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Abstract

23.20% (on MORPH), and 4.74% (l0G).

Developing automatic facial age estimation algorithms that are comparable or even superior to the human ability in
age estimation becomes an attractive yet challenging topic emerging in recent years. The conventional methods
estimate one person’s age directly from the given facial image. In contrast, motivated by human cognitive processes,
we proposed a comparative deep learning framework, called Comparative Region Convolutional Neural Network
(CRCNN), by first comparing the input face with reference faces of known age to generate a set of hints (comparative
relations, i.e., the input face is younger or older than each reference). Then, an estimation stage aggregates all the
hints to estimate the person’s age. Our approach has several advantages: first, the age estimation task is split into
several comparative stages, which is simpler than directly computing the person’s age; secondly, in addition to the
input face itself, side information (comparative relations) can be explicitly involved to benefit the estimation task;
finally, few incorrect comparisons will not influence much the accuracy of the result, making this approach more
robust than the conventional approach. To the best of our knowledge, the proposed approach is the first comparative
deep learning framework for facial age estimation. Furthermore, we proposed to incorporate the Method of Auxiliary
Coordinates (MAC) for training, which reduces the ill-conditioning problem of the deep network and affords an
efficient and distributed optimization. In comparison to the best results from the state-of-the-art methods, the CRCNN
showed a significant outperformance on all the benchmarks, with a relative improvement of 13.24% (on FG-NET),
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1 Introduction

With the progress of aging, the appearance of human
faces exhibits changes. The facial appearance is thus a
very important trait when estimating the age of a per-
son and facial age estimation is an essential component in
a number of mobile and social media applications [1-6].
However, the estimation of age by humans is usually not
as easy as for determining other facial information such as
identity, expression and gender. Hence, developing auto-
matic facial age estimation methods that are comparable
or even superior to the human ability in age estimation
becomes an attractive yet challenging topic emerging in
recent years [7—11].
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In the literature, the conventional way for facial age esti-
mation is a direct method to estimate the age of a person
by analysing his/her facial information (e.g., eyes, nose and
so forth) directly from the facial image of the person, cf.
Fig. 1a, c. In particular, only the input image is taken to
estimate the person’s age. However, telling someone’s pre-
cise age at a glance without any reference information is
essentially difficult even for humans [10]. In responding
to the above challenges, our idea is to develop a facial age
estimation algorithm inspired by human cognitive pro-
cesses [12]. In practice, humans commonly use several
judgements to estimate one person’s age, cf. Fig. 1b. First,
they learn to establish connections between a known age
and the corresponding facial cues of a person (the direct
method) and second, they take the learnt knowledge as
reference to judge if an unseen face is younger or older
than the reference (the comparative method). The larger
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Fig. 1 Schematic diagram of a, ¢ the conventional paradigm for facial age estimation by learning the age information from a facial image directly, and
b,d the proposed paradigm by aggregating the comparisons of a facial image with baseline samples to determine the age in a comparative manner

the number of available references are, the more precise
the age of an unseen face can be estimated.

Therefore, a general mathematical framework, namely
Comparative Region-Convolutional Neural Network
(CRCNN), is proposed for facial age estimation, cf.
Fig. 1d. Conceptually, we compare an unseen face with
a set of selected references (labelled baseline samples)
to determine if the person of the unseen face is younger
or older than each of the baseline persons. We couple
this comparative scheme with a specific deep learning
architecture, namely Region-Convolutional Neural Net-
work (R-CNN) [13]. The R-CNN is exploited to extract
the most “iconic” local region from each facial image,
where the spatial context (geometrical interrelation) of
the extracted local regions can be also accounted for
robust classification. In the proposed CRCNN frame-
work, not only the input image is used, but also several

other reference images are taken as baseline samples to
be compared with the input. The comparison is equiva-
lent to estimate if the input person is younger or older
than the other ones. In comparison to the conventional
paradigm, the first advantage of this approach is to refor-
mulate the estimation task into sequentially independent
sub-problems. Each sub-problem represents a compari-
son (younger/older decision) between two images, which
is much simpler than the initial task, i.e., guessing the
exact age of an observed face. The second advantage is,
by simply increasing the number of baseline samples,
more side information (comparisons) can be exploited
to benefit the estimation task, leading to a more robust
estimation. Last but not least, one more advantage by
leveraging many baseline samples is that few incorrect
comparisons will not influence much the accuracy of the
age estimation.
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Further, the traditional way to learn the parameters of
a deep architecture is to minimize an objective func-
tion by computing the gradient over all the parameters
using the backpropagation algorithm [14] with a nonlin-
ear optimizer. However, the deep learning method has
been observed to be very difficult to train especially due to
the ill-conditioning problem and local minima issue [15].
These difficulties also complicate the manual tuning of
deep learning parameters as well as the convergence. In
this work, we propose to incorporate the recent Method
of Auxiliary Coordinates (MAC) [16] into our framework
for training, which appears to open an interesting door
toward more efficient training of deep architecture. The
method introduces a set of variables to break the objec-
tive function dependency, which makes the problem much
better conditioned without nesting, affording an efficient
and distributed optimization.

Our main contributions are multifold: first, to the best of
our knowledge, our CRCNN framework is the first com-
parative deep learning approach for facial age estimation
and has demonstrated its outperformance over the state-
of-the-art methods by experimenting with well-known
face datasets. In addition, instead of using the classical
deep learning techniques, e.g., Convolutional Neural Net-
work (CNN) [17], we proposed the use of R-CNN to
account for the spatial context of facial regions; secondly,
we improved the training efficiency of deep architecture
by incorporating the MAC techinique. The notorious ill-
conditioning problem of deep learning can be alleviated;
thirdly, we implemented our mathematical framework
with CAFFE [18], a popular deep learning platform which
exploits the parallelization over multiple GPUs. The com-
patibility with CAFFE makes all the components of our
mathematical implementation readily available to be used
by other researchers; fourthly, observing the fact that the
sensitivity of deep learning parameters makes it a non-
trivial task to obtain an appropriate setting, the systematic
investigation on parametric optimization provides a guid-
ance to users who would extend our approach for their
future researches.

This paper is organized as follows. Section 2 describes
the related work. Section 3 presents our algorithm, and
Section 4 gives experimental results to demonstrate the
optimization and the various advantages of our approach.
Section 5 draws the conclusions and gives directions for
future work.

2 Related work

Many researchers have developed techniques for facial
age estimation. Most of the previous works focus on the
extraction and fusion of different types of facial features:
the extraction of local features by using various meth-
ods [9]; the combination of hybrid features (e.g., Gabor
filters and local binary patterns) by using hierarchical
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classifiers based on support vector machines (SVMs) and
support vector regression (SVR) [8, 19]; the fusion of tex-
tural and local appearance based descriptors to achieve
faster and more accurate results [20]; the use of canonical
correlation analysis (CCA) for jointly estimating the age
with other facial information like gender [21]. Recently,
the deep learning has been applied for facial age estima-
tion, e.g., a multilayered neural network is integrated with
the adapted retinal sampling mechanism [22]; the con-
volutional neural network based methods [23, 24] have
been studied as well; a constructive probabilistic neural
network based on learning from label distributions was
also presented [10]. In summary, the previous works all
followed the conventional paradigm, i.e., learning direct
mappings between the extracted facial features and the
associated age labels. These observations motivated the
development of our comparative approach with the deep
learning method.

Motivated by human cognitive processes [12], a more
robust way to estimate a facial age is arguably to be in
a comparative manner, ie., learning from a number of
comparative relations (a given face is younger or older
than another face of known age). The development of
our approach was also inspired by other ranking-based
approaches, such as Ranking SVM [25], RankBoost [26],
and RankNet [27]. Ranking SVM [25] formalizes the
learning to rank as a problem of classifying instance
pairs into two categories (correctly ranked and incorrectly
ranked). Experimental results from this approach showed
that the algorithm performs well in practice, successfully
adapting the retrieval function of a meta-search engine to
the preferences of a group of users. However, the losses
(penalties) of incorrect ranking between higher ranks and
lower ranks and incorrect ranking among lower ranks are
defined the same. This remark will cause troubles for facial
age estimation as the youngest and oldest persons pro-
vide totally different facial information. RankBoost [26] is
another ranking algorithm that is trained on pairs, which
is close in spirit to our work since it attempts to solve
the preference learning problem directly, rather than solv-
ing an ordinal regression problem. Results are given using
decision stumps as the weak learners. RankNet [27] is sim-
ple to train and gives good performance on a real world
ranking problem with large amounts of data. RankNet
explored the use of a neural network formulation. A prob-
abilistic cost for training systems is also proposed to learn
ranking functions using pairs of training examples. In this
paper, we propose a novel ranking approach through our
comparative framework for facial age estimation. First, a
set of selected references, i.e., baseline samples, is intro-
duced into the framework to make each rank more robust.
Secondly, our age estimation model will be generated
with the deep learning technique, providing efficient fea-
tures to rank each age from facial information. Finally,
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the younger/older comparison will provide robust ranking
by leaning similar facial information to estimate similar
ranks, thus the ranking will be better structured.

3 The proposed method: a CRCNN framework

The proposed Comparative Region-Convolutional Neural
Network (CRCNN), a general mathematical framework for
facial age estimation, is developed by comparing an input
face with a number of baseline samples to determine its
age. We compare the input face with each baseline sample
and determine if the input face is older or younger than
the baseline person. A set of hints (comparative relations)
is therefore collected. The estimation stage aggregates
the set of hints to obtain the age of the input person.
In this section, we first explain some preliminary defi-
nitions (Section 3.1). Then we give an overview of our
CRCNN framework (Section 3.2). Finally each algorith-
mic component in our approach is explained in details
(Section 3.3).

3.1 Preliminary definitions
Before explaining our CRCNN framework, we first define
two terminologies: the baseline and the set of hints.

a) Baseline: The objective is to compare the age of an
input image with those of a set of reference images, where
the ages of these references are known. We define these
references as the baseline. A baseline is composed by a set
of reference samples, as many as possible to thoroughly
cover the value range of possible ages (e.g., labels). In other
words, each baseline sample represents an age label. In a
minimum, we take one baseline sample per label, there-
fore, if we have M labels, then we have M baseline samples
in total. And if we have K baseline samples per label, we
will have totally MK baseline samples.

b) Set of hints: To understand the exploitation of the
set of hints, we follow the example in Fig. 2. To esti-
mate the age of an input X (the ground-truth age is 62),
we first compare the input with the baseline samples
B = {Bj,...,Bs}. A hint can be in two categorical types:
“younger” or “older”! For each baseline sample, if the age
of the input is estimated to be larger than the age of the
baseline sample (i.e., the input person is estimated to be
“older” than the baseline one), we add a hint for the corre-
sponding label of every baseline sample with its age larger
than (or equal to) the comparing one. For example, we
consider the comparison between X and Bj. Since X is
older than By, we thus add a hint for the labels of B,
B3, B4, and Bs to indicate that they are all possible labels
for X. Similarly, if the input person is estimated to be
“younger” than the baseline person, then we add a hint for
the corresponding label of every baseline sample with its
age smaller than (or equal to) the comparing one. In this
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Fig. 2 Generation of a set of the hints (for simplicity, five labels are
presented)

way, the obtained hints of each label in number is propor-
tional to the likelihood that a label is the true label to the
input, e.g., in Fig. 2, By is the most likely label to X and B
is the most unlikely one.

3.2 Anoverview of our CRCNN framework
Our CRCNN framework can be decomposed into two
main stages, as presented in Fig. 1(d):

3.2.1 The comparative stage (collecting the hints)

After building up a baseline, the input image is com-
pared with each of the baseline samples. We use the
R-CNN deep architecture to extract facial information
from the images and then apply an energy function-based
aggregation to generate the comparisons (Section 3.3.1).
Therefore, a set of hints is collected. Each hint represents
a comparative relation (younger or older) which provides
information to compute the estimated age at the next
stage.

3.2.2 Theestimation stage (voting the hints)
This stage votes by the results from the set of hints to
compute the estimated age (Section 3.3.2).

3.3 The CRCNN formulations

Considering 7 as a universal set of facial images and £ be
the corresponding label set of possible ages of a human
being, we are given a training set of N facial images X € Z
and its label Y € L. Let F denotes the deep architecture
function. Instead of computing Y with F as usual in the
conventional paradigm:

F: 7T — L

X = Y=FX). D
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The idea is to introduce a baseline B = {By,..., By}
from Z with a composition function ¥ and & in order
to decompose the task into two main parts. Note that X
and B are usually disjoint. First, in the comparative stage,
the comparison of X and the baseline B with W provides
the set of hints H (Section 3.3.1). Second, in the estima-
tion stage, the vote of hints from the set of hints H is to
obtain the final label £ with ® (Section 3.3.2). Therefore,
the proposed CRCNN approach is formulated as follows:

TxT) ¥ H ] L
- g
X,B) — Z=VY(X,B) —» Y=0(2).

3.3.1 The comparative stage
The set of hints Z € H is computed from X € Zand B € 7
with the function ¥ which is decomposed into:

W= WR o wC o wlowho w4,

The first operator WX detects all the regions where the
facial information is selected by R-CNN to be the most
relevant. The second operator W¢ is the convolutional
step (including sub-sampling layers) that extracts a fixed-
length feature vector from each region. The third and
fourth operators (UL and WF) are the locally and fully-
connected steps [17]. Finally, the features of both the input
image and baseline samples are aggregated into the last
operator W4 where an energy function approximates the
age comparison with a distance metric.

Region-detection layer: Consider X; € Z, an input
image, a set of candidate regions {X;;}j—1..; is detected
from X; in order to extract more efficient facial informa-
tion features. Each region X;; is detected by the algorithm
in [13]. The same region-detection operator WX is applied
to each baseline sample B,, providing a set of candidate
regions {B,, j}y1..j. Therefore, we denote by H; the first
hidden layer of our deep architecture, formed with the
region-detection layer. Notice that, if no region detection
is used (WX is equivalent to an identical function), then we
set the output as the input image itself ({X;} = {Xi}).

Convolutional layers: The convolutional operator W¢
extracts features from the first hidden layer H;. Specif-
ically, features are computed by forward propagating
through a convolutional structure of |C| layers with

C C C C
W™ = Yo Y, o-~~o‘~I/|C|.

These steps expand the input into a set of simple local
features. We denote H;y = \I/kC(Hk,l) as the output of
a convolutional layer for k = 2,3,...,|C| + 1. More
details of the convolutional layer can be referred to [17].
We interpret these convolutional steps as an adaptive pre-
processing step. The purpose of these convolutional steps
is to extract low-level features, like simple edges and tex-
tures. Notice that the sub-sampling layers make the output

Page 50f 13

of convolution networks more robust to local transla-
tions and small registrational errors, which is important in
facial recognition problem.

Locally-connected layers: After extracting features with
WC, applied independently to X; and B,,, we first combine
locally extracted features through |L| locally-connected
layers with

L L L L
Yo = Yy o Wy o~--o\IJ‘L‘,

resulting to Hy = Wf(Hy_y) for k = |C| + 2,|C| +
3,...,|C|+|L|+1. Like in the convolutional deep learning,
the locally-connected layers apply a filter bank, but every
location in the feature map learns a different set of filters.
For example, information from an area between the eyes
and the eyebrows will be combined with the one between
the nose and the mouth, but the two pieces of infor-
mation will be processed differently in the convolutional
operation.

Fully-connected layers: Then, the fully-connected oper-
ation W computes all the weights together with

F F F F
Y' =1y; o, o---o\IIIF‘

and Hy = W{(Hy_y) for k = |C| + |L| + 2,|C| + L] +
3,...,|Cl + |L| + |F| + 1. Unlike in the locally-connected
operation where the inputs are locally combined, each
output unit in the fully connected layers is connected
to all inputs. These layers are able to capture correla-
tions between features captured in distant parts of the
face images, e.g., the position and shape of eyes and the
position and shape of mouths.

Aggregation: An EBM energy function [28] is exploited
to aggregate both information of X; and B,;, from the fully-
connected operation in order to estimate if X; is younger
or older than B,,. The advantage of the adopted energy
function is that there is no need for estimating normalized
probability distributions over the input space. The scalar
energy function £ measures the compatibility between
X; and B, and leads to a set of hints associated with
the in-between comparative relation, cf. Fig. 2. This real-
valued energy function is thus defined as E(X;,B,,) =
[IGw (X;) — Gw(By)||, where Gw is a mapping (subject
to learning) to produce output vectors that are nearby for
images from the same person, and far away for images
from different persons [28].

Learning is then performed by finding the deep archi-
tecture parameters that minimize a suitably designed loss
function, evaluated over a training set. Consider L~ (or
L) the partial loss function if X; is younger (or older) than
B,,;, our loss function is of the form

L=(1-Z)L™ (EX;;Bw) + (Z;) L™ (E(Xi, Bn)),



Abousaleh et al. EURASIP Journal on Image and Video Processing (2016) 2016:47

where Z; is the ground truth of the hint Z;. The partial
loss function L™ (or L™) is designed in such a way that the
minimization of L will decrease (or increase) the energy
when X is younger (or older) than B;. A simple way to
achieve that is to make L™ monotonically decreasing, and
L monotonically increasing.

3.3.2 Theestimation stage

Once the set of hints have been generated, the estimation
stage is applied to vote by the output information of the
previous comparative stage in order to estimate the per-
son’s age. The representation of the set of hints in Fig. 2
includes the number of hints for each label. This result is
computed by applying a summation at each label. There-
fore, the age of the input person could be estimated by
taking the label with the most votes in a naive way. In prac-
tice, to avoid the case where the most votes appears in
more than one label, we choose to use the real value out-
putted from the energy function E instead of the number
of hints Z;, since the confidence of a vote is also embed-
ded. That is, a larger value indicates the higher confidence
of a vote, and vice versa.

3.4 Learning method for the comparative stage

In this work, we propose to incorporate the recent
Method of Auxiliary Coordinates (MAC) [16] for training
the comparative stage. The MAC method decouples the
typical learning problem of the comparative stage, which
typically has an objective function in the form

min || Z— ¥ (X,B) ||
into the following one:

min || Hgp1 — Wi (He) I

min || Z — ¥x (Hg) |17

fork = 1,2,...,|C| + [L| + |F| and K = |C| + |L] +
|F| + 1. Note that the MAC is applied only to the con-
volutional, locally- and fully-connected layers, such that
Uy € {lIJC, \IJ,];, LI/;:}. The problem becomes a set of small,
independent minimization subproblems, each of which
can be easily solved, and without back-propagating any
gradients. The objective function is optimized over the
hidden layer H and over the weights W (of the function
W) with the two functions below alternatively:

Vi1 Wi
Hy_1 — Hi — Hiqg

Wi
Hy — Hi

Specifically, optimizing the objective function over the
hidden layer Hy means optimizing the following nonlin-
ear, least-squares regression of the form

min || Hy — Wiy (Heey) 2 + )| Hir — We(Hy) |
k

Page 6 of 13

and alternatively, optimizing over the weight W (of the
function Wy) with

min | gt — W (W5 H) I
Wk

Notice that optimizing over the hidden layer Hy has
fixed weights WX and optimizing over the weight W* has
fixed hidden layer Hy. This minimization problem results
in several independent, single-layer single-unit problems
that can be solved with existing algorithms, without extra
programming cost. We solve this nonlinear least-squares
fitting problem with a Gauss-Newton approach [29].

4 Experimental results and discussions

In this section, we present the results from a series of
experiments designed to optimize and to test the effec-
tiveness of our CRCNN framework. We implemented our
experiments using CAFFE in a machine with Intel CPU
duo-cores (at 3.40 GHz). Firstly, we present the general
setting of our experiments. Secondly, we optimize the
setting (i.e., try our best to search for the best setting
empirically) of our CRCNN approach. Finally, we compare
our CRCNN approach with the state-of-the-art methods
in facial age estimation.

4.1 Experimental setup

4.1.1 Datasets

We used three public datasets in the experiments and they
are also common benchmarks adopted in the related liter-
ature [10, 21, 30, 31]. The first one is the FG-NET Aging
Database [32]. There are 1002 face images from 82 sub-
jects in this database. Each subject has 6-18 face images
at different ages. Each image is labelled by its real age.
The ages are distributed in a wide range from 0 to 69.
The dataset images exhibit large facial variations, such as
significant changes in pose, illumination, expression, etc.
The second dataset is the MORPH Database [33]. There
are 55,132 face images from more than 13,000 subjects
in this database. The average number of images per sub-
ject is 4. The ages of the face images range from 16 to
77 with a median age of 33. The faces are from different
races, among which the African faces account for about
77%, the European faces account for about 19%, and the
remaining 4% includes Hispanic, Asian, Indian, and other
races. Finally, the last one is the Images of Groups (IoG)
dataset [34]. The dataset consists of 5080 images with a
total of 28,231 labeled faces. The images were acquired
through searches on the photo-sharing website Flickr, and
each face is assigned to one of seven age groups: 0-2, 3-7,
8-12, 13-19, 20-36, 37-65, and 66+. As the images were
collected from searches, there is an extremely uneven
distribution of images across age and pose.
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4.1.2 Implementation platform

CAFFE [18] is a BSD-licensed C++ library with Python
and MATLAB bindings for training and deploying general
purpose convolutional neural networks and other deep
models efficiently on commodity architectures. It is now
a very popular deep learning platform and we chose to
implement our CRCNN framework based on it to give
high extendibility for future practitioners to integrate their
own implementations with our CRCNN framework.

4.1.3 Early and late fusion schemes

We perform our mathematical comparative method with
two different schemes: the early fusion and the late fusion
[35]. The framework described in this paper first adopts
the late fusion scheme, i.e., we extract features from the
input image and each baseline sample separately and then
fully connect all the information into a final layer of the
deep architecture. Alternately, the early fusion scheme
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first combines the input image with the baseline sam-
ples and then extracts information from the both type of
images together in the same time. Both fusion schemes
will be optimized, tested, and compared to the state-of-
the-art results.

4.2 Optimization of our CRCNN framework

In this section, we present the optimization of our deep
architecture. The purpose is to provide insights on the
sensitivity of the parameters associated with our CRCNN
framework. First, the performance of the comparative
stage with different settings of the deep architecture’s
parameters (e.g., fusion strategy, baseline, region detec-
tion, etc.) is presented in Fig. 3. Each sub-figure repre-
sents the performance of a parameter when in different
values (or choices). The empirically optimal values of
our CRCNN parameters from the experiments are sum-
marized in Table 1. Secondly, the sensitivity between
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Table 1 The optimized setting of our CRCNN method

Deep architecture’s parameters Optimized value

Fusion Early
Number of baseline samples 5
Region detection Yes
Number of convolutional layers 3
Number of locally-connected layers 0
Number of fully-connected layers 1
Batch size 32
Activation function reLU
Dropout 0.5
Learning rate 1
Momentum 0.9
Weight penalty Te-2

parameters is presented in Fig. 4. Each sub-figure repre-
sents the correlation coefficient of a parameter and the
others based on the obtained performances (of the com-
parative stage). The lower the correlation coefficient is
(close to 0), the more independent the two parameters are;
the higher the correlation coefficient is (close to 1), the
more dependency between them on the performance of
the comparative stage will be. For example, in Fig. 4g, the
correlation coefficient of BS (batch size) and D (dropout)
is less than 0.5 (weakly related) and the correlation coeffi-
cient of BS and itself is naturally 1 (perfectly related). Note
that raw image pixels are taken as the extracted features.

4.2.1 CRCNN parameters:

Fusion strategy (F): The early and the late fusion are dif-
ferent in the way of sharing weights. In the early fusion,
both types of images (the input one and the baseline ones)
share the same set of weights, and in the late fusion, each
image has its own weight. As can be seen in Fig. 3a, the
first value (88.3%) represents the accuracy when the early
fusion is applied to our CRCNN framework, and the sec-
ond value (83.9%) represents the accuracy when the late
fusion is applied. In other words, Fig. 3a shows a better
accuracy when the early fusion is applied. This obser-
vation intuitively corresponds to the fact that learning
shared weights improves the inner relation between the
input image and the baseline. We observe in Fig. 4a that
the optimization of each fusion strategy depends on the
whole deep architecture (i.e., convolutional layers, locally
connected layers, and fully connected layers) and the value
of dropout.

Baseline (B): Each baseline sample is taken as a reference
to represent a range of possible ages (e.g., labels). In our
optimization, we take M baseline samples per label, with
M = 1,5. As expected and observed in Fig. 3b, a more
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robust computation is provided when M > 1 baseline
sample to represent each label. Correlations exist between
this parameter and the region detection, and also with sev-
eral deep learning parameters, such as the momentum and
the weight penalty (Fig. 4b).

Region detection (R): We optimized our method with
and without the region detection. In other words, this
optimization is equivalent to optimize our CRCNN
method by combining the R-CNN [13] or the classical
CNN [17]. Figure 3c shows the results of this optimiza-
tion and it is clear that region detection WX can extract
more robust features for improving the performance. The
performance of applying this detection depends on the
setting of its input (e.g., baseline) and output (e.g., convo-
lutional layers) as observed in Fig. 4c.

Convolutional layers (CL): We optimized the convolu-
tional layers WC relating to the influence of the number
of layers. Several numbers of layers have been experi-
mented and the results are shown in Fig. 3d. We observe
that three convolutional layers provide the best results
and the number of layer is logically correlates with its
previous and following layers (the region detector and
the locally-connected layer W¢), also with the value of
dropout and as mentioned previously, the early/late fusion
choice (Fig. 4d).

Locally-connected layers (LL): We optimized the
locally-connected layers WX, Figure 3e shows the results
for different numbers of layers. The most accurate
result is provided when the convolutional layer W is
directly connected with the fully-connected layer W¥, Its
influence between other parameters is the same as the
convolutional layers (Fig. 4e).

Fully-connected layers (FL): The optimization of the
fully-connected layers W’ is shown in Fig. 3f. We observe
that only one fully-connected layers is enough to pro-
vide the best results. Notice that the optimization of the
number of fully connected layer can be set independently

(Fig. 4f).

Batch size (BS): The “batch” learning accumulates con-
tributions for all data points, then updates the parame-
ters. We use the “mini-batches” learning [36], where the
parameters are updated after every » data points (i.e., this
approach divides the dataset into piles and learns each
pile separately). The computation time of learning the
deep architecture depends on the number of epoches and
the size of batches. Fig. 3g shows two different sizes of
batches. Empirically, we take batchsize = 32 and the
batch size can be optimized independently (Fig. 4g).



Abousaleh et al. EURASIP Journal on Image and Video Processing (2016) 2016:47 Page 90f 13

a Fusion Strategy b Baseline ¢ Region detector

d CONV. Layers e LOCAL Layers f FULL Layers
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Fig. 4 Optimization of our CRCNN approach: sensitivity of the deep architecture’s parameters. a Fusion Strategy. b Baseline. ¢ Region detector.
d CONV. Layers. @ LOCAL Layers. f FULL Layers. g Batch size. h Activation function. i Dropout. j Learning rate. k Momentum. I Weight Penalty

Activation function (AF): The type of non-linear acti-
vation function is typically chosen to be the logistic sig-
moid function sigm and reLU. We observe in Fig. 3h
that reLU has better accuracy than sigm. Usually,
reLU trains faster and outperforms the other activation

functions. This parameter can be also set independently
(Fig. 4h).

Dropout (D): The dropout process is that each hidden
unit is randomly omitted from the deep architecture with
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a probability such that a hidden unit cannot rely on other
hidden units being presented, based on the observation
that this parameter is correlating with the deep archi-
tecture (Fig. 4i). Previously, we observed the dependency
between the influence of this parameter and the early/late
fusion choice. Therefore, each fusion strategy leads to
its own setting: dropout = 0.5 for the early fusion
(Fig. 3i) and dropout = 0 for the late fusion.

Learning rate (LR) and momentum (M): We continue
the analysis with the learning rate and momentum. Each
iteration sees an update of the weight by the computed
gradient. The learning rate represents the convergence
speed and the momentum parameter introduces a damp-
ing effect on the search procedure, thus avoiding oscilla-
tions in irregular areas of the error surface by averaging
gradient components with opposite signs and accelerat-
ing the convergence in long flat areas. In our experi-
ments, we observed that in Fig. 3j, k the unit step and
the momentum both near to 1 converges better. As a
result, we take learning rate = 1 and momentum
= 0.9, which have to be set dependently (Fig. 4j, k). That
is, it has been shown that the use of the momentum in
the age estimation task can avoid the search procedure
from being stopped in a local minimum and improves
the convergence of the back propagation algorithm
in general.

Weight penalty (WP): The last parameter is a constraint
on the updating weight and we observe in Figs. 3l and
4] that the penalty can be set as penalty = le-2
and will influence the setting of several parameters, such
as the momentum, the baseline and the fully-connected
layers.

In summary, the architecture of our CNN consists of
three convolutional layers (CL), each of which is followed
by the rectification, max-pooling and normalization. In
addition, one fully connected layer (FL) is used. The net-
work architecture is detailed as follows:

1. CL: The kernel size is 5 x 5, 1 stride - ReLU - Pool

3 x 3, 2 stride - Local Response Normalization (LRN).
2. CL: The kernel size is 5 x 5, 1 stride - ReLU - Pool

3 x 3, 2 stride - Local Response Normalization (LRN).
3. CL: The kernel size is 5 x 5, 1 stride - ReLU - Pool

3 x 3, 2 stride - Local Response Normalization (LRN).
4. FL.
5. Softmax Loss Layer.

4.2.2 Computational cost

Given an input image, our comparative approach com-
pares it with all the k baseline samples, but not with all
the N training samples. For example, in our experiments,
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each age label is represented by one baseline sample, and
totally we have 9 labels, making k = 9. In other words,
we only need to compute the comparative relation of the
input image for k times, where k can be a small number
and much less than N. Therefore, the computational cost
of our approach is reasonable.

4.3 Discussions and comparisons with state-of-the-art
methods
We compare our approach with others recent facial age
estimation techniques such as rKCCA [21], IIS-LLD [10],
CPNN [10], OHRank [31], AGES [37] and two aging func-
tion regression based methods, i.e. WAS [38] and AAS
[39]. In addition, several conventional general-purpose
classification methods, k-Nearest Neighbors (k\NN) [40],
Back Propagation neural network (BP) [41], C4.5 decision
tree [42], Support Vector Machine (SVM) [43], Adaptive
Network based Fuzzy Inference System (ANFIS) [44], as
well as ranking based approaches are included, such as
Ranking SVM [25], RankBoost [26], and RankNet [27].
We trained by using Leave-One-Person-Out (LOPO) test
strategy [45], a popular test strategy, as suggested in the
related benchmarks [10, 21, 31, 37]. Specifically, we split
the used datasets (FG-NET and MORPH) by adopting
the same training/testing protocol for all the comparing
methods. For example, the LOPO is used on the FG-NET
dataset as follows: in each fold, the images of one person
are used as the testing set and those of the others are used
as the training set. After 82 folds (the FG-NET dataset has
a total of 82 subjects), each subject has been used as the
testing set in turn, and the average results are computed
from all of the estimates. However, since there are more
than 13,000 subjects in the MORPH dataset, the LOPO
test will be too time-consuming. Thus, we adopted the
10-fold cross validation instead on the MORPH dataset.
Our CRCNN method is configured with the deep learn-
ing parameters optimized in Section 4.2.1 and detailed in
Table 1. Here the human tests are included for reference,
which were performed on 5 percent samples from the FG-
NET database and 60 samples from the MORPH database
[10]. The performance of the age estimation is evaluated
by the Mean Absolute Error (MAE) metric. In statistics,
MAE is a metric used to measure how close a prediction is
to the ground truth. In our case, the MAE is a mean of the
absolute errors between the estimates and the true ages,
MAE = Z],Ll |ax — ay| /N, where @y and ay are the esti-
mate and the true age of the sample image &, and N is the
total number of samples. The standard deviations on the
MORPH dataset are also given in Table 2. For example, a
number in the format a &+ b means that the mean absolute
error is a with a standard deviation b. Note that some of
the comparing methods (e.g., IKCCA and rKCCA+SVM)
do not show the standard deviations because they do not
report the standard deviation values in the experiments
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Table 2 Comparison with state-of-the-art methods on FG-NET
and MORPH databases

Method Database (FG-NET)  Database (MORPH )
CRCNN (early fusion) (RCNN)  4.13 3.74 +0.29
CRCNN (early fusion) (CNN) 472 433 +0.27
CRCNN (late fusion) (RCNN) ~ 4.20 381+£032
CRCNN (late fusion) (CNN) 481 4524023
Ranking SYM [25] 5.24 649 £0.17
RankBoost [26] 567 6.83 £ 0.25
RankNet [27] 546 6.71 £0.24
rKCCA [21] - 398

rKCCA + SVM [21] - 3.92

IIS-LLD [10] (Gaussian) 577 567 +£0.15
[IS-LLD [10] (Triangle) 5.90 6.09+0.14
IIS-LLD [10] (Single) 6.27 6.35+0.17
CPNN [10] (Gaussian) 4.76 487 £0.31
CPNN [10] (Triangle) 5.07 491 £0.29
CPNN [10] (Single) 531 6.59 + 031
OHRank [31] 6.27 628 +0.18
AGES [37] 6.77 6.61 £0.11
WAS [38] 8.06 9.21+£0.16
AAS [39] 14.83 10.10 £ 0.26
kNN [40] 8.24 9.64 £ 0.24
BP [41] 11.85 1259 £1.38
C4.51[42] 9.34 748 £0.12
SVM [43] 7.25 734+0.17
ANFIS [44] 8.86 924 £0.17
Human Tests (HumanA) 8.13 8.24

Human Tests (HumanB) 6.23 723

The data in boldface means the best results of FG-NET and MORPH database are
both from our CRCNN approach (with the early fusion scheme)

of their papers. For the results of the FG-NET dataset, we
follow the common practice of the previous work (e.g.,
[10]) and do not show the standard deviations. For exam-
ple, as mentioned in [10], “the number of images for each
person in the FG-NET database varies dramatically. Con-
sequently, the standard deviation of the LOPO test on the
FG-NET database becomes unstable”. In other words, for
the FG-NET database, the values of standard deviation
are not so statistically meaningful and thus these values
are not shown. The statistics are tabulated in Table 2. As
can be seen, the best results (boldfaced) are both from
our CRCNN approach (with the early fusion scheme). The
second best results are also from our CRCNN approach
(with the late fusion scheme). The overall performance
of CRCNN is very encouraging. Our results are signif-
icantly better than all of the state-of-the-art methods.
In comparison to the deep learning based method, i.e.
CPNN [10], we also achieved a better performance, with
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a relative improvement of 13.24% (from 4.76 to 4.13 on
FG-NET) and 23.20% (from 4.87 to 3.74 on MORPH).
These facts validate the robustness of the newly proposed
comparative approach.

We further performed an evaluation on the IoG
database. It consists of 28,231 facial images collected from
the Flicker. Each face is labeled in one of the defined seven
age groups: 0-2, 3-7, 8-12, 13-19, 20-36, 37-65, and
66+. In our evaluation, we considered only faces having
an interocular distance more than 40 pixels, resulting in
a subset of 1495 face images. We further reorganized the
age labels into the child, teen, and adult classes with the
age range of 0-12, 13-19, and 20+, respectively. The set-
ting yielded the following amount of samples per each age
group: 546, 250, and 699. Finally, we performed the same
normalizations as in the previous experiments on all of
the IoG faces. We compare our results with the ranking
based methods, including [25-27], and Local Binary Pat-
tern Kernel Density Estimation (LBP-KDE) [30]. The age
group classification performance is represented in Table 3.
We can observe better performances of our approach over
the state-of-the-art methods, with a relative improvement
from 4.74% (in LBP-KDE) to 13.74% (in RankBoost). We
believed the outperformance of our CRCNN approach on
all the datasets demonstrated its effectiveness for practical
applications.

5 Conclusions

This paper proposed a novel comparative deep learning
framework for facial age estimation, namely Comparative
Region Convolutional Neural Network (CRCNN). Moti-
vated by human cognitive processes, we use a comparative
approach to determine the age of an unseen person. To
the best of our knowledge, it is the first comparative
approach in deep learning for facial age estimation and the
experimental results validate the outperformance of our
CRCNN approach over state-of-the-art methods. One of
our future work is to further improve the baseline selec-
tion, since obtaining an effective baseline is crucial in our

Table 3 Comparison with state-of-the-art methods on loG

database

Method Database (IoG)
CRCNN (early fusion) (RCNN) 66.41%
CRCNN (early fusion) (CNN) 63.16%
CRCNN (late fusion) (RCNN) 65.48%
CRCNN (late fusion) (CNN) 62.19%
LBP-KDE [30] 61.67%
Ranking SVM [25] 56.17%
RankBoost [26] 52.67%
RankNet [27] 55.08%

The data in boldface shows that the performance of our approach on 1oG database
is better comparing to the state-of-the-art methods
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comparative approach. As aging procedures are quite dif-
ferent from person to person, especially from different
social groups, we also plan to build a “baseline bank” (con-
stituted by a set of baselines, with each corresponds to a
computed group of social consistency), instead of using a
single and global baseline. Further research on CRCNN in
these directions will be attractive future work.

Endnote

! Note that, in this paper, the comparative relations of
“younger” and “older” are actually defined to be “younger
than or equal to” and “older than or equal to”, respectively.
The “same age” relation thus exists when the two relations
hold simultaneously.
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