 18, 2016

http://im
am

ci.oxfordjournals.org/
D

ow
nloaded from

 

http://imamci.oxfordjournals.org/


20 D. Y. CHAO ET AL.

Theorem B2 (Chao & Yu, 2013) The total number of non-reachable markings in Ne that may be live
in NT is AT(k) = 2k−1 − 1.

Proof. By summing 2k−j from j = 2 to k, we have AT(k) = 1 + 2 + 22 + . . . + 2k−2 = ∑
j=2 to k 2j−2 =

2k−1 − 1. �

By Lemma 1, the forbidden markings in Top-Right are non-reachable markings in Bottom-Right.
Hence, CT(k) of Top-Right=AB(k) of Bottom-Right; AT(k) of Top-Right=CB(k) of Bottom-Right.

Theorem B3 (Chao & Yu, 2013) L′(k) = 18 × 2k−2 + k − 4.

Proof.

L′(k) = 2L(k) + AT(k) + CT(k) = 2((2k+1) − 1) + 2k−1 − 1 + (k − 1)

= 2k+2 + 2k−1 + k − 4

= 16 × 2k−2 + 2 × 2k−2 + k − 4

= 18 × 2k−2 + k − 4. �

C. Applying to k-net and Top-Left k-net

In k-net, Top-Left k-net and Bottom-Left k-net, let yj
i denote the ith token state at Process j(> 1). yj

i = −1
means the ith token is at operation place pi of Process j and not at operation place pi of other processes.
Hence, y2

i + y3
i + · · · + yμ

i = yi = −1 with (μ − 1) possibilities; i.e. exactly one of y2
i , y3

i , . . . , yμ

i equals
−1; the rest are 0. yj

i = 0 means that the ith token is at resource place ri. Thus, yi ≤ 0.
Chao (2014) constructed the formulae of Łk and Ŗk for the k-net in Theorems C1 and C2, as extracted,

respectively, below:

Theorem C1 (Chao, 2014) For a k-net with μ processes, the total number of live states is Łk =
2k + (μ)k − 1.

Theorem C2 (Chao, 2014) For a k-net with μ processes, the total number of reachable states is Ŗk =
2k + (μ − 1)y(1 − xk)/(1 − x), where x = μ/2 and y = 2(k−1).

Rebuilding the index number of transitions (t1
5 , t1

4 , t∗3 , t1
3 , t1

2 , t1
1) as (t1

1 , t∗1 , t1
2 , t1

3 , t1
4 , t1

5), etc., and the index
number of resources (r1, r2, r3, r4) as (r4, r3, r2, r1) in Fig. A.1.(b), we can find that the Bottom-Left k-net
(Chao & Yu, 2015a) is the reverse net of the Top-Left k-net, as shown in Fig. A.1.

Here, we extend to construct the formulae of Ł′
k and Ŗ′

k for the Top-Left k-net based on these results.
The presence of the non-sharing resource place increases the number of states by a factor of 2. Based
on Theorem B3, we can extend to Ł′

k = 2Łk + A′(k) + C′(k), where A′(k) and C′(k) are as defined
below:
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Fig. A.1. (a) Fourth Top-Left k-net system. (b) Fourth Bottom-Left k-net system.

Theorem C3 For a k-net with μ processes,

(1) the total number of forbidden markings in the k-net that may be live in the Top-Left k-net is
C′(k) = (μ)k−1 − 1.

(2) the total number of non-reachable markings in the k-net that may be live in the Top-Left k-net is
A′(k) = (μ − 1)(k − 1).

Proof. There are (μ − 1) possible top (resp. but non) empty siphons in the Top-Left k-net (resp. k-net)
containing r1,r2 and r∗.

(1) s = (10
1 x2 x3 x4 . . . xi . . . xk−1 xk)xi = 0, or y2

i , . . . or yμ

i , we have the total number is (u(i)). Because
2 ≤ i ≤ k, and we have to exclude substate (0203 . . . 0k). Hence, C′(k) = [(μ)k−1 − 1].

(2) For each such state, there are (k − 1) states that may be live. Hence, A′(k) = (μ − 1)(k − 1). �

Theorem C4 For a Top-Left k-net with μ processes, the total number of live markings Ł′
k = 2Łk +

(μ)k−1 − 1 + (μ − 1)(k − 1).

Proof.

Ł′
k = 2Łk + A′(k) + C′(k)

= 2Łk + (μ)k−1 − 1 + (μ − 1)(k − 1). �

We have revised the number of C′(k) and A′(k) of Bottom-Left k-net (Chao & Yu, 2014) in Chao &
Yu (2015a) due to the inconsistent analysis from the viewpoint of Bottom-Right: (1) the total number of
forbidden markings in the k-net that may be live in the Bottom-Left k-net is C′(k) = (μ − 1)(k − 1);
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(2) the total number of non-reachable markings in the k-net that may be live in the Bottom-Left k-net is
A′(k) = (μ)k−1 − 1. Based on Lemma 1, the forbidden markings in the Top-Left k-net are non-reachable
markings in the Bottom-Left k-net. Hence, C′(k) of the Top-Left k-net=A′(k) of the Bottom-Left k-net;
A′(k) of the Top-Left k-net=C′(k) of the Bottom-Left k-net.

Theorem C5 For a Top-Left k-net with μ processes, the total number of reachable markings Ŗ′
k =

2Ŗk + ((μ)k−1 − 1).

Proof. Let s = (x0
1 . . . 0 . . . 1j . . . xk)2 ≤ j ≤ k be the states pattern of the reachable states of which are

non-reachable markings in the k-net but reachable markings in Top-Left k-net. The condition are: (1)
xm = 0, y2

m, y3
m, . . . , yμ

m, j + 1 ≤ m ≤ k and (2) xm = y2
m, y3

m, . . . yμ
m, m = 1. The total number of such

states is (μ − 1)((μ)k−2 + (μ)k−3 + · · · + 0) = (μ − 1)((μ)k−1 − 1)/(μ − 1) = ((μ)k−1 − 1). Hence,
Ŗ′

k = 2Ŗk + ((μ)k−1 − 1). �
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