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a b s t r a c t

This investigation establishes the global cluster synchronization of complex networks with a community
structure based on an iterative approach. The units comprising the network are described by differential
equations, and can be non-autonomous and involve time delays. In addition, units in the different
communities can be governed by different equations. The coupling configuration of the network is
rather general. The coupling terms can be non-diffusive, nonlinear, asymmetric, and with heterogeneous
coupling delays. Based on this approach, both delay-dependent and delay-independent criteria for global
cluster synchronization are derived. We implement the present approach for a nonlinearly coupled
neural network with heterogeneous coupling delays. Two numerical examples are given to show that
neural networks can behave in a variety of new collective ways under the synchronization criteria. These
examples also demonstrate that neural networks remain synchronized in spite of coupling delays between
neurons across different communities; however, theymay lose synchrony if the coupling delays between
the neuronswithin the same community are too large, such that the synchronization criteria are violated.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past few decades, complex networks of coupled
dynamical systems have been widely exploited to model many
real-world complex systems in the sciences, engineering, society,
and so on (see Boccaletti, Latora, Moreno, Chavez, & Hwang, 2006;
Strogatz, 2001; Wang & Chen, 2003). For instance, the celebrated
Hopfield neural network, serving as content-addressable memory
systems, has provided a model for understanding biologically
inspired architectures for information and image processing
(Hopfield, 1982). Synchronization, an important and inherent
phenomenon in a wide range of real systems including biological
and physical systems, has attracted considerable attention from
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researchers (Glass, 2001; Pikovsky, Rosenblum, & Kurths, 2001).
Inspired by the pioneering work of Pecora and Carroll (1990),
the synchronization of complex networks has received increasing
attention in a wide range of research areas such as engineering,
biology, and physics. More specifically, in recent years the
synchronization of coupled neural networks has been extensively
investigated by virtue of its wide potential application in many
fields including secret communication (Sheikhan, Shahnazi, &
Garoucy, 2013; Xia & Cao, 2008), pattern recognition (Haken, 2005;
Hoppensteadt & Izhikevich, 2000), and parallel image processing
(Bräunl, Feyrer, Rapf, & Reinhardt, 2013; Krinsky, Biktashev, &
Efimov, 1991).

Complex networks of coupled systems can behave collectively
in many ways, and this behavior is possibly distinct from their
behavior in isolation. This collective behavior is determined by the
dynamics of the individual nodes, coupling configuration between
the nodes, and coupling time delays. Among these factors, delays
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are ubiquitous in many natural and artificial systems, and there
have been various attempts to incorporate them into network
modeling (Crook, Ermentrout, Vanier, & Bower, 1997; Yu, Cao, &
Chen, 2008). Indeed, coupling delays are known to be capable of
modifying the collective dynamics of coupled systems.

Various synchronization phenomena that appear in a wide
range of real systems have been investigated and several different
synchronization models and scenarios have been reported in the
literature. These synchronization protocols include complete or
identical synchronization (Li & Yang, 2015; Lu, Chen, & Chen, 2006;
Wu, 2005; Yu, Cao, & Lu, 2007), phase synchronization (Rosenblum,
Pikovsky, & Kurths, 1996), lag synchronization (Rosenblum,
Pikovsky, & Kurths, 1997), partial synchronization (Vreeswijk,
1996), generalized synchronization (Margheri & Martins, 2010),
almost synchronization (Femat & Solis-Perales, 1999), and cluster
synchronization (Belykh, Belykh, Hasler, & Nevidin, 2003; Belykh,
Belykh, Nevidin, & Hasler, 2003; Qin & Chen, 2004). Among
these synchronization protocols, the complete synchronization of
a network with identical nodes means that all nodes eventually
approach to uniform dynamical behavior. This is the simplest
form of synchronization, and has been intensively studied.
Cluster synchronization is the phenomenon that divides the
nodes in a network into several groups, known as clusters
or communities, such that all nodes in the same community
attain complete synchronization. However, the dynamics of nodes
in different communities do not tend to coincide. The cluster
synchronization of complex networks has attracted increasing
research interest in recent years because of its applications in areas
including the biological sciences (Kaneko, 1994; Zemanová, Zhou,
& Kurths, 2006), neurological sciences (Schnitzler & Gross, 2005),
engineering control (Passino, 2002), ecological sciences (Montbró,
Kurths, & Blasius, 2004), communication engineering (Kouomou &
Woafo, 2003; Rulkov, 1996), and distributed computation (Hwang,
Tan, & Chen, 2004).

The coupled systems forwhich the investigations of cluster syn-
chronization have been conducted include the ones composed of
identical subsystemswithout delays (Belykh, Belykh, Hasler, & Ne-
vidin, 2003; Ma, Liu, & Zhang, 2006; Qin & Chen, 2004;Wu & Chen,
2009; Zhang, Ma, & Chen, 2014; Zhang, Ma, & Zhang, 2013) or
with delays (Cao & Li, 2009; Song & Zhao, 2014). Among them,
the approach proposed by Ma et al. (2006) involved construc-
tion of a coupling scheme to stabilize arbitrarily selected cluster
synchronization patterns for coupled identical chaotic networks.
Wu and Chen (2009) studied the cluster synchronization of lin-
early and symmetrically coupled ordinary differential equations
based on the geometrical analysis of the synchronization mani-
fold. Zhang, Ma, and Zhang (2013) decomposed the coupling ma-
trix and employed the Lyapunov function method to investigate
the cluster synchronization in networks with asymmetric neg-
ative couplings. By introducing competitive inter-cluster edges
and assigning edge weights to mimic more realistic networks,
Zhang, Ma, and Chen (2014) developed a modified small-world
networks, and showed that the new model with inter-cluster
co-competition balance admits robustness of cluster synchronous
patterns. The cluster synchronization of Hopfield-type neural net-
works has been investigated in Zhang, Ma, and Chen (2014)
and Zhang, Ma, and Zhang (2013). Cao and Li (2009) and
Song and Zhao (2014) used the linear matrix inequality tech-
nique to investigate delayed hybrid neural networks with lin-
ear and nonlinear couplings, respectively. Qin and Chen (2004)
investigated the cluster synchronization of coupled Josephson
equations by constructing different coupling schemes. Cluster syn-
chronization in three-dimensional lattices of diffusively coupled
oscillators was studied in Belykh, Belykh, Hasler, and Nevidin
(2003). In reality, networks may exhibit community structure, and
nodes in different communities have different functions (Girvan
& Newman, 2002; Newman, 2003). Recently, the cluster synchro-
nization of networks with nonidentical nodes was investigated.
The cluster synchronization of coupled nonidentical systems was
studied by Lu, Liu, and Chen (2010a) who investigated the relation
between cluster synchronization and un-weighted graph topol-
ogy. The same authors also examined local cluster synchroniza-
tion in general bi-directed networks of coupled nonidentical maps
(Lu, Liu, & Chen, 2010b). The persistence of cluster synchronization
manifolds in lattices of nonidentical chaotic oscillatorswas studied
in Belykh, Belykh, Nevidin, and Hasler (2003).

Existing reports in literature contain a number of investigations
on the cluster synchronization of coupled systems in which either
linear couplings without coupling delays (Belykh, Belykh, Hasler,
& Nevidin, 2003; Lu et al., 2010a; Ma et al., 2006; Qin & Chen,
2004; Wu & Chen, 2009; Zhang, Ma, & Chen, 2014; Zhang, Ma, &
Zhang, 2013), or linear couplings with coupling delays are consid-
ered (Cao & Li, 2009). In addition, systems with coupling delays
that have been considered for addressing cluster synchronization
problems commonly exhibit homogeneous coupling delays, which
means that all coupling delays are identical.

In the literature, there exist much fewer studies on the cluster
synchronization for nonlinearly coupled systems than those for
linearly coupled systems. By analyzing the stability of cluster
synchronization manifolds, Belykh and Hasler (2011) and Juang
and Liang (2014) investigated the local cluster synchronization
in networks of nonlinearly coupled neurons without delays.
A few investigations established the cluster synchronization of
nonlinearly coupled systems with coupling delays. Song and Zhao
(2014) considered nonlinearly coupled identical systems with
homogeneous discrete time-varying delays and homogeneous
distributed time-varying delays, and derived delay-dependent
criteria for cluster synchronization based on the Lyapunov
function method and linear matrix inequality technique. In real-
world networks, all the units in real systems may not transmit
information at the same rate (Jalan & Singh, 2014). In addition,
the transmission delays may depend on both the transmission
speed and locations of interacting nodes (Crook et al., 1997; Faye &
Faugeras, 2010). For instance, Crook et al. (1997) considered the
axonal delay which is larger if the distance between interacting
neurons is larger or conduction velocity value is smaller, and
showed that large delays can result in a loss of synchrony. Thus,
it is more realistic to incorporate the heterogeneity in coupling
delays into the system model. We note that Jalan and Singh
(2014) studied the phase synchronized clusters in networks of
coupled identical maps in the presence of heterogeneous coupling
delays, and investigated the impact of heterogeneity in delays
on the phenomenon of cluster synchronization. To the best
of our knowledge, a new approach to establishing the cluster
synchronization of nonlinearly coupled systems with coupling
delays is still in demand, particularly for coupled nonidentical
systems or coupled systems with heterogeneous coupling delays.

Let us consider the following network system:

ẋi(t) = F̃i(xti , t)+


j∈N

ω̃ij(t)G̃ij(xtj ), i ∈ N , t ≥ t0, (1)

where N := {1, . . . ,N}, xi(t) = (xi,1(t), . . . , xi,K (t))T ∈ RK

represents the state of the ith node at time t , xti ∈ C([−τM , 0]; RK ),
with τM ≥ 0, is defined as xti (θ) = xi(t + θ) for θ ∈ [−τM , 0],
and F̃i is a smooth function, describing the intrinsic dynamics of
the ith node. Each ω̃ij(t), which denotes the coupling coefficient
from the jth node to the ith node, is a bounded function of t , and
its corresponding coupling function G̃ij is assumed to be smooth.
The matrix W(t) := [ω̃ij(t)]1≤i,j≤N refers to the connection matrix
for the system (1). Notably, the form of (1) covers the ordinary
differential equation case when τM = 0. In this investigation, we
consider system (1) to be divided into m communities, and
the intrinsic dynamics (F̃i) of all individual nodes in the same
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community to be identical. Without loss of generality, we set

M := {1, . . . ,m},

Ñr :=


1 +

r−1
s=0

Ns, . . . ,

r
s=0

Ns


, r = 1, . . . ,m,

where m ∈ N − {0}, N0 := 0, and Nr ∈ N for r ∈ M. Herein, M
is the index set of communities in system (1), Nr is the number of
nodes in the rth community, and Ñr collects the indices of nodes
in the rth community. Notably,


s∈M Ns = N and


s∈M Ñs = N .

For later use, we relabel the indices in Ñr , r ∈ M, such that these
indices are numbered from 1 to Nr , and then collect the relabeled
indices in the index set:

Nr = {1, . . . ,Nr}. (2)

Accordingly, we can denote by (r, p) the two dimensional index for
the pth node in the rth community, for r ∈ M and p ∈ Nr . Notably,
there exists a bijective map J : N → {(s, q) : s ∈ M, p ∈ Ns},
defined by

J(i) = (r, p), (3)

satisfying i =
r−1

s=0 Ns + p, where i ∈ Ñr , r ∈ M, and p ∈

Nr . Map J can depict the community structure of the system (1);
more precisely, the ith node in the system (1) can be regarded as
the pth node in the rth community ifJ(i) = (r, p). In this paper,we
investigate the cluster synchronization of system (1) by assuming
that the intrinsic dynamics of all nodes and the connections
between nodes are merely determined by the communities to
which these nodes belong. Namely, functions F̃i and G̃ij of system
(1) satisfy

F̃i = Fr = (Fr,1, . . . , Fr,K )T and

G̃ij(xtj ) = Grs(xj(t − τrs(t))), (4)

if J(i) = (r, p) and J(j) = (s, q). Herein, Grs = (Grs,1, . . . ,Grs,K )
T

satisfies

Grs,k(xj(t − τrs(t))) = Grs,k(xj,k(t − τrs(t))), (5)

where Grs,k is a non-decreasing and differentiable function, and
τrs(t) is a continuous function, with 0 ≤ τrs(t) ≤ τM . We note that
function Fr represents the intrinsic dynamics of each node in the
rth community, Grs stands for the coupling function corresponding
to the connection from nodes in the sth community to nodes in
the rth community, and τrs(t) is the time-dependent transmission
delay corresponding to function Grs. For later use, we set

τ̄r := sup{τrr(t) : t ≥ t0}, r = 1, . . . ,m. (6)

Notably, system (1) is a nonlinearly coupled system if some
Grs,k is a nonlinear function. In addition, system (1) is said to
include homogeneous coupling delays if all τrs(t) are identical;
otherwise, it has heterogeneous coupling delays. Existing attempts
to address the cluster synchronization problem for systems of
neural networks and neuronal networks in the literature largely
admit the form of (1) or forms that are similar; for example, see
Lu et al. (2010a), Ma et al. (2006), Wu and Chen (2009), Zhang, Ma,
and Chen (2014), and Zhang, Ma, and Zhang (2013). The system (1)
is said to attain global cluster synchronization if

xi,k(t)− xj,k(t) → 0, as t → ∞, for all k ∈ K, (7)

if i, j ∈ Ñr for some r ∈ M, for every solution (x1(t), . . . , xN(t))T
of (1), where K := {1, . . . , K} and xj(t) = (xj,1(t), . . . , xj,K (t))T ,
for j ∈ N . To the best of our knowledge, the global cluster
synchronization of nonlinearly coupled nonidentical systems in
the form of (1) satisfying (4) and (5) is not yet established, even
if coupling delays τrs(t) are identical. In this paper, we aim to
establish the global cluster synchronization of community network
(1) which satisfies (4) and (5), and is with nonlinear coupling
functions and heterogeneous coupling delays.

We note that the use of control schemes, including pinning con-
trol and adaptive control, to establish the cluster synchronization
of networks also presents synchronization problems. These inves-
tigations establish the cluster synchronization of controlled net-
works by adding controllers to the network. Thiswork can be found
in Liu and Chen (2011), Wang, Fu, and Li (2009), and Wu, Zhou,
and Chen (2009) for the linearly coupling case, and in Wang, Feng,
Xu, and Zhao (2012) and Wang and Cao (2013) for the nonlinear
coupling case. We note that Wang and Cao (2013) and Wang et al.
(2012) investigated the cluster synchronization of nonlinearly cou-
pled nonidentical systems with homogeneous time-varying delay
and without delay, respectively, by using pinning control.

The remainder of this paper is organized as follows. We
establish the global cluster synchronization of the system (1) in
Section 2. Then, we illustrate the implementation of our approach
by studying the global cluster synchronization of a nonlinearly
coupled neural networks, possibly with heterogeneous coupling
delays, in Section 3. The paper is concluded in Section 4.

2. Cluster synchronization of system (1)

In this section, we establish the global cluster synchronization
of system (1), which satisfies (4) and (5). We manipulate our
synchronization approach by first relabeling the variables and
parameters of system (1) based on the community structure of
the system, and introduce three basic assumptions imposed upon
the system in Section 2.1. We then derive delay-dependent and
delay-independent criteria for the global cluster synchronization
of system (1) in Section 2.2.

2.1. Preliminaries

Recall that the community structure of system (1) can be
depicted through the map J, defined in (3). With the help of the
map J, we rewrite the connection matrixW(t) = [ω̃ij(t)]1≤i,j≤N in
the following block form:

W(t) = [Wrs(t)]1≤r,s≤m =

W11(t) · · · W1m(t)
...

. . .
...

Wm1(t) · · · Wmm(t)

 , (8)

with

Wrs(t) = [ω(pq)rs (t)]1≤p≤Nr ,1≤q≤Ns

=

ω
(11)
rs (t) · · · ω(1Ns)

rs (t)
...

. . .
...

ω(Nr1)
rs (t) · · · ω(NrNs)

rs (t)

 ,
where

ω(pq)rs (t) := ω̃ij(t) if J(i) = (r, p) and J(j) = (s, q). (9)

Recall that ω̃ij(t) refers to the coupling coefficient from the jth node
to the ith node. By (9), ω(pq)rs (t) is the exact coupling coefficient
from the qth node in the sth community to the pth node in the
rth community. Accordingly, Wrs(t) can be regarded as the sub-
connection matrix corresponding to the connections from the
nodes in the sth community to nodes in the rth community. We
note that the connection from the qth node in the sth community
to the pth node in the rth community is said to be excitatory (resp.,
inhibitory) at time t if ω(pq)rs (t) > 0 (resp., ω(pq)rs (t) < 0).

Assume that (x1(t), . . . , xN(t))T is an arbitrary solution of
system (1), where xi(t) = (xi,1(t), . . . , xi,K (t))T , i = 1, . . . ,N , and
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(xt1, . . . , x
t
N)

T is the corresponding evolution of system (1), defined
by xti (θ) = xi(t + θ) for θ ∈ [−τM , 0], i = 1, . . . ,N . Through map
J, we relabel xi(t) and xti (t), i = 1, . . . ,N , as follows:

xr,p(t) = (xr,p,1(t), . . . , xr,p,K (t))T := xi(t) and xtr,p := xti (10)

if J(i) = (r, p). With the help of (2)–(5), (9), and (10), system (1)
can be rewritten in the following component form:

ẋr,p,k(t) = Fr,k(xtr,p, t)+


s∈M


q∈Ns

ω(pq)rs (t)

×Grs,k(xs,q,k(t − τrs(t))), (11)

for all (r, p, k) ∈ Ax and t ≥ t0, where

Ax := {(s, q, l) : s ∈ M, q ∈ Ns, l ∈ K}. (12)

In this paper, the index (r, p) corresponds to the pth node in the rth
community, and (r, p, k) corresponds to the kth variable of the pth
node in the rth community. For instance, xr,p represents the state
of the pth node in the rth community, and xr,p,k is the state of the
kth variable of the pth node in the rth community. Moreover, we
denote byX(t), or (xr,p(t)), or (xr,p,k(t)) the solution of system (11)
at time t , evolved from an arbitrary initial condition, and denote by
Xt , or (xtr,p), or (x

t
r,p,k) the corresponding evolution of system (11),

as follows:

X(t) = (xr,p(t)) = (xr,p,k(t))
:= (x1,1(t), . . . , x1,N1(t), . . . , xr,p(t),

. . . , xm,1(t), . . . , xm,Nm(t))
T ,

Xt
= (xtr,p) = (xtr,p,k)
:= (xt1,1, . . . , x

t
1,N1

, . . . , xtr,p, . . . , x
t
m,1,

. . . , xtm,Nm
)T ,

(13)

where xr,p(t) = (xr,p,1(t), . . . , xr,p,K (t))T ∈ RK and xtr,p = (xtr,p,1,
. . . , xtr,p,K )

T
∈ C([−τM , 0]; RK ), for (r, p) ∈ {(s, q) : s ∈ M, q ∈

Ns}. Recall that Xt(θ) = X(t + θ), xtr,p(θ) = xr,p(t + θ), and
xtr,p,k(θ) = xr,p,k(t + θ) for θ ∈ [−τM , 0].

According to the definition in (7), system (11), i.e. system (1),
attains global cluster synchronization if

xr,p,k(t)− xr,p+1,k(t) → 0, as t → ∞, for all (r, p, k) ∈ Az,

(14)

for every solution (xr,p,k(t)) of system (11), where Az is defined as

Az := {(s, q, l) : s ∈ M, q ∈ Ns − {Ns}, l ∈ K}. (15)

Next, let us introduce three assumptions imposed on system
(11). The first assumption requires that eachmatrixWrs(t), defined
in (8), has equal row-sums, as follows:

Assumption (I): For all r, s ∈ M and t ≥ t0, there exists some
κrs(t) such that
1≤q≤Ns

ω(pq)rs (t) = κrs(t), for all p = 1, . . . ,Nr .

Diffusive couplings have been largely considered in neural
network systems in the literature, see Belykh, Belykh, Hasler, and
Nevidin (2003), Li and Yang (2015), Ma et al. (2006), Qin and
Chen (2004) and Wang et al. (2009). We note that system (11) is
diffusively coupled if κrs(t) = 0 for all r, s ∈ M and t ≥ t0, cf.
Cao and Li (2009) and Song and Zhao (2014). Define the cluster
synchronous manifold of system (11):

S := {(x1, . . . , xN) : xi = xj ∈ RK if i,

j ∈ Ñr for some r ∈ M}. (16)

The invariance of S under the flow generated by system (11) is
a prerequisite to the cluster synchronization of system (11), and
it can be guaranteed by assumption (I), cf. Lu et al. (2010a). The
second assumption is associated with the dissipative property of
system (11) as follows:

Assumption (D): All solutions of (11) eventually enter and then
remain in some compact set Q := Q1 × · · · × Qm, where

Qr := Qr × · · · × Qr ⊂ RNrK ,

Qr := [ϱ̌r,1, ϱ̂r,1] × · · · × [ϱ̌r,K , ϱ̂r,K ] ⊂ RK , r ∈ M.

Notably, under assumption (D), an arbitrary solution X(t) =

(xr,p(t)) = (xr,p,k(t)) of system (11) exists on [t0,∞), and even-
tually enters and then remains in Q, where each xr,p(t) (resp.,
xr,p,k(t)) eventually enters and then remains in Qr (resp.,
[ϱ̌r,k, ϱ̂r,k]). Throughout this paper, we denote by 8, or (Φr,p), or
(φr,p,k) an arbitrary function in C([−τM , 0]; RN). Herein,
8 = (Φr,p) = (φr,p,k)

:= (Φ1,1, . . . ,Φ1,N1 , . . . ,Φr,p, . . . ,Φm,1, . . . ,Φm,Nm)
T , (17)

whereΦr,p := (φr,p,1, . . . , φr,p,K )
T for (r, p) ∈ {(s, q) : s ∈ M, q ∈

Ns}, and each φr,p,k ∈ C([−τM , 0]; R).
With Q defined in assumption (D), we define the following set

in C([−τM , 0]; RN):
CQ := {8 = (Φr,p) : Φr,p ∈ CQr ,

(r, p) ∈ {(s, q) : s ∈ M, q ∈ Ns}}, (18)
where
CQr := {(φ1, . . . , φK )

T
: φk ∈ C([−τM , 0]; [ϱ̌r,k, ϱ̂r,k]), k ∈ K}.

The last assumption is related to the argument structure of
function Fr,k in system (11), cf. (4). For each (r, k) ∈ {(s, l) : s ∈

M, l ∈ K}, we decompose Fr,k(Φ, t)− Fr,k(Ψ , t) as follows:
Fr,k(Φ, t)− Fr,k(Ψ , t) = hr,k(φk(0), ψk(0), t)

+wr,k(Φ,Ψ , t), (19)
where Φ = (φ1, . . . , φK )

T ,Ψ = (ψ1, . . . , ψK )
T

∈ C([−τM , 0];
RK ). Such a decomposition in (19) is always achievable because a
trivial decomposition is attained when setting hr,k ≡ 0. Applica-
tion of this argument certainly requires a nontrivial decomposi-
tion where the terms involving φk(0), ψk(0) are collected in hr,k,
and the others in wr,k. We illustrate the nontrivial decomposition
for system (51) in Section 3. Now, let us introduce the following
assumption imposed on functions hr,k andwr,k.

Assumption (F): For each (r, k) ∈ {(s, l) : s ∈ M, l ∈ K}, there
exist µ̌r,k, µ̂r,k ∈ R, ρwr,k ≥ 0, and µ̄(l)r,k, β̄

(l)
r,k ≥ 0, for l ∈ K − {k},

such that for all Φ = (φ1, . . . , φK )
T ,Ψ = (ψ1, . . . , ψK )

T
∈ CQr ,

and t ≥ t0, the following properties hold:

(F-i):

µ̌r,k ≤

hr,k(φk(0), ψk(0), t)
φk(0)− ψk(0)

≤ µ̂r,k if φk(0)− ψk(0) ≠ 0,

hr,k(φk(0), ψk(0), t) = 0, if φk(0)− ψk(0) = 0,

(F-ii): |wr,k(Φ,Ψ , t)| ≤ ρwr,k, and there exist τ (l)r,k = τ
(l)
r,k(Φ,Ψ , t) ∈

[0, τM ], such that
|wr,k(Φ,Ψ , t)|

≤


l∈K−{k}

µ̄
(l)
r,k|φl(0)− ψl(0)| + β̄

(l)
r,k|φl(−τ

(l)
r,k)− ψl(−τ

(l)
r,k)|.

Remark 1. (i) Recall the notations in (13) and (17), and CQ in (18).
In this paper, 8 = (Φr,p) = (φr,p,k) ∈ C([−τM , 0]; RN) plays
the role of an arbitrary evolution Xt

= (xtr,p) = (xtr,p,k) of system
(11) at an arbitrary fixed time t , where each Φr,p (resp., φr,p,k)
plays the role of xtr,p (resp., x

t
r,p,k). Thus, it is not difficult to observe

that under assumption (D), an arbitrary evolution Xt
= (xtr,p) of

system (11) exists on [t0,∞), and eventually enters and then
remains inCQ , where each xtr,p eventually enters and then remains
in CQr . (ii) In Section 2.2, we shall see in (20) and (21) that Φ and
Ψ in (19) play the roles of an arbitrary pair of xr,p and xr,p+1 of
an arbitrary evolution (xr,p(t)) of system (11). Recall that under
assumption (D), each xtr,p eventually enters and then remains in
CQr . This explains why assumption (F) considersΦ,Ψ ∈ CQr .
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2.2. Synchronization criteria

First, let us show themain principle of our approach to establish
the global cluster synchronization of system (11). We suppose that
X(t) = (xr,p(t)) = (xr,p,k(t)) is an arbitrary solution of system
(11), and Xt

= (xtr,p) = (xtr,p,k) is the corresponding evolution. Set

Z(t) = (zr,p(t)) = (zr,p,k(t))
:= (z1,1(t), . . . , z1,N1−1(t), . . . , zr,p(t), . . . , zm,1(t),

. . . , zm,Nm−1(t))T ,

where zr,p = (zr,p,1(t), . . . , zr,p,K (t))T := xr,p(t) − xr,p+1(t), for
(r, p) ∈ {(s, q) : s ∈ M, q ∈ Ns − {Ns}}. Then, Z(t) satisfies the
following difference–differential system associated with system
(11):

żr,p,k(t) = Hr,p,k(Xt , t), (r, p, k) ∈ Az, t ≥ t0, (20)

where zr,p,k(t) := xr,p,k(t)− xr,p+1,k(t), Az is defined in (15), and

Hr,p,k(8, t) := Fr,k(Φr,p, t)− Fr,k(Φr,p+1, t)

+


s∈M


q∈Ns

[ω(pq)rs (t)− ω((p+1)q)
rs (t)]

×Grs,k(φs,q,k(−τrs(t))), (21)

for 8 = (Φr,p) = (φr,p,k) as defined in (17). Herein, the roles of
8, Φr,p, and φr,p,k are discussed in Remark 1. In the following, we
recompose the terms Hr,p,k defined (21), such that system (20) can
be recast into the form

żr,p,k(t) = hr,p,k(xr,p,k(t), xr,p+1,k(t), t)

+ h̃r,p,k(xtr,p,k, x
t
r,p+1,k, t)+ wr,p,k(t), (22)

for (r, p, k) ∈ Az and t ≥ t0, where wr,p,k(t) = wr,p,k(Xt , t). The
precise formulations and properties of hr,p,k, h̃r,p,k, and wr,p,k are
presented in Propositions 1 and 2, respectively. Each component
in (22) takes the form:

ż(t) = h(x(t), y(t), t)+ h̃(xt , yt , t)+ w(t), t ≥ t0 (23)

where z(t) = x(t) − y(t). In the Appendix, we introduce (23)
precisely, and show that z(t) converges to an interval [−ν̄, ν̄]

as t → ∞ under some conditions; moreover, [−ν̄, ν̄] can be
estimated. Accordingly, we capture the convergent property to
each zr,p,k(t) in (22). By an iterative argument, as performed
in Proposition 3 and Theorem 1, we further verify that each
zr,p,k(t) approaches zero; hence, system (11) attains global cluster
synchronization.

To recompose the terms Hr,p,k defined by (21), for each r ∈ M,
we define the following two matrices:

Lr :=


1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 −1

 ∈ R(Nr−1)×Nr ,

Rr :=


1 1 · · · 1
0 1 · · · 1
...

. . .
. . .

...

0
. . . 0 1

0 · · · 0 0

 ∈ RNr×(Nr−1)

where Nr is the number of nodes in the rth community of system
(11).
Lemma 1. Assume that assumption (I) holds. Then, for any r, s ∈ M
and t ≥ t0,

LrWrs(t)Ξ = W̄rs(t)LsΞ ,

for Ξ = (ξ1, . . . , ξNs)
T

∈ RNs , where Wrs(t) is defined by (8), and

W̄rs(t) = [ω̄(pq)rs (t)]1≤p≤Nr−1,1≤q≤Ns−1

=

 ω̄(11)rs (t) · · · ω̄(1(Ns−1))
rs (t)

...
. . .

...

ω̄((Nr−1)1)
rs (t) · · · ω̄((Nr−1)(Ns−1))

rs (t)


:= LrWrs(t)Rs.

Proof. For s ∈ M,

RsLs =


1 0 · · · 0 −1

0 1
. . .

...
...

...
. . .

. . . 0 −1
0 · · · 0 1 −1
0 · · · 0 0 0

 ∈ RNs×Ns .

Thus, for r, s ∈ M and t ≥ t0,

LrWrs(t)(INs − RsLs)Ξ = LrWrs(t)(ξNs , . . . , ξNs)
T ,

for Ξ = (ξ1, . . . , ξNs)
T

∈ RNs , where INs is the identity matrix of
size Ns, and (ξNs , . . . , ξNs)

T
∈ RNs . Accordingly, we obtain

LrWrs(t)(INs − RsLs)Ξ = κrs(t)ξNsLr(1, . . . , 1)
T

= (0, . . . , 0)T ∈ RNr−1,

where (1, . . . , 1)T ∈ RNr , recalling assumption (I). Hence, we
verify the assertion. �

For later use, with ω̄(pq)rs (t) defined in Lemma 1, we set

ω̌(pq)rs := inf{ω̄(pq)rs (t) : t ≥ t0}, (24)

ω̂(pq)rs := sup{ω̄(pq)rs (t) : t ≥ t0}, (25)

|ω|
(pq)
rs := sup{|ω̄(pq)rs (t)| : t ≥ t0}. (26)

Based on (19) and Lemma 1, we decompose functionHr,p,k, defined
in (21), into three parts, as seen in the following proposition.

Proposition 1. Consider system (11)which satisfies assumptions (I)
and (F). Then, functions Hr,p,k, (r, p, k) ∈ Az , can be decomposed as

Hr,p,k(8, t) = hr,p,k(φr,p,k(0), φr,p+1,k(0), t)

+ h̃r,p,k(φr,p,k, φr,p+1,k, t)+ wr,p,k(8, t),

where hr,p,k = hr,p,k(φr,p,k(0), φr,p+1,k(0), t), h̃r,p,k = h̃r,p,k(φr,p,k,

φr,p+1,k, t), andwr,p,k = wr,p,k(8, t) are defined by

hr,p,k := hr,k(φr,p,k(0), φr,p+1,k(0), t),

h̃r,p,k := ω̄(pp)rr (t)[Grr,k(φr,p,k(−τrr(t)))
− Grr,k(φr,p+1,k(−τrr(t)))],

wr,p,k := wr,k(Φr,p,Φr,p+1, t)+


(s,q)∈B−{(r,p)}

ω̄(pq)rs (t)

× [Grs,k(φs,q,k(−τrs(t)))− Grs,k(φs,q+1,k(−τrs(t)))].

Herein, B := {(s, q) : s ∈ M, q ∈ Ns − {Ns}}; Grs,k is defined in (5),
8 = (Φr,p) = (φr,p,k) in (17), functions hr,k and wr,k in (19), and
ω̄
(pq)
rs (t) in Lemma 1.
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Proof. By Lemma 1, for r, s ∈ M and p ∈ Nr − {Nr},
q∈Ns

[ω(pq)rs (t)− ω((p+1)q)
rs (t)]ξq =


q∈Ns−{Ns}

ω̄(pq)rs (t)(ξq − ξq+1),

(27)

for ξq ∈ R, q ∈ Ns. As seen from (19), we can rewrite the part
Fr,k(Φr,p, t)− Fr,k(Φr,p+1, t) of Hr,p,k(8, t) in (21), as follows:

Fr,k(Φr,p, t)− Fr,k(Φr,p+1, t)

= hr,k(φr,p,k(0), φr,p+1,k(0), t)+ wr,k(Φr,p,Φr,p+1, t). (28)

On the other hand, applying (27) rewrites the remaining part of
Hr,p,k(8, t) in (21), as follows:
s∈M


q∈Ns

[ω(pq)rs (t)− ω((p+1)q)
rs (t)]Grs,k(φs,q,k(−τrs(t)))

=


s∈M


q∈Ns−{Ns}

{ω̄(pq)rs (t)[Grs,k(φs,q,k(−τrs(t)))

−Grs,k(φs,q+1,k(−τrs(t)))]}. (29)

The decomposition of Hr,p,k then follows directly from (21), (28),
and (29). �

Based on Proposition 1, system (20) can be recast into system
(22). The following proposition draws the properties associated
with functions hr,p,k, h̃r,p,k, andwr,p,k, defined in Proposition 1. We
note that in this proposition, µ̌r,k, µ̂r,k, µ̄

(l)
r,k, β̄

(l)
r,k, ρ

w
r,k, and τ

(l)
r,k are

defined in assumption (F), Az in (15), 8 = (φr,p,k) in (17), CQ in
(18), ω̌(pq)rs , ω̂(pq)rs , and |ω|

(pq)
rs in (24)–(26), and B in Proposition 1.

Proposition 2. Consider system (11)which satisfies assumptions (I),
(D), and (F). Then, for all (r, p, k) ∈ Az , 8 = (φr,p,k) ∈ CQ , and
t ≥ t0, functions hr,p,k = hr,p,k(φr,p,k(0), φr,p+1,k(0), t), h̃r,p,k =

h̃r,p,k(φr,p,k, φr,p+1,k, t), and wr,p,k(8, t), defined in Proposition 1,
satisfy the following properties:

(i)

µ̌r,p,k ≤ hr,p,k/1φr,p,k(0) ≤ µ̂r,p,k if 1φr,p,k(0) ≠ 0,
hr,p,k = 0 if 1φr,p,k(0) = 0,

(ii) |h̃r,p,k(φr,p,k, φr,p+1,k, t)| ≤ ρh
r,p,k, and

β̌r,p,k ≤
h̃r,p,k

1φr,p,k(−τrr(t))
≤ β̂r,p,k

if 1φr,p,k(−τrr(t)) ≠ 0,

h̃r,p,k = 0 if 1φr,p,k(−τrr(t)) = 0,

(iii) |wr,p,k(8, t)| ≤ ρwr,p,k, and

|wr,p,k(8, t)|

≤


(s,q,l)∈Az−{(r,p,k)}

[µ̄
(s,q,l)
r,p,k |φs,q,l(0)− φs,q+1,l(0)|

+ β̄
(s,q,l)
r,p,k |φs,q,l(−τ

(s,q,l)
r,p,k )− φs,q+1,l(−τ

(s,q,l)
r,p,k )|],

where 1φr,p,k(θ) := φr,p,k(θ) − φr,p+1,k(θ), for all θ ∈

[−τM , 0],

µ̌r,p,k := µ̌r,k, µ̂r,p,k := µ̂r,k,

β̌r,p,k :=


ω̌(pp)rr Ľrr,k if ω̌(pp)rr ≥ 0,
ω̌(pp)rr L̂rr,k if ω̌(pp)rr < 0,

β̂r,p,k :=


ω̂(pp)rr L̂rr,k if ω̂(pp)rr ≥ 0,
ω̂(pp)rr Ľrr,k if ω̂(pp)rr < 0,

µ̄
(s,q,l)
r,p,k :=


µ̄
(l)
r,k if (s, q) = (r, p), l ≠ k,

0 otherwise,

β̄
(s,q,l)
r,p,k :=

β̄
(l)
r,k if (s, q) = (r, p), l ≠ k,

|ω|
(pq)
rs L̂rs,k if (s, q) ≠ (r, p), l = k,

0, otherwise,
τ
(s,q,l)
r,p,k :=

τ
(l)
r,k if (s, q) = (r, p), l ≠ k,
τrs(t) if (s, q) ≠ (r, p), l = k,
0 otherwise,

and ρh
r,p,k and ρ

w
r,p,k are arbitrary quantities satisfying

ρh
r,p,k ≥ 2|ω|

(pp)
rr Ḡrr,k, ρ

w
r,p,k

≥ ρwr,k + 2

 
(s,q)∈B−{(r,p)}

|ω|
(pq)
rs Ḡrs,k


.

Herein,

Ľrs,k := min{(Grs,k)
′(ξ) : ξ ∈ [ϱ̌s,k, ϱ̂s,k]} ≥ 0, (30)

L̂rs,k := max{(Grs,k)
′(ξ) : ξ ∈ [ϱ̌s,k, ϱ̂s,k]} ≥ 0, (31)

Ḡrs,k := max{|Grs,k(ξ)| : ξ ∈ [ϱ̌s,k, ϱ̂s,k]} ≥ 0, (32)

where Grs,k is introduced in (5), and [ϱ̌s,k, ϱ̂s,k] is defined in
assumption (D).

Proof. Notably, 8 = (Φr,p) = (φr,p,k) ∈ CQ implies that Φr,p ∈

CQr for all (r, p) ∈ {(s, q) : s ∈ M, q ∈ Ns}, and φr,p,k(θ) ∈

[ϱ̌r,k, ϱ̂r,k] for all θ ∈ [−τM , 0] and (r, p, k) ∈ Az . Thus,

|ω̄(pq)rs (t)[Grs,k(φs,q,k(−τrs(t)))− Grs,k(φs,q+1,k(−τrs(t)))]|

≤ 2|ω|
(pq)
rs Ḡrs,k, (33)

for all (r, p, k) ∈ Az and (s, q) ∈ B, recalling (26) and (32).
With the help of (33), the boundedness of h̃r,p,k and wr,p,k in
assertions (ii) and (iii) can be verified through assumption (F) and
the definitions of h̃r,p,k and wr,p,k in Proposition 1. On the other
hand, via themean-value theorem, h̃r,p,k = h̃r,p,k(φr,p,k, φr,p+1,k, t)
andwr,p,k = wr,p,k(8, t) can be expressed as

h̃r,p,k = ω̄(pp)rr (t)(Grr,k)
′(σ τr,p(t))

× [φr,p,k(−τrr(t))− φr,p+1,k(−τrr(t))] (34)
wr,p,k = wr,k(Φr,p,Φr,p+1, t)

+


(s,q)∈B−{(r,p)}

ω̄(pq)rs (t)(Grs,k)
′(σ τs,q(t))

× [φs,q,k(−τrs(t))− φs,q+1,k(−τrs(t))], (35)

for some σ τs,q(t) between φs,q,k(−τrs(t)) and φs,q+1,k(−τrs(t)),
(s, q) ∈ B. Notably, for all (s, q) ∈ B, σ τs,q(t) ∈ [ϱ̌s,k, ϱ̂s,k] and

0 ≤ Ľrs,k ≤ (Grs,k)
′(σ τs,q(t)) ≤ L̂rs,k, (36)

recalling (30) and (31). Based on assumption (F), (24)–(26), and
(36), the remaining assertions follow directly from (34), (35), and
the definition of hr,p,k in Proposition 1. �

The terms µ̌r,p,k, µ̂r,p,k, β̌r,p,k, β̂r,p,k, ρh
r,p,k, ρ

w
r,p,k, µ̄

(s,q,l)
r,p,k , and

β̄
(s,q,l)
r,p,k in Proposition 2 exist if system (11) satisfies assumptions (I),

(D), and (F), functionsGrs,k andG′

rs,k are continuous and bounded on
[ϱ̌s,k, ϱ̂s,k], and all ω̄(pq)rs (t) are bounded functions of t . With these
terms and τ̄r defined in (6), we define the following quantities:

ηr,p,k := −µ̂r,p,k − β̂r,p,k + β̄r,p,kτ̄r

× τ̄r(µ̌r,p,k + µ̂r,p,k + β̌r,p,k + β̂r,p,k), (37)

η̃r,p,k := −µ̂r,p,k − β̄r,p,k, (38)

L̄(s,q,l)r,p,k := µ̄
(s,q,l)
r,p,k + β̄

(s,q,l)
r,p,k , (39)

where

β̄r,p,k := max{|β̌r,p,k|, |β̂r,p,k|}.
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We further introduce the following conditions for the cluster
synchronization of system (11):

Condition (S1): µ̂r,p,k + β̂r,p,k < 0 and

β̄r,p,kτ̄r <
3ρh

r,p,k(µ̂r,p,k + β̂r,p,k)

(µ̂r,p,k + µ̌r,p,k + β̂r,p,k + β̌r,p,k)(3ρh
r,p,k + ρwr,p,k)

,

for all (r, p, k) ∈ Az .
Condition (S2): β̄r,p,k < −µ̂r,p,k/[1 + ρwr,p,k/ρ

h
r,p,k], for all

(r, p, k) ∈ Az .
Recall from (6) that τ̄r ∈ [0, τM ] is a bound of the time-dependent
transmission delay τrr(t). Thus, condition (S1) and quantity ηr,p,k
are delay-dependent because they evolve τ̄r , whereas condition
(S2) and quantities η̃r,p,k and L̄(s,q,l)r,p,k are delay-independent. We
note that ηr,p,k > 0 (resp., η̃r,p,k > 0) for all (r, p, k) ∈ Az ,
under condition (S1) (resp., (S2)). In the remainder of this section,
with condition (S1) (resp., (S2)) and quantities ηr,p,k (resp., η̃r,p,k)
and L̄(s,q,l)r,p,k , we derive a delay-dependent (resp., delay-independent)
criterion for the cluster synchronization of system (11). We
illustrate how µ̌r,p,k, µ̂r,p,k, β̌r,p,k, β̂r,p,k, ρh

r,p,k, ρ
w
r,p,k, µ̄

(s,q,l)
r,p,k , and

β̄
(s,q,l)
r,p,k in Proposition 2; hence condition (S1) and ηr,p,k and L̄(s,q,l)r,p,k ,

are determined. We then derive a delay-dependent criterion for
the cluster synchronization of system (51), a nonlinearly coupled
neural network with delays, in Section 3.

Recall that X(t) = (xr,p(t)) = (xr,p,k(t)) is an arbitrary solution
of system (11), and Xt

= (xtr,p) = (xtr,p,k) is the corresponding
evolution. Then, Z(t) = (zr,p(t)) = (zr,p,k(t)), where zr,p,k(t) :=

xr,p,k(t)− xr,p+1,k(t) for (r, p, k) ∈ Az , satisfies system (20). Based
on Proposition 1, system (20) is recast to system (22). Let us relabel
the three-dimensional indices in system (22) to one-dimensional
indices, through the bijective mapping ℓ: Az → {1, . . . , (N −

m)K}, defined by

ℓ(r, p, k) = k + (p − 1)K +


s∈M, s<r

(Ns − 1)K . (40)

The labeling ℓ(r, p, k) corresponds to the sequence (r, p, k) by
considering the order of r , p, and k in succession; more precisely,

ℓ(r1, p1, k1) < ℓ(r2, p2, k2) if r1 < r2,
ℓ(r, p1, k1) < ℓ(r, p2, k2) if p1 < p2,
ℓ(r, p, k1) < ℓ(r, p, k2) if k1 < k2.

For later use, we define

Ľr,p,k := {(s, q, l) ∈ Az : ℓ(s, q, l) < ℓ(r, p, k)}, (41)

L̂r,p,k := {(s, q, l) ∈ Az : ℓ(s, q, l) > ℓ(r, p, k)}. (42)

By setting zℓ(r,p,k) := zr,p,k, xℓ(r,p,k) := xr,p,k, xtℓ(r,p,k) := xtr,p,k,
hℓ(r,p,k) := hr,p,k, h̃ℓ(r,p,k) := h̃r,p,k, and wℓ(r,p,k) := wr,p,k, we can
rewrite system (22) as follows:

żℓ(r,p,k)(t) = hℓ(r,p,k)(xℓ(r,p,k)(t), xℓ(r,p+1,k)(t), t)

+ h̃ℓ(r,p,k)(xtℓ(r,p,k), x
t
ℓ(r,p+1,k), t)+ wℓ(r,p,k)(t), (43)

for (r, p, k) ∈ Az and t ≥ t0. Under assumption (D), every
component in system (43) takes the form (23) (restated as (91)).
In the Appendix, we summarize the convergent property of (91) in
Proposition A.1 under conditions (A1) and (H0). By Proposition 2,
under assumptions (I), (D), and (F), every component in (43)
satisfies condition (H0), with µ̌ = µ̌r,p,k, µ̂ = µ̂r,p,k, β̌ = β̌r,p,k,
β̂ = β̂r,p,k, ρh

= ρh
r,p,k, τ̄ = τ̄r . In addition, every component in

(43) satisfies condition (A1) under condition (S1). Consequently, by
Proposition A.1, there exist (N −m)K intervals [−ν̄ℓ(r,p,k), ν̄ℓ(r,p,k)]
to which zℓ(r,p,k)(t) converges as t → ∞, where (r, p, k) ∈ Az ;
moreover,

0 ≤ ν̄ℓ(r,p,k) ≤ |wℓ(r,p,k)|
max(∞)/ηr,p,k, (44)

where ηr,p,k is defined in (37). Herein, |wℓ(r,p,k)|
max(∞) :=

limT→∞ |wℓ(r,p,k)|
max(T ), where |wℓ(r,p,k)|

max(T ) := sup{|wℓ(r,p,k)
(t)| : t ≥ T }, for T ≥ t0.

The following proposition shows that ν̄ℓ(r,p,k), defined in (44),
can further be estimated iteratively.

Proposition 3. Assume that assumptions (I), (D), and (F), and
condition (S1) hold. Then, for each (r, p, k) ∈ Az , there exists a
sequence {ν

(n)
ℓ(r,p,k)}

∞

n=0 which satisfies

0 ≤ ν̄ℓ(r,p,k) ≤ ν
(n)
ℓ(r,p,k) (45)

where

ν
(n)
ℓ(r,p,k) :=

 
(s,q,l)∈Ľr,p,k

L̄(s,q,l)r,p,k ν
(n)
ℓ(s,q,l)

+


(s,q,l)∈L̂r,p,k

L̄(s,q,l)r,p,k ν
(n−1)
ℓ(s,q,l)

 /ηr,p,k,
for n ≥ 1, and 0 ≤ ν̄ℓ(r,p,k) ≤ ν

(0)
ℓ(r,p,k) := ρwr,p,k/ηr,p,k, where ηr,p,k is

defined in (37), L̄(s,q,l)r,p,k in (39), Ľr,p,k in (41), and L̂r,p,k in (42).

Proof. We prove the proposition by induction. First, we consider
n = 0 and (r, p, k) ∈ Az . By assumption (D), there exists a
t1 > t0 such that Xt

= (xtr,p) ∈ CQ and each xtr,p ∈ CQr for all
t ≥ t1. According to property (iii) of Proposition 2, |wℓ(r,p,k)(t)| =

|wr,p,k(Xt , t)| ≤ ρwr,p,k for all (r, p, k) ∈ Az and t ≥ t1. It follows
that |wℓ(r,p,k)|

max(∞) ≤ ρwr,p,k, which yields 0 ≤ ν̄ℓ(r,p,k) ≤

ρwr,p,k/ηr,p,k = ν
(0)
ℓ(r,p,k), for each (r, p, k) ∈ Az , recalling (44).

Next, we assume that (45) holds and ν(n)ℓ(s,q,l) is defined, and

hence zℓ(s,q,l)(t) converges to the interval [−ν(n)ℓ(s,q,l), ν
(n)
ℓ(s,q,l)] as t →

∞, for n ∈ {0, 1, . . . , n0 − 1}, (s, q, l) ∈ Az and n = n0,
(s, q, l) ∈ Ľr,p,k, for some (r, p, k) ∈ Az and n0 ≥ 1. Recall that
Xt

= (xr,p,k(t)) ∈ CQ for all t ≥ t1, and xts,q,l(θ) − xts,q+1,l(θ) =

xs,q,l(t + θ)− xs,q+1,l(t + θ) = zs,q,l(t + θ) = zℓ(s,q,l)(t + θ) for all
θ ∈ [−τM , 0]. By assumption (D) and property (iii) of Proposition 2,

|wℓ(r,p,k)(t)| = |wr,p,k(Xt , t)|

≤


(s,q,l)∈Az−{(r,p,k)}

[µ̄
(s,q,l)
r,p,k |xts,q,l(0)− xts,q+1,l(0)|

+ β̄
(s,q,l)
r,p,k |xts,q,l(−τ

(s,q,l)
r,p,k )− xts,q+1,l(−τ

(s,q,l)
r,p,k )|]

=


(s,q,l)∈Az−{(r,p,k)}

[µ̄
(s,q,l)
r,p,k |zℓ(s,q,l)(t)|

+ β̄
(s,q,l)
r,p,k |zℓ(s,q,l)(t − τ

(s,q,l)
r,p,k )|],

for all t ≥ t1. Then, we obtain

|wℓ(r,p,k)|
max(∞) ≤


(s,q,l)∈Ľr,p,k

L̄(s,q,l)r,p,k ν
(n0)
ℓ(s,q,l)

+


(s,q,l)∈L̂r,p,k

L̄(s,q,l)r,p,k ν
(n0−1)
ℓ(s,q,l) ,

which yields 0 ≤ ν̄ℓ(r,p,k)(t) ≤ |wℓ(r,p,k)|
max(∞)/ηℓ(r,p,k) ≤

ν
(n0)
ℓ(r,p,k), recalling (44). Hence, we complete the proof. �
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We observe that {(ν
(n)
1 , . . . , ν

(n)
(N−m)K )

T
}
∞

n=0, with ν(n)ℓ = ν
(n)
ℓ(r,p,k),

ℓ = 1, . . . , (N − m)K , defined in Proposition 3, is exactly the
Gauss–Seidel iteration for solving the linear system:

Mv = 0, (46)

where

M := DM − LM − UM = [mıȷ]1≤ı,ȷ≤(N−m)K , (47)

with

mıȷ :=


ηr,p,k if ı = ȷ = ℓ(r, p, q),
−L̄(s,q,l)r,p,k if ı = ℓ(r, p, k), ȷ = ℓ(s, q, l), and ı ≠ ȷ.

Herein, DM, −LM, and −UM represent the diagonal, strictly lower-
triangular, and strictly upper-triangular parts of M, respectively,
and ηr,p,k and L̄(s,q,l)r,p,k are defined in (37) and (39), respectively.
Notice that M is regarded as delay-dependent, since the diagonal
entries ηr,p,k are delay-dependent, as indicated in (37). The
following theorem transforms the problem of global cluster
synchronization of system (11) into solving linear system (46).

Theorem 1. Consider system (11) which satisfies assumptions (I),
(D), and (F) and condition (S1). Then, the system attains global
cluster synchronization if the Gauss–Seidel iteration for the linear
system (46) converges to zero, the unique solution of (46), or
equivalently,

λsyn := max
1≤σ≤(N−m)K

{|λσ | : λσ :

eigenvalue of (DM − LM)−1UM} < 1,

where matrices DM, LM, and UM are defined in (47).

Proof. Recall that X(t) = (xr,p,k(t)) is an arbitrary solution of
system (11), and zℓ(r,p,k)(t) = xr,p,k(t) − xr,p+1,k(t) converges
to [−ν̄ℓ(r,p,k), ν̄ℓ(r,p,k)] for all (r, p, k) ∈ Az . By Proposition 3,
0 ≤ ν̄ℓ(r,p,k) ≤ ν

(n)
ℓ(r,p,k) for all n ∈ N and (r, p, k) ∈ Az .

Accordingly, if {(ν
(n)
1 , . . . , ν

(n)
(N−m)K )

T
}
∞

n=0, the Gauss–Seidel itera-
tion for the linear system (46), converges to zero, system (11)
achieves global cluster synchronization. Notice that condition (S1)
implies that all diagonal entries of M (i.e., ηr,p,k, for (r, p, k) ∈ Az)
are positive. Accordingly, (DM − LM)−1 and λsyn exist; moreover,
the Gauss–Seidel iteration for solving linear system (46) converges
to zero if and only if λsyn < 1. Hence, we complete the proof. �

The criterion in Theorem 1 is delay-dependent because
condition (S1) and matrixM are delay-dependent. The application
of arguments parallel to those of Proposition 3 and Theorem 1,
but using Proposition A.2 instead of Proposition A.1 enables
us to derive a delay-independent criterion for the cluster
synchronization of system (11). We obtain such a criterion by
defining a delay-independent matrix M̃ that plays the role of M in
Theorem 1, as follows:

M̃ := DM̃ − LM̃ − UM̃ = [m̃ıȷ]1≤ı,ȷ≤(N−m)K , (48)

with

m̃ıȷ :=


η̃r,p,k if ı = ȷ = ℓ(r, p, q),
−L̄(s,q,l)r,p,k if ı = ℓ(r, p, k), ȷ = ℓ(s, q, l), and ı ≠ ȷ,

where DM̃, −LM̃, and −UM̃ are diagonal, strictly lower-triangular,
and strictly upper-triangular parts of M̃, respectively. Furthermore,
η̃r,p,k and L̄(s,q,l)r,p,k are defined in (38) and (39), respectively.

Theorem 2. Consider system (11) which satisfies assumptions (I),
(D), and (F) and condition (S2). Then, the system attains global cluster
synchronization if the Gauss–Seidel iteration for the linear system:

M̃v = 0, (49)
converges to zero, the unique solution of (49), or equivalently,

λ̃syn := max
1≤σ≤(N−m)K

{|λσ | : λσ :

eigenvalue of (DM̃ − LM̃)
−1UM̃} < 1,

where M̃, DM̃, −LM̃, and −UM̃ are defined in (48).

Let us discuss the conditions in Theorems 1 and 2. In Theorem1,
condition (S1) implies that each µ̂r,p,k + β̂r,p,k < 0, and each
τ̄r is sufficiently small, such that all diagonal entries of matrix M
(i.e. ηr,p,k := −µ̂r,p,k − β̂r,p,k + β̄r,p,kτ̄r(µ̌r,p,k + µ̂r,p,k + β̌r,p,k +

β̂r,p,k), (r, p, k) ∈ Az) are positive. Recall from (6) that τ̄r ≥ 0
is the bound of τrr(t), where τrr(t) refers to the coupling delays
between neurons within the rth community. In general, positive
and sufficiently large diagonal entries of matrix M promote the
convergence of the Gauss–Seidel iteration for linear system (46).
Thus, the criterion in Theorem 1 prefers a negative value for
µ̂r,p,k + β̂r,p,k with a large magnitude and small τ̄r , such that each
ηr,p,k is positive and has a sufficiently large magnitude. Moreover,
the criterion in Theorem 1 requires that coupling delays between
neurons within the same community are small enough. Similarly,
we can observe that the criterion in Theorem 2 is independent
of delays, and prefers negative µ̂r,p,k with a large magnitude, and
β̌r,p,k and β̂r,p,k with a small magnitude. In Section 3, we provide
the precise synchronization criterion established in Theorem 1,
when considering system (51).

In the following remark, let us compare our assumption
imposed on the connection matrix W(t) = [ω̃ij(t)]1≤i,j≤N =

[Wrs(t)]1≤r,s≤m, cf. (8), with those in the existing related work.

Remark 2. Time-independent connection matrices have com-
monly been considered by researchers carrying out work related
to ours. Let us denote by W = [ω̃ij]1≤i,j≤N = [Wrs]1≤r,s≤m the con-
nection matrices considered therein. Cao and Li (2009) and Song
and Zhao (2014) considered W that satisfies that all row sums are
zero, all off-diagonal entries are non-negative, and all rows inWrs,
r ≠ s, are the same. Lu et al. (2010a) considered that W satisfies
the common intercluster coupling condition, under which every
nonzero matrixWrs cannot have zero rows. The approach pursued
by Zhang, Ma, and Zhang (2013) requires w̃ij + w̃ji ≥ 0 for all i, j,
with i, j in different index sets of communities.Ma et al. (2006),Wu
and Chen (2009), and Zhang, Ma, and Chen (2014) consideredW to
be symmetric. Recall that our approach considers time-dependent
connection matrix W(t), and assumption (I) to be the unique re-
quirement imposed upon W(t). Assumption (I), under which the
cluster synchronous manifold is positively invariant, is a prerequi-
site to the cluster synchronization problem, and is also required in
all the studies mentioned above.

3. Implementation of approach

The proposed synchronization framework developed in Sec-
tion 2 accommodates a large class of network systems in the form
of (1). As mentioned in the Introduction, the cluster synchroniza-
tion of Hopfield-type neural networks has been investigated in
Zhang, Ma, and Chen (2014) and Zhang, Ma, and Zhang (2013).
In this section, to demonstrate the present approach, we imple-
ment our approach to aHopfield-type neural network consisting of
two communities of neurons. These two communities contain two
and three identical neurons, respectively.We consider the first two
neurons in the network as belonging to the first community, and
the remaining neurons to belong to the second community; more-
over, the dynamics of each neuron in the rth community, r = 1, 2,
is governed by

ẋ(t) = Fr(xt) :=


−x1(t)+ arg(x2(t − τ Ir ))

−x2(t)+ arg(x1(t − τ Ir ))


, t ≥ 0, (50)
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where x(t) = (x1(t), x2(t))T , xt ∈ C([−τ Ir , 0]; R2) is defined as
xt(θ) = x(t + θ) for θ ∈ [−τ Ir , 0], ar > 0, g(ξ) := tanh(ξ), and
τ Ir ≥ 0 represents the internal delay.

Denote by Ñ1 = {1, 2} (resp., Ñ2 = {3, 4, 5}) the neuron
indices in the first (resp., second) community. Then, we consider
the following nonlinearly coupled neural networks with coupling
delays:

ẋi(t) = F̃i(xi(t − τ Ii ))+


j∈N

ω̃ijG̃ij(xj(t − τij)),

i ∈ N , t ≥ 0, (51)

with

F̃i(xi(t − τ Ii )) := Fr(xi(t − τ Ir )) if i ∈ Ñr ,

G̃ij(xj(t − τij)) = Grs(xj(t − τrs))

:=


g(xj,1(t − τrs))

0


if i ∈ Ñr , j ∈ Ñs,

where xi(t) = (xi,1(t), xi,2(t))T , N = Ñ1


Ñ2, Fr is defined
in (50), and τrs ≥ 0, r, s ∈ {1, 2}, refers to the transmission
delay corresponding to the connection from neurons in the sth
community to neurons in the rth community. Obviously, system
(51) is in the form of (1) which satisfies (4) and (5), with t0 = 0,
m = 2, N1 = 2, N2 = 3, K = 2, ω̃ij(t) ≡ ω̃ij, τrs(t) ≡ τrs, and
τM = τ ∗

M := max{τ I1, τ
I
2, τ11, τ12, τ21, τ22}. Moreover, functions

Fr = (Fr,1, Fr,2)T and Grs = (Grs,1,Grs,2)
T in (4) and (5) are now

Fr,1(Φ, t) = −φ1(0)+ arg(φ2(−τ
I
r )), (52)

Fr,2(Φ, t) = −φ2(0)+ arg(φ1(−τ
I
r )), (53)

Grs,1(ξ) = g(ξ),Grs,2(ξ) = 0, (54)

for Φ = (φ1, φ2)
T

∈ C([−τ ∗

M , 0]; R2), ξ ∈ R, and t ≥ 0. Recalling
(2) and (3), we obtain the index sets N1 = {1, 2} and N2 =

{1, 2, 3}, and map J, which depicts the community structure, and
now satisfies

J(1) = (1, 1),J(2) = (1, 2),J(3) = (2, 1),

J(4) = (2, 2),J(5) = (2, 3). (55)

Thus, we read the ith neuron in (51) as the pth node in the rth
community, and relabel xi = (xi,1, xi,2)T =: xr,p = (xr,p,1, xr,p,2)T ,
if J(i) = (r, p); more precisely,

x1,k = x1,1,k, x2,k = x1,2,k, x3,k = x2,1,k,
x4,k = x2,2,k, x5,k = x2,3,k,

for k = 1, 2. As seen from (7), system (51) achieves global cluster
synchronization if

Err(t) :=

 
k∈{1,2}


i∈{1,3,4}

[xi,k(t)− xi+1,k(t)]2 → 0, as t → ∞,

for every solution (x1(t), . . . , x5(t))T of system (51),where xi(t) =

(xi,1(t), xi,2(t))T , i = 1, . . . , 5. Herein, function Err(t) is referred to
as the synchronization error for the corresponding solution.

Next, we need to derive synchronization criteria for system
(51) based on Theorem 1.We obtain these synchronization criteria
precisely and clearly by further assuming that the connection
matrix W := [ω̃ij]1≤i,j≤5 of system (51) is

W =


W11 W12
W21 W22


, (56)

with

W11 =


0 β1
β1 0


, W12 =


γ1 0 0
0 γ1 0


,

W21 =


−γ2 0
0 −γ2

−γ2 0


, W22 =

 0 β2 0
0 0 β2
β2 0 0


,

where βr > 0 and γr ≥ 0, for r = 1, 2. Apparently, matrix
W satisfies assumption (I). We derive the delay-dependent
synchronization criteria for system (51), which satisfies (56), in the
following theorem and corollary. To this end, we define

M∗
:=


η∗

1 −a1 −γ1 0 0 0
−a1 1 0 0 0 0
−γ2 0 1 −a2 −β2 0
0 0 −a2 1 0 0

−γ2 0 −β2 0 η∗

2 −a2
0 0 0 0 −a2 1

 , (57)

τ ∗

1 :=
3g(ρ∗

1,1)(1 + β1g ′(ρ∗

1,1))

[2 + (1 + g ′(ρ∗

1,1))β1][a1 + 3β1g(ρ∗

1,1)+ γ1g(ρ∗

2,1)]
, (58)

τ ∗

2 :=
3g(ρ∗

2,1)(1 + β2g ′(ρ∗

2,1))

[2 + (1 + g ′(ρ∗

2,1))β2][a2 + 4β2g(ρ∗

2,1)+ γ2g(ρ∗

1,1)]
, (59)

where

ρ∗

r,k :=


ar + βr + γr if k = 1,
ar if k = 2, (60)

η∗

r := 1 + βrg ′(ρ∗

r,1)− βrτrr [2 + (1 + g ′(ρ∗

r,1))βr ], (61)

for r = 1, 2.

Theorem 3. System (51) attains global cluster synchronization in
spite of delays τ I1, τ

I
2, τ12, and τ21 if τ11 and τ22 are sufficiently small

such that

τ11 < τ ∗

1 and τ22 < τ ∗

2 , (62)

and the Gauss–Seidel iteration for the linear system:

M∗v = 0 (63)

converges to zero, the unique solution of (63), or equivalently,

λ∗
:= max

1≤σ≤6
{|λσ | : λσ : eigenvalue of (DM∗ − LM∗)−1UM∗} < 1.

(64)

Herein,M∗ and τ ∗
r , r = 1, 2, are defined in (57)–(59), and DM∗ ,−LM∗ ,

and −UM∗ are the diagonal, strictly lower-triangular, and strictly
upper-triangular parts of M∗, respectively.

Proof. Let us first verify that system (51) satisfies assumptions
(I), (D), and (F). Notably, system (51) satisfies assumption (I), with
κ11(t) ≡ β1, κ12(t) ≡ γ1, κ21(t) ≡ −γ2, and κ22(t) ≡ β2. From (6),
we obtain

τ̄1 = τ11 and τ̄2 = τ22. (65)

Notice that |g(ξ)| < 1 for ξ ∈ R. As seen from (51) and (56), it
is not difficult to verify that system (51) satisfies assumption (D),
with

[ϱ̌r,k, ϱ̂r,k] = [−ρ∗

r,k, ρ
∗

r,k], r, k ∈ {1, 2}, (66)

where ρ∗

r,k is defined in (60). Next, let us establish assumption (F)
for system (51). As seen from (19), (52), and (53), the functions Fr,k
now satisfy

Fr,k(Φ, t)− Fr,k(Ψ , t) = hr,k(φk(0), ψk(0), t)

+wr,k(Φ,Ψ , t), (67)

for r, k ∈ {1, 2}, Φ = (φ1, φ2)
T ,Ψ = (ψ1, ψ2)

T
∈

C([−τ ∗

M , 0]; R2), where

hr,1(φ1(0), ψ1(0), t) = −[φ1(0)− ψ1(0)],
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hr,2(φ2(0), ψ2(0), t) = −[φ2(0)− ψ2(0)],

wr,1(Φ,Ψ , t) = ar [g(φ2(−τ
I
r ))− g(ψ2(−τ

I
r ))],

wr,2(Φ,Ψ , t) = ar [g(φ1(−τ
I
r ))− g(ψ1(−τ

I
r ))].

By the mean-value theorem, wr,k, r, k ∈ {1, 2}, can be expressed
as

wr,1(Φ,Ψ , t) = arg ′(ξr,2)[φ2(−τ
I
r )− ψ2(−τ

I
r )], (68)

wr,2(Φ,Ψ , t) = arg ′(ξr,1)[φ1(−τ
I
r )− ψ1(−τ

I
r )], (69)

where ξr,k is some number between φk(−τ
I
r ) and ψk(−τ

I
r ). Recall

that |g(ξ)| < 1 and 0 < g ′(ξ) ≤ 1 for all ξ ∈ R. By (67)–(69), we
can verify that system (51) satisfies assumption (F), with

µ̌r,k = µ̂r,k = −1, ρwr,1 = ρwr,2 = 2ar , µ̄
(l)
r,k = 0,

β̄
(l)
r,k = ar , τ

(l)
r,k = τ Ir ,

(70)

for r, k, l ∈ {1, 2}, l ≠ k. Directed computations yield that for
matrices Wrs in (56), the associated matrices W̄rs(t), r, s ∈ {1, 2},
defined in Lemma 1, are now

W̄11(t) ≡

−β1


, W̄12(t) ≡


γ1 0


,

W̄21(t) ≡


−γ2
γ2


, W̄22(t) ≡


0 β2

−β2 −β2


.

Subsequently, we obtain from (24)–(26) that

−ω̌
(11)
11 = −ω̂

(11)
11 = |ω|

(11)
11 = β1,

ω̌
(11)
12 = ω̂

(11)
12 = |ω|

(11)
12 = γ1,

ω̌
(12)
12 = ω̂

(12)
12 = |ω|

(12)
12 = ω̌

(11)
22 = ω̂

(11)
22 = |ω|

(11)
22 = 0,

−ω̌
(11)
21 = −ω̂

(11)
21 = |ω|

(11)
21 = ω̌

(21)
21 = ω̂

(21)
21 = |ω|

(2,1)
21 = γ2,

ω̌
(12)
22 = ω̂

(12)
22 = |ω|

(12)
22 = −ω̌

(21)
22 = −ω̂

(21)
22 = |ω|

(21)
22 = β2,

−ω̌
(22)
22 = −ω̂

(22)
22 = |ω|

(22)
22 = β2.

From (54) and (66), the quantities Ľrs,k, L̂rs,k, and Ḡrs,k, defined in
(30)–(32), become

Ľrs,1 = min{g ′(ξ) : ξ ∈ [−ρ∗

s,1, ρ
∗

s,1]} = g ′(ρ∗

s,1), (71)

L̂rs,1 = max{g ′(ξ) : ξ ∈ [−ρ∗

s,1, ρ
∗

s,1]} = 1, (72)

Ḡrs,1 = max{|g(ξ)| : ξ ∈ [−ρ∗

s,1, ρ
∗

s,1]} = g(ρ∗

s,1), (73)

Ľrs,2 = L̂rs,2 = Ḡrs,2 = 0, (74)

for r, s ∈ {1, 2}. We note that Az , defined in (15), is now

Az = A∗

z := {(1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2),
(2, 2, 1), (2, 2, 2)}.

From (70)–(74), the quantities µ̌r,p,k, µ̂r,p,k, β̌r,p,k, β̂r,p,k, ρh
r,p,k,

ρwr,p,k, µ̄
(s,q,l)
r,p,k , and β̄(s,q,l)r,p,k , defined in Proposition 2, can be chosen

as follows:

µ̌r,p,k = µ̂r,p,k = −1, for all (r, p, k) ∈ A∗

z ,

β̌r,p,k =


−βr if (r, p, k) ∈ {(1, 1, 1), (2, 2, 1)},
0 otherwise,

β̂r,p,k =


−βrg ′(ρ∗

r,1) if (r, p, k) ∈ {(1, 1, 1), (2, 2, 1)},
0, otherwise,

ρwr,p,k =


ρw

∗
if (r, p, k) = (1, 1, 1),

2a1 if (r, p, k) = (1, 1, 2),
ρw

∗∗
if (r, p, k) ∈ {(2, 1, 1), (2, 2, 1)},

2a2 if (r, p, k) ∈ {(2, 1, 2), (2, 2, 2)},

µ̄
(s,q,l)
r,p,k = 0, for all (r, p, k) ∈ A∗

z ,
β̄
(s,q,l)
r,p,k =



a1 if (r, p) = (s, q) = (1, 1),
(k, l) ∈ {(1, 2), (2, 1)},

a2 if (r, p) = (s, q) ∈ {(2, 1), (2, 2)},
(k, l) ∈ {(1, 2), (2, 1)},

γ1 if (r, s) = (1, 2), (p, q) = (1, 1),
k = l = 1,

γ2 if (r, s) = (2, 1), (p, q) ∈ {(1, 1), (2, 1)},
k = l = 1,

β2 if (r, s) = (2, 2), (p, q) ∈ {(1, 2), (2, 1)},
k = l = 1,

0 otherwise,

τ
(s,q,l)
r,p,k =



τ I1 if (r, p) = (s, q) = (1, 1),
(k, l) ∈ {(1, 2), (2, 1)},

τ I2 if (r, p) = (s, q) ∈ {(2, 1), (2, 2)},
(k, l) ∈ {(1, 2), (2, 1)},

τ12 if (r, s) = (1, 2), (p, q) ∈ {(1, 1), (1, 2)},
k = l ∈ {1, 2},

τ21 if (r, s) = (2, 1), (p, q) ∈ {(1, 1), (2, 1)},
k = l ∈ {1, 2},

τ22 if (r, s) = (2, 2), (p, q) ∈ {(1, 2), (2, 1)},
k = l ∈ {1, 2},

0 otherwise,

ρh
r,p,k = 2βrg(ρ∗

r,1) if (r, p, k) ∈ {(1, 1, 1), (2, 2, 1)}, and
ρh
r,p,k is an arbitrary positive number if (r, p, k) ∈ A∗

z −

{(1, 1, 1), (2, 2, 1)}, where ρw
∗

:= 2[a1 +γ1g(ρ∗

2,1)], ρ
w
∗∗

:= 2[a2 +

β2g(ρ∗

2,1) + γ2g(ρ∗

1,1)]. By these quantities and (65), ηr,p,k and
L̄(s,q,l)r,p,k , defined in (37) and (39), are determined as follows:

ηr,p,k

=


η∗

1 if (r, p, k) = (1, 1, 1),
η∗

2 if (r, p, k) = (2, 2, 1),
1 if (r, p, k) ∈ {(1, 1, 2), (2, 1, 1), (2, 1, 2), (2, 2, 2)}

(75)

and

L̄(s,q,l)r,p,k = β̄
(s,q,l)
r,p,k , (76)

for all (r, p, k), (s, q, l) ∈ A∗
z , with (r, p, k) ≠ (s, q, l), where η∗

r ,
r = 1, 2, are defined in (61). By (40), mapping ℓ satisfies

ℓ(1, 1, 1) = 1, ℓ(1, 1, 2) = 2, ℓ(2, 1, 1) = 3,
ℓ(2, 1, 2) = 4, ℓ(2, 2, 1) = 5, ℓ(2, 2, 2) = 6. (77)

With (75)–(77), we obtain that matrix M, defined in (47), is as
follows:

η1,1,1 −L̄(1,1,2)1,1,1 −L̄(2,1,1)1,1,1 −L̄(2,1,2)1,1,1 −L̄(2,2,1)1,1,1 −L̄(2,2,2)1,1,1

−L̄(1,1,1)1,1,2 η1,1,2 −L̄(2,1,1)1,1,2 −L̄(2,1,2)1,1,2 −L̄(2,2,1)1,1,2 −L̄(2,2,2)1,1,2

−L̄(1,1,1)2,1,1 −L̄(1,1,2)2,1,1 η2,1,1 −L̄(2,1,2)2,1,1 −L̄(2,2,1)2,1,1 −L̄(2,2,2)2,1,1

−L̄(1,1,1)2,1,2 −L̄(1,1,2)2,1,2 −L̄(2,1,1)2,1,2 η2,1,2 −L̄(2,2,1)2,1,2 −L̄(2,2,2)2,1,2

−L̄(1,1,1)2,2,1 −L̄(1,1,2)2,2,1 −L̄(2,1,1)2,2,1 −L̄(2,1,2)2,2,1 η2,2,1 −L̄(2,2,2)2,2,1

−L̄(1,1,1)2,2,2 −L̄(1,1,2)2,2,2 −L̄(2,1,1)2,2,2 −L̄(2,1,2)2,2,2 −L̄(2,2,1)2,2,2 η2,2,2


,

which is exactly M∗. It is not difficult to verify that system (51)
satisfies condition (S1) under condition (62). Hence, the assertion
of this theorem follows directly from Theorem 1. �

The following corollary originates from Theorem3, by requiring
strict diagonal-dominance of M∗ in (63), which is a sufficient
condition for the convergence of the Gauss–Seidel iteration for
(63). The criterion in this corollary can be verified directly, without
computing the eigenvalue λ∗, defined in (64).

Corollary 1. System (51) attains global cluster synchronization in
spite of time delays τ I1, τ

I
2, τ12 and τ21 if

1 > max{a1, a2 + β2 + γ2}, 1 + β1g ′(ρ∗

1,1) > a1 + γ1, (78)
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and τ11 and τ22 are sufficiently small such that

τ11 < min{τ ∗

1 , τ̃
∗

1 }, τ22 < min{τ ∗

2 , τ̃
∗

2 }, (79)

where

τ̃ ∗

1 :=
1 + β1g ′(ρ∗

1,1)− a1 − γ1

β1[2 + (1 + g ′(ρ∗

1,1))β1]
, (80)

τ̃ ∗

2 :=
1 + β2g ′(ρ∗

2,1)− a2 − β2 − γ2

β2[2 + (1 + g ′(ρ∗

2,1))β2]
, (81)

τ ∗

1 and τ ∗

2 are defined in (58) and (59), respectively, and ρ∗

1,1 and ρ
∗

2,1
are defined in (60).

Proof. Obviously, condition (79) guarantees that condition (62)
holds and τrr < τ̃ ∗

r , for r = 1, 2. It is not difficult to verify that
matrix M∗ is strictly diagonally dominant if condition (78) holds,
and τrr < τ̃ ∗

r , for r = 1, 2. Accordingly, conditions (78) and (79)
imply that condition (62) holds, and the Gauss–Seidel iteration
for system (63) converges to zero, the unique solution of (63).
Hence, the assertion of this corollary hence follows directly from
Theorem 3. �

Remark 3. As summarized in the Introduction, Cao and Li (2009),
Lu et al. (2010a), Ma et al. (2006), Wu and Chen (2009), Zhang, Ma,
and Chen (2014), and Zhang, Ma, and Zhang (2013) investigated
the cluster synchronization of linearly coupled systems. Song and
Zhao (2014) established the cluster synchronization of nonlinearly
coupled identical systems with homogeneous coupling delays. On
the other hand, as seen from Remark 2, the connection matrix for
system (51) does not satisfy the requirements in Cao and Li (2009),
Ma et al. (2006), Song andZhao (2014),WuandChen (2009), Zhang,
Ma, andChen (2014), and Zhang,Ma, and Zhang (2013). As far aswe
could establish, the cluster synchronization of system (51) cannot
be concluded by the methods employed in those papers, even if
system (51) has homogeneous delays.

The following two examples illustrate synchronization scenar-
ios of system (51), by using Corollary 1 and Theorem 3, respec-
tively.

Example 1. Consider system (51) with a1 = 0.99, a2 = 0.2,
β1 = 0.4, β2 = 0.2, γ1 = 0.05, γ2 = 0.04, τ I1 = 20, τ I2 = 10,
τ11 = 0.04, τ12 = 5, τ21 = 10, τ22 = 0.5.

It is obvious that

1 > max{a1, a2 + β2 + γ2} = 0.99. (82)

We obtain directly from (60) that

ρ∗

1,1 = 1.44, ρ∗

2,1 = 0.44. (83)

By (83), a direct computation yields

1 + β1g ′(ρ∗

1,1)− (a1 + γ1) ≈ 0.0405, (84)

recalling g(ξ) = tanh(ξ). Moreover, by (58), (59), (80), (81), and
(83), we obtain

τ ∗

1 ≈ 0.5606, τ ∗

2 ≈ 1.0791, τ̃ ∗

1 ≈ 0.0408,
τ̃ ∗

2 ≈ 1.5339.
(85)

Notably, (82), (84), and (85) imply that conditions (78) and (79)
hold. By Corollary 1, the system attains global cluster synchro-
nization. Fig. 1(a)–(c) demonstrate that the three solutions either
converge to various nontrivial equilibria, or remain oscillating, de-
pending on their initial conditions; moreover, their corresponding
synchronization errors Err(t) all approach zero.

If we consider τ11 = 20 and τ22 = 10 instead of τ11 = 0.04
and τ22 = 0.5, then condition (79) does not hold. In this case,
Fig. 1(d) demonstrates that for some solution, the corresponding
synchronization error Err(t) does not tend to zero.

We note that, from our simulation, the dynamics for each
isolated neuron in this system (i.e., system (50), for r = 1 or 2)
admits a stable equilibrium at the origin as the only attractor. This
example appears to indicate that the coupling can promote the
oscillation and multistability, and large coupling delays between
neurons within the same community can induce asynchrony.

Example 2. Consider system (51), with a1 = 1.02, a2 = 0.2,
β1 = 0.5, β2 = 0.2, γ1 = 0.1, γ2 = 0.05, τ I1 = 20, τ I2 = 15,
τ11 = τ22 = 0.01, τ12 = 5, τ21 = 10.

We obtain from (60) directly that

ρ∗

1,1 = 1.62, ρ∗

2,1 = 0.45, ρ∗

12 = 1.02, ρ∗

22 = 0.2.
(86)

Based on (86), we compute (58), (59), and (61) to obtain

η∗

1 ≈ 1.0597, η∗

2 ≈ 1.1597, τ ∗

1 ≈ 0.4722,
τ ∗

2 ≈ 1.0678.
(87)

By (87), we can verify that condition (62) holds. With a1 = 1.02,
a2 = 0.2, β1 = 0.5, β2 = 0.2, γ1 = 0.1, γ2 = 0.05, and
η∗

1 ≈ 1.0597 and η∗

2 ≈ 1.1597 in (87), we then estimate M∗

defined in (57), as follows:

M∗
= DM∗ − LM∗ − UM∗

where

DM∗ ≈


1.0597 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1.1597 0
0 0 0 0 0 1

 , (88)

LM∗ =


0 0 0 0 0 0

1.02 0 0 0 0 0
0.05 0 0 0 0 0
0 0 0.2 0 0 0

0.05 0 0.2 0 0 0
0 0 0 0 0.2 0

 , (89)

UM∗ =


0 1.02 0.1 0 0 0
0 0 0 0 0 0
0 0 0 0.2 0.2 0
0 0 0 0 0 0
0 0 0 0 0 0.2
0 0 0 0 0 0

 . (90)

By (88)–(90), a numerical computation yields

{λ : λ is an eigenvalue of (DM∗ − LM∗)−1UM∗}

= {λi, i = 1, . . . , 6},

where λi ≈ 0.000, i = 1, 2, 3, λ4 ≈ 0.988, λ5 ≈ 0.093, and
λ6 ≈ 0.015. Consequently, we can compute λ∗

≈ 0.988, defined
in (64). Accordingly, the system satisfies conditions (62) and (64);
hence, it achieves global cluster synchronization by Theorem 3.
Fig. 2(a)–(c) show that the three solutions either converge to
various nontrivial equilibria, or remain oscillating, depending on
their initial conditions, and their corresponding synchronization
errors Err(t) all tend to zero.

If we consider τ11 = τ22 = 20 instead of τ11 = τ22 = 0.01,
then condition (79) does not hold. In this case, Fig. 1(d)
demonstrates that the synchronization error Err(t) corresponding
to some solution does not approach zero.

Our simulation shows that the dynamics of each isolated
neuron in the first community of the system (i.e. system (50)
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(a) τ11 = 0.04, τ22 = 0.5. (b) τ11 = 0.04, τ22 = 0.5.

(c) τ11 = 0.04, τ22 = 0.5. (d) τ11 = 20, τ22 = 10.

Fig. 1. Evolutions of (x1,1(t), x1,2(t))T , (x3,1(t), x3,2(t))T , and Err(t) =


k∈{1,2}


i∈{1,3,4}[xi,k(t)− xi+1,k(t)]2 for solutions (xi,j(t)) of system (51), with various τ11

and τ22 , in Example 1. The solutions in (a) and (d) both start from (1.6,−1, 0.2,−1.6,−1.6, 1, 1.6,−1, 0.1,−0.1), at t0 = 0, whereas those in (b) and (c) start from
(−0.6, 0.1,−0.1,−0.6, 0.6, 0.2,−0.3, 0.6,−0.1,−0.6) and (0.6,−0.1, 0.1, 0.6,−0.6,−0.2, 0.3,−0.6, 0.1, 0.6)), at t0 = 0, respectively.
with r = 1) admits a globally asymptotically stable equilibrium.
In contrast, the dynamics of each isolated neuron in the second
community of the system (i.e. system (50) with r = 2) exhibits
convergence to multiple stable equilibria. Thus, this example
demonstrates that the coupling can promote oscillation and
multistability, and that large coupling delays between neurons
within the same community may induce asynchrony.

4. Conclusion

This investigation establishes the global cluster synchroniza-
tion of complex networks based on an iterative approach. With
the dissipative property in a network system, our approach first
derives component-wise convergent properties, i.e., a preliminary
attracting set of cluster synchronous manifold, for the system.
Through an iteration scheme, this approach subsequently for-
mulates delay-dependent and delay-independent criteria for the
global convergence of dynamics to the cluster synchronous mani-
fold, and hence global cluster synchronization, for the system. The
proposed framework accommodates a large class of network sys-
tems in the form of (1). The units comprising the network can ei-
ther be identical or non-identical. The coupling configuration of
the network can be rather general with coupling terms that could
be nonlinear and with heterogeneous coupling time delays. The
connection matrix could be time-dependent and could contain
mixed signs of off-diagonal entries. The unique assumption im-
posed on the connectionmatrix is assumption (I). To the best of our
knowledge, this is a prerequisite requirement, hence the weakest
condition, imposed on the connection matrix for the cluster syn-
chronization problem in the existing literature, cf. Remark 2.
Accordingly, our approach can be applied to diffusively or non-
diffusively coupled systems. In addition, the coupled systems con-
sidered under our framework can accommodate excitatory and
inhibitory connections simultaneously.

We implemented this approach to study the cluster synchro-
nization of a nonlinearly coupled neural network with hetero-
geneous coupling delays, which cannot be treated by existing
approaches, cf. Remark 3. As illustrated in Examples 1 and 2, the
present approach allows coupled neural networks to exhibit new
and rich collective behavior, which is distinct from the individual
behavior of isolated neurons, under the synchronization criteria.
In addition, our examples also illustrated that coupled neural net-
works may lose synchrony if the coupling delays between neurons
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(a) τ11 = τ22 = 0.01. (b) τ11 = τ22 = 0.01.

(c) τ11 = τ22 = 0.01. (d) τ11 = τ22 = 20.

Fig. 2. Evolutions of (x1,1(t), x1,2(t))T , (x3,1(t), x3,2(t))T , and Err(t) =


k∈{1,2}


i∈{1,3,4}[xi,k(t)− xi+1,k(t)]2 for solutions (xi,j(t)) of system (51), with various τ11 and

τ22 , in Example 2. The solutions in (a) and (d) start from (1.6 + 0.1 sin(t),−1.6 + 0.1t,−1.6 + 0.1t, 1.6 + 0.1t, 0, 0, 0, 0, 0, 0), at t0 = 0; the solution in (b) (resp., (c))
starts from (1.6,−1, 1.6,−1.6,−1.6, 1, 1.6,−1, 0.1,−0.1) (resp., (3, 0.1, 4, 0.6, 0.6, 0.2,−0.9, 0.6,−0.1,−0.6)), at t0 = 0.
within the same community are too large, such that the synchro-
nization criteria are violated. In the literature, the coupling delay
may be considered to be larger if the distance between two inter-
acting neurons is larger, cf. Crook et al. (1997). In this situation,
our examples indicate that coupled neural networks may lose syn-
chrony if neurons within the same community are too far away
from each other.
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Appendix. Scalar delay-differential equation

Wedenote by t0 the initial time and by τM > 0 the upper bound
of the delaymagnitude. Letw(t) be a bounded continuous function
for t ≥ t0, and let h : R × R × R → R and h̃ : C([−τM , 0]; R) ×

C([−τM , 0]; R) × R → R be continuous functions. Let xt , yt ∈

C([−τM , 0]; R) for t ≥ t0, and set x(t + θ) = xt(θ), y(t + θ) =

yt(θ) for θ ∈ [−τM , 0]. We assume that x(t) and y(t) eventually
enter and then remain in some closed and bounded interval [ϱ̌, ϱ̂];
namely, x(t) and y(t) lie in [ϱ̌, ϱ̂] for all t ≥ t̃0, for some t̃0 ≥ t0.
We suppose that z(t) = x(t) − y(t) satisfies the following scalar
equation:

ż(t) = h(x(t), y(t), t)+ h̃(xt , yt , t)+ w(t), t ≥ t0. (91)

Set

|w|
max(T ) := sup{|w(t)| : t ≥ T },

|w|
max(∞) := lim

T→∞

|w|
max(T ).

We introduce the following conditions:
Condition (H0): There exist µ̂, µ̌, β̌, β̂ ∈ R, ρh > 0, and

0 ≤ τ̄ ≤ τM , such that for each φ,ψ ∈ {ϕ ∈ C([−τM , 0]; R) :

ϕ(θ) ∈ [ϱ̌, ϱ̂], θ ∈ [−τM , 0]}, the following properties hold for all
t ≥ t0:
(H0-i):
µ̌ ≤ h(φ(0), ψ(0), t)/[φ(0)− ψ(0)] ≤ µ̂ if φ(0)− ψ(0) ≠ 0,
h(φ(0), ψ(0), t) = 0 if φ(0)− ψ(0) = 0,
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(H0-ii): |h̃(φ, ψ, t)| ≤ ρh, and there exists a τ = τ(φ,ψ, t) ∈

[0, τ̄ ], such thatβ̌ ≤ h̃(φ, ψ, t)/[φ(−τ)− ψ(−τ)] ≤ β̂
if φ(−τ)− ψ(−τ) ≠ 0,

h̃(φ, ψ, t) = 0 if φ(−τ)− ψ(−τ) = 0.

Condition (A1): µ̂+ β̂ < 0 and β̄τ̄ < 3ρh(µ̂+ β̂)/[(µ̂+ µ̌+

β̂ + β̌)(3ρh
+ |w|

max(t̃0))], where β̄ := max{|β̌|, |β̂|}.
Condition (A2): 0 ≤ β̄ < −µ̂/[1 + |w|

max(t̃0)/ρh
].

The following two propositions are based directly on Propo-
sitions 2.3 and 2.4, respectively, that were reported by Shih and
Tseng (2013).

Proposition A.1. If z(t) satisfies (23), then z(t) converges to interval
[−ν̄, ν̄] as t → ∞, under conditions (H0) and (A1). Moreover,

0 ≤ ν̄ ≤ |w|
max(∞)/[−µ̂− β̂ + β̄τ̄ (µ̌+ µ̂+ β̌ + β̂)].

Proposition A.2. If z(t) satisfies (23), then z(t) converges to interval
[−ν̃, ν̃] as t → ∞, under conditions (H0) and (A2). Moreover,

0 ≤ ν̃ ≤ |w|
max(∞)/(−µ̂− β̄).

The assertion in Proposition 2.3 (resp., 2.4) in Shih and Tseng
(2013) uses t0 instead of t̃0 in condition (A1) (resp., (A2)). From
the arguments for Proposition 2.3 (resp., 2.4) in Shih and Tseng
(2013), it can seen that t0 in condition (A1) (resp., (A2)) for
Proposition 2.3 (resp., 2.4) therein can be replaced by t̃0 to weaken
the condition, which then implies Proposition A.1 (resp., A.2).
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