Some Forbidden Subgraphs of Trees Being Opposition Graphs

In-Jen Lin ${ }^{1}$, Yi-Wu Chang ${ }^{2,}$, , Cheng-Wei Pan ${ }^{2}$
${ }^{1}$ Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
${ }^{2}$ Department of Mathematical Sciences, National Chengchi University, Taipei, Taiwan
Email address:
ijlin@mail.ntou.edu.tw (In-Jen Lin), chang@nccu.edu.tw (Yi-Wu Chang), 98751008@nccu.edu.tw (Cheng-Wei Pan)
*Corresponding author

To cite this article:

In-Jen Lin, Yi-Wu Chang, Cheng-Wei Pan. Some Forbidden Subgraphs of Trees Being Opposition Graphs. International Journal of Discrete Mathematics. Vol. 2, No. 3, 2017, pp. 119-124. doi: 10.11648/j.dmath. 20170203.20

Received: March 17, 2017; Accepted: March 28, 2017; Published: May 15, 2017

Abstract

In this paper, we use the number of vertices with degree greater than or equal to 3 as a criterion for trees being opposition graphs. Finally, we prove some families of graphs such as the complement of P_{n}, C_{n} with $\mathrm{n} \geq 3$ and $\mathrm{n}=4 \mathrm{k}$, for $\mathrm{k} \in \mathbb{N}$, are opposition graphs and some families of graphs such as the complement of T_{n}, C_{n} with $\mathrm{n} \geq 3$ and $\mathrm{n} \neq 4 \mathrm{k}$, for $\mathrm{k} \in \mathbb{N}$, are not opposition graphs.

Keywords: Trees, Orientations, Opposition Graphs

1. Introduction

From the book [1] and papers [2, 3], they introduce many containment relationships between classes of perfect graphs. For example, it mentions the relations between opposition graphs and threshold graphs, and the relations between opposition graphs and perfect graphs. There are also papers about perfectly orderable graphs $[4,5,6,7,8]$, and papers about Welsh-Powell opposition graphs $[9,10]$.

Now we put our attention on the necessary and sufficient conditions of trees being opposition graphs. A graph G is called an opposition graph if there exists an orientation such that every induced P_{4} : abcd, $a \rightarrow b$ if and only if $d \rightarrow c$. We call such an orientation oppositional orientation.

2. Some Opposition Graphs

In this paper, we will discuss relations between opposition graphs and trees. Let T be a tree and let $R(T)=\{x \in V(T) \mid$ $\operatorname{deg}(x) \geqq 3\}$, we have the following four cases:

Case 1: $|R(T)|=0$.
Case 2: $|R(T)|=1$.
Case 3: $|R(T)|=2$.
Case 4: $|R(T)| \geqq 3$.
In this section, we focus on these cases and provide some discussion and examples after each case.

Case 1: $|R(T)|=0$.
In this case, we discuss the case $|R(T)|=0$. Every vertex in the tree T has only degree 1 or 2 , so T is a path P_{n}.

Theorem 2.1 The path P_{n} is an opposition graph.
Proof. Let $v_{l}, v_{2}, \ldots, v_{n}$ be the vertices of P_{n}. We can give an orientation of P_{n} as follows:
a. $v_{i} \rightarrow v_{i+1}$ for all $i=4 \mathrm{k}, 4 \mathrm{k}+1$, where $\mathrm{k} \in \mathbb{N}$ and $i<n$.
b. $v_{i+1} \rightarrow v_{i}$ for all $i=4 \mathrm{k}+2,4 \mathrm{k}+3$, where $\mathrm{k} \in \mathbb{N}$ and $i<n$.

Then P_{n} is an opposition graph shown as Figure 1

Figure 1. P_{n} is opposition.
Theorem 2.2 There are only four oppositional orientations of P_{n}.

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of P_{n}.
Case 1: If the direction between v_{1} and v_{2} is $v_{1} \rightarrow v_{2}$, then we must have the following directions:
a. $v_{i} \rightarrow v_{i+1}$ for all $i=4 \mathrm{k}+1$, where $\mathrm{k} \in \mathbb{N}$ and $i<n$.
b. $v_{i+1} \rightarrow v_{i}$ for all $i=4 \mathrm{k}+3$, where $\mathrm{k} \in \mathbb{N}$ and $i<n$.

Then we have two subcases:
Subcase 1: The direction between v_{2} and v_{3} is $v_{2} \rightarrow v_{3}$, then we have the following directions:
i. $v i \rightarrow v i+1$ for all $i=4 k+2$, where $\mathrm{k} \in \mathbb{N}$ and $i<n$.
ii. vi+1 \rightarrow vi for all $i=4 k+4$, where $\mathrm{k} \in \mathbb{N}$ and $i<n$.

Subcase 2: The direction between v_{2} and v_{3} is $v_{3} \rightarrow v_{2}$, then we have the following directions:
i. $v i \rightarrow v i+1$ for all $i=4 k+4$, where $\mathrm{k} \in \mathbb{N}$ and $i<n$.
ii. vi $+1 \rightarrow$ vi for all $i=4 k+2$, where $\mathrm{k} \in \mathbb{N}$ and $i<n$.

Case 2 If the direction between v_{1} and v_{2} is $v_{2} \rightarrow v_{l}$, then we must have the following directions:
a. vi $\rightarrow v i+1$ for all $i=4 k+3$, where $\mathrm{k} \in \mathbb{N}$ and $i<n$.
b. vi+1 \rightarrow vi for all $i=4 k+1$, where $\mathrm{k} \in \mathbb{N}$ and $i<n$.

Then we have two subcases:
Subcase 1: The direction between v_{2} and v_{3} is $v_{3} \rightarrow v_{2}$, then we have the following directions:
a. $v i \rightarrow v i+1$ for all $i=4 k+4$, where $\mathrm{k} \in \mathbb{N}$ and $i<n$.
b. vi+1 \rightarrow vi for all $i=4 k+2$, where $\mathrm{k} \in \mathbb{N}$ and $i<n$.

Subcase 2: The direction between v_{2} and v_{3} is $v_{2} \rightarrow v_{3}$, then we have the following directions:
a. $v i \rightarrow v i+1$ for all $i=4 k+2$, where $\mathrm{k} \in \mathbb{N}$ and $i<n$.
b. $v i+1 \rightarrow$ vi for all $i=4 k+4$, where $\mathrm{k} \in \mathbb{N}$ and $i<n$.

Theorem 2.2 told us that there are only four oppositional orientations D_{1}, D_{2}, D_{3} and D_{4} for a path. We can choose any one of these four oppositional orientations to give an orientation for a path.

Figure 2. The orientation of P_{n}.

Case 2: $|R(T)|=1$.
If there is only one vertex u in $R(T)$, then T must be the tree shown as Figure 3, we call it sunshine graph. We will discuss whether T is an opposition graph.

Figure 3. Sunshine graph.
Theorem 2.3 If T is a sunshine graph, then T is an opposition graph.

Proof. Let $u \in R(T)$ be the root of T. We can give an orientation for the edges of T as follows:
a. Level $i \rightarrow$ level $i+l$ for all $i=4 \mathrm{k}, 4 \mathrm{k}+1$, where $\mathrm{k} \in \mathbb{N}$ and $i<l$, where l is the height of T.
b. Level $i+l \rightarrow$ level i for all $i=4 \mathrm{k}+2,4 \mathrm{k}+3$, where $\mathrm{k} \in \mathbb{N}$ and $i<l, l$ is the height of, where $\mathrm{k} \in \mathbb{N}$ and $i<l$, where l is the height of T.
Then T is an opposition graph shown as Figure 4.

Figure 4. Sunshine graph is an opposition graph.
Theorem 2.4 For a sunshine graph T. Let u be the root of T. If there are at least two vertices in level 2, then there are only two oppositional orientations for a sunshine graph T.

Proof. Let T be a sunshine graph. Let $u \in R(T)$ be the root of the tree T. There are n paths from u to leaves $Q_{1}, Q_{2}, \ldots, Q_{n}$. By Theorem 2.2, there are only four oppositional orientations for a path:

Case 1: If the orientation of Q_{1} is D_{l}, then the orientation of Q_{2}, \ldots, Q_{n} must be D_{l}. Hence, the orientation of T is level $i \rightarrow$ level $i+1$ for all $i=4 \mathrm{k}, 4 \mathrm{k}+1$ and level $i+1 \rightarrow$ level i for all $i=$ $4 \mathrm{k}+2,4 \mathrm{k}+3$, where $\mathrm{k} \in \mathbb{N}$ and $\mathrm{i}<l$, where l is the height of T.

Case 2: If the orientation of Q_{1} is D_{2}, then the orientation of

Q2, ..., Qn must be D_{2}. Hence, the orientation of T is level $i+1$ \rightarrow level i for all $i=4 \mathrm{k}, 4 \mathrm{k}+1$, and level $i \rightarrow$ level $i+1$ for all $i=$ $4 \mathrm{k}+2,4 \mathrm{k}+3$, where $\mathrm{k} \in \mathbb{N}$ and $i<l$, where l is the height of T.

Suppose the vertices of level 1 in Q_{1}, Q_{2}, Q_{3} are v_{11}, v_{12}, v_{13}, and suppose the vertices of level 2 in Q_{1}, Q_{2} are v_{21}, v_{22}.

Case 3: If the orientation of Q_{I} is D_{3}, then the directions of T must be $v_{12} \rightarrow u, v_{12} \rightarrow v_{22}, v_{13} \rightarrow u$. Hence, the orientation of the path $v_{13} u v_{12 \text { v22 }}$ gives us a contradiction.

Case 4: If the orientation of Q_{1} is D_{4}, then the directions of T must be $u \rightarrow v_{12}, v_{22} \rightarrow v_{12}, u \rightarrow v_{13}$. Hence, the orientation of the path $v_{13} u v_{12} v_{12}$ gives us a contradiction.

So there are only two oppositional orientations for a sunshine graph T.

By Theorem 2.4, we can give another orientation of edges of T as follows:
a. Level $i \leftarrow$ level $i+1$ for all $i=4 \mathrm{k}, 4 \mathrm{k}+1$, where $\mathrm{k} \in \mathbb{N}$ and $i<l$, where l is the height of T.
b. Level $i+1 \leftarrow$ level i for all $i=4 \mathrm{k}+2,4 \mathrm{k}+3$, where $\mathrm{k} \in \mathbb{N}$ and $i<l$, where l is the height of T.
Then T is an opposition graph shown as Figure 5.
Corollary 2.5 For a sunshine graph T. Let u be the root of T. If there are at least two vertices in level 2 , then the orientation of T must be given as follows:
a. Level $i \rightarrow$ level $i+1$ for all $i=4 \mathrm{k}, 4 \mathrm{k}+1$, where $\mathrm{k} \in \mathbb{N}$ and $i<l$, where l is the height of T.
b. Level $i+l \rightarrow$ level i for all $i=4 \mathrm{k}+2,4 \mathrm{k}+3$, where $\mathrm{k} \in \mathbb{N}$ and $i<l$, where l is the height of T.
Proof. By Theorem 2.4, there are two orientations for T, these two orientations are symmetric, so we can use case 1 to give the orientation for T.

Figure 5. An sunshine graph is an opposition graph.
Theorem 2.6 For a tree T. Let u be the root of T. If there are at least two vertices in level two and T is opposition, then the orientation of T must be given as follows:
a. Level $i \rightarrow$ level $i+1$ for all $i=4 \mathrm{k}, 4 \mathrm{k}+1$, where $\mathrm{k} \in \mathbb{N}$ and $i<l$, where l is the height of T.
b. Level $i+1 \rightarrow$ level i for all $i=4 \mathrm{k}+2,4 \mathrm{k}+3$, where $\mathrm{k} \in \mathbb{N}$ and $i<l$, where l is the height of T.
Proof. Let T be a tree. Suppose $R(T)=\left\{u, u_{1}, u_{2}, \ldots, u_{n}\right\}$. There is a maximal subtree T_{l} containing u which is a sunshine
graph. Then T can be decomposed into T_{l} and some paths Q_{l}, Q_{2}, \ldots, Q_{k} with one of endpoints in $R(T)$.

Because T_{l} is a sunshine graph, the orientation is given by Corollary 2.5. Now we add all paths Q_{i} into T_{l}. Suppose u_{j} is an endpoint of Q_{i}. Then $u u_{j} \cup Q_{i}$ is a path, the orientation of this path is given by case 1 of Theorem 2.2.

Hence, the orientation of T must be given as follows:
a. Level $i \rightarrow$ level $i+1$ for all $i=4 \mathrm{k}, 4 \mathrm{k}+1$, where $\mathrm{k} \in \mathbb{N}$ and $i<l$, where l is the height of T.
b. Level $i+l \rightarrow$ level i for all $i=4 \mathrm{k}+2,4 \mathrm{k}+3$, where $\mathrm{k} \in \mathbb{N}$ and $i<l$, where l is the height of T.
Now, by Theorem 2.6, when we want to determine if a tree T is an opposition graph, we can give the orientation by only one way: Let $u \in R(T)$ be the root.

Level $i \rightarrow$ level $i+1$ for all $i=4 \mathrm{k}, 4 \mathrm{k}+1$ and level $i+1 \rightarrow$ level i for all $i=4 \mathrm{k}+2,4 \mathrm{k}+3$, where $\mathrm{k} \in \mathbb{N}$ and $i<l$, where l is the height of T. When the orientation is given as above, if some induced P_{4} doesn't satisfy the definition of opposition graphs, then T is not an opposition graph.

Case 3: $|R(T)|=2$.
If there are exactly two vertices u and v in $R(T)$, then T must be the tree shown as Figure 6, we call it wing graph. We will discuss whether T is an opposition graph.

Figure 6. T is a wing graph.
Now, if we delete all the vertices between u and v, then we can get two subtrees containing u and v, we call them T_{l} and T_{2}. Observably, the degrees of u and v are greater than or equal to 2 . The trees T_{1} and T_{2} are paths or sunshine graphs because the degrees of every vertices are less than 3 except u and v.

Figure 7. The graph of Theorem 2.7.

Theorem 2.7 Let T be a tree with exactly two vertices u, v in $R(T)$. Let T_{1} and T_{2} be the subtrees from deleting the vertices between u and v. If at least one of T_{1} and T_{2} does not contain P_{4}, then T is an opposition graph.

Proof. Suppose T_{2} does not contain P_{4} and v is in T_{2}. Let u be the root of the tree T. We can give an orientation of edges of T as follows:
a. Level $i \rightarrow$ level $i+1$ for all $i=4 \mathrm{k}, 4 \mathrm{k}+1$, where $\mathrm{k} \in \mathbb{N}$ and $i<l$, where l is the height of T.
b. Level $i+1 \rightarrow$ level i for all $i=4 \mathrm{k}+2,4 \mathrm{k}+3, \mathrm{k} \in \mathbb{N}$ and $i<$ l, where l is the height of T.
Then T is an opposition graph shown as Figure 8.

$$
d(u, v)=4 k+1
$$

Figure 8. The orientation of Theorem 2.7.
Theorem 2.8 Let T be a tree and $v \in R(T)$. There are n paths $Q_{1}, Q_{2}, \ldots, Q_{n}$ with endpoint v. Let $v_{11} \in Q_{1}, v_{12} \in Q_{2}, \ldots, v_{1 n}$ $\in Q_{n}$ be the vertices whose distance from v is 1 . Let $v_{2 l} \in Q_{1}$, $v_{22} \in Q_{2}, \ldots, v_{2 n} \in Q_{n}$ be some vertices whose distance from v is 2 . If T is an opposition graph, then the directions of the edges $\mathrm{u} v_{l i}$ and $v_{l i} v_{2 i}$ must be as follows:

Case 1: The directions are $v \rightarrow v_{l i}$ for all $i=1, \ldots, \mathrm{n}$ and $v_{l i}$ $\rightarrow v_{2 i}$ for all $i=1, \ldots, \mathrm{n}$.

Case 2: The directions are $v_{l i} \rightarrow v$ for all $i=1, \ldots, \mathrm{n}$ and $v_{2 i}$ $\rightarrow v_{l i}$ for all $i=1, \ldots, \mathrm{n}$.

Proof. T is a tree. Let $u \in R(T)$ be the root of T. Suppose the path Q_{l} is between u and v.

By Theorem 2.6, we give an orientation for T, there are two cases in the edge between $v_{l l}$ and $v_{2 l}$:

Case 1: If we give the direction $v_{11} \rightarrow v_{2 i}$, then the directions of the edges $\mathrm{u} v_{l i}$ and $v_{l i} v_{2 i}$ is $v \rightarrow v_{l i}$ for all $i=2, \ldots, \mathrm{n}, v_{l i} \rightarrow v_{2 i}$ for some $i=2, \ldots, \mathrm{n}$, and $v \rightarrow v_{I I}$.

Case 2: If we give the direction $v_{2 i} \rightarrow v_{l l}$, then the directions of the edges $\mathrm{u} v_{l i}$ and $v_{l i} v_{2 i}$ is $v_{l i} \rightarrow v$ for all $i=2, \ldots, \mathrm{n}, v_{2 i} \rightarrow v_{l i}$ for some $i=2, \ldots, \mathrm{n}$, and $v_{l l} \rightarrow v$.

So there are only two cases for the directions of the edges $\mathrm{u} v_{l i}$ and $v_{l i} v_{2 i}$.

Figure 9. The orientation of Theorem 2.8.
Theorem 2.8 can give us a way to determine if T is an opposition graph. For a tree T, by Theorem 2.6, we can give an orientation, then the orientation of every vertex u in $R(T)$ must satisfy Theorem 2.82 .8 . If the orientation of any vertex u in $R(T)$ doesn't satisfy Theorem 2.8 , then T is not an opposition graph.

Then we will discuss that both T_{1} and T_{2} contain P_{4}. Let $\operatorname{dist}(u, v)$ be the distance between node u and node v. Then we have the following two cases:

Case 1: If $\operatorname{dist}(u, v)$ is odd.
Case 2: If $\operatorname{dist}(u, v)$ is even.
Theorem 2.9 Let T be a tree with exactly two vertices u, v in $R(T)$. Let T_{l} and T_{2} be the subtrees from deleting the vertices between u and v. If both T_{1} and T_{2} contain P_{4} and $\operatorname{dist}(u, v)$ is odd, then T is not an opposition graph.

Proof. Suppose u is in T_{l} and v is in T_{2}. Let u be the root of the tree T. We can give an orientation of edges of T by Corollary 2.5. Then the orientation of T is shown as Figure 10. The orientation of T_{2} doesn't satisfy Theorem 2.8 , so T is not an opposition graph.

$$
d(u, v)=4 k+1
$$

$$
d(u, v)=4 k+3
$$

Figure 10. The orientation of Theorem 2.9.
Theorem 2.10 Let T be a tree with exactly two vertices u, v in $R(T)$. Let T_{1} and T_{2} be the subtrees from deleting the vertices between u and v. If both T_{1} and T_{2} contain P_{4} and $\operatorname{dist}(u, v)$ is even, then T is an opposition graph.

Proof. Let u be the root of the tree T. We can give an orientation of edges of T by Corollary 2.5. Then the orientation of T is shown as Figure 11, so T is an opposition graph.

Figure 11. The orientation of Theorem 2.10.
Case 4: $|R(T)| \geqq 3$
Theorem 2.11 Let T be a tree. Let $R(T)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the set of vertices in T whose degree is greater than or equal to 3. If $\mathrm{d}\left(v_{i}, v_{i+1}\right)$ is even for all $i=1, \ldots, \mathrm{n}$, then T is an opposition graph.

Proof. We use the induction on $R(T)$ to prove the statement. Let T be a tree and $R(T)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the set of vertices in T which degree is greater than or equal to 3 .

Basic step: Suppose $\mathrm{n}=2$. By Theorem 2.10, T is an opposition graph.

Induction step: Suppose $\mathrm{n}>2$. Let v_{l} be the root of the tree T.

Suppose $\operatorname{dist}\left(v_{i}, v_{l}\right) \leqq \operatorname{dist}\left(v_{j}, v_{l}\right)$ for all $i<j$. Let T_{n} be the subtree of T whose vertex set $V\left(T_{n}\right)$ are v_{n} and all of its descendant. Let T^{\prime} be the subtree of T whose vertex set $V\left(T^{\prime}\right)$ are $\left\{v_{n}\right\} U V(T)-V\left(T_{n}\right)$.

Now, $\left|R\left(T^{\prime}\right)\right|=\mathrm{n}-1$, so T^{\prime} is an opposition graph by induction hypothesis.

Let v_{l} be the root of T^{\prime}. We can give an orientation to T^{\prime} :
a. Level $i \rightarrow$ level $i+1$ for all $i=4 \mathrm{k}, 4 \mathrm{k}+1$, where $\mathrm{k} \in \mathbb{N}$ and $i<l$, where l is the height of T.
b. Level $i+l \rightarrow$ level i for all $i=4 \mathrm{k}+2,4 \mathrm{k}+3$, where $\mathrm{k} \in \mathbb{N}$ and $i<l$, where l is the height of T.
Then we give the orientation for T_{n} and add T_{n} to T^{\prime}. Let v_{n} be the root of T_{n}. There are two cases in T_{n} :

Case 1: If $\operatorname{dist}\left(v_{l}, v_{n}\right)=4 \mathrm{k}$, then level $i \rightarrow$ level $i+1$ for all $i=$ $4 \mathrm{k}, 4 \mathrm{k}+1$ and level $i+1 \rightarrow$ level i for all $i=4 \mathrm{k}+2,4 \mathrm{k}+3$, where $\mathrm{k} \in \mathbb{N}$ and $i<l$, where l is the height of T.

Case 2: If $\operatorname{dist}\left(v_{l}, v_{n}\right)=4 \mathrm{k}+2$, then level $i+1 \rightarrow$ level i for all $i=4 \mathrm{k}, 4 \mathrm{k}+1$ and level $i \rightarrow$ level $i+1$ for all $i=4 \mathrm{k}+2,4 \mathrm{k}+3$, where $\mathrm{k} \in \mathbb{N}$ and $i<l$, where l is the height of T.

Hence, T is an opposition graph for $\mathrm{n}>2$.
Definition Let the path $u_{1} u_{2} u_{3} u_{4}$ and $v_{1} v_{2} v_{3} v_{4}$ be two P_{4}. We add an odd path between u_{2} and v_{2}, the graph is called H graph shown as Figure 12.

Figure 12. H graph.
Theorem 2.12 If T be an H graph, then T is a minimal obstruction for the class of opposition graphs.

Proof. If we remove u_{1}, then there is only one vertex v_{2} which degree is greater than or equal to 3 , by Theorem 2.3, T is an opposition graph.

If we remove u_{4}, the path $u_{1} u_{2} u_{3}$ is a P_{3}, then by Theorem 2.7, T is an opposition graph.

Similar for the vertices v_{l} and v_{4}.

3. Conclusion

By using the size of the set of vertices whose degree greater or equal to three, we state some conditions of trees being opposition graphs.

There are four cases studied in this paper. In first case, there are only four different kinds of oppositional orientations in P_{n}. Sunshine graphs are considered in second case and the number of oppositional orientation can be determined by theorem we provided. Wing graphs play an important role in third case as well as sunshine graphs in previous case. We state and prove the last case by mathematical induction.

4. Open Problems and Further Directions of Studies

In this paper, we show some sufficient condition for trees being opposition graphs. For the future direction of research, we would like to study the necessary and sufficient for trees or other category of graphs being opposition graph.

References

[1] A. N. Trenk, Tolerance Graphs, Cambridge Univ Pr, 2004. J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, 68-73.
[2] Andreas Brandstädt, Van Bang Le, Jeremy P. Spinrad, Graph classes: A survey, in: SIAM Monographs on Discrete Math. Appl., vol. 3, Philadelphia, 1999.
[3] Van Bang Le, On opposition graphs, coalition graphs, and bipartite permutation graphs, Discrete Appl. Math. 168, 2014, 26-33.
[4] Vašek Chvátal, Which claw-free graphs are perfectly orderable? Discrete Appl. Math. 44, 1993, 39-63.
[5] Elaine M. Eschen, Julie L. Johnson, Jeremy P. Spinrad, R. Sritharan, Recognition of some perfectly orderable graph classes, Discrete Appl. Math. 128, 2003, 355-373.
[6] Chính T. Hoàng, Bruce A. Reed, Some classes of perfectly orderable graphs, J. Graph Theory 13, 1989, 445-463.
[7] D. Link, Stefan Olariu, A simple NC algorithm for Welsh-Powell opposition graphs, Int. J. Comput. Math. 41, 1991, 49-53.
[8] Stephan Olariu, All variations on perfectly orderable graphs, J. Combin. Theory Ser. B 45, 1988, 150-159.
[9] Stavros D. Nikolopoulos, Leonidas Palios, Recognizing HH-free, HHD-free, and Welsh-Powell opposition graphs, Discrete Math. Theor. Comput Sci. 8, 2006, 65-82.
[10] Stephan Olariu, J. Randall, Welsh-Powell opposition graphs, Inform. Process. Lett. 31, 1989, 43-46.

