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中 文 摘 要 ： 本次研究主題為預測（forecasting）的心理機制。由於預測是人類
很基本的認知功能，且幾乎在各個環境中都需要預測，探究人類究
竟如何能對未來事件進行預測很具有基礎科學研究的價值。在過去
這類的研究較常見於經濟學的研究，像是對股市的預測。然而，一
般預測研究的作法是提供實驗參與者所有的歷史資料，再進行未來
的預測，例如，預測下週開盤的股價。這樣的預測似乎很需要專業
知識才能進行；然而，廣大的投資群眾並非都具有商業的專業知識
，但他們就算只觀察一小波段的股價走勢圖，也能大致預測股價的
漲跌。顯然這樣的預測有更為先天不需依賴專業知識的成份。因此
，本研究以實證實驗針對實驗參與者，測量他們在動態預測作業中
的表現。為求精確並排除專業知識涉入的可能，本研究實驗要求參
與者以滑鼠點擊他們認為標靶會出現的位置。標靶出現的位置，則
是由不同的函式定義。研究結果發現，只要前後兩次標靶出現的位
置具有高相關，參與者便能正確學會預測函式。同時，本研究發展
了一個簡單的類神經網路說明人類是如何習得預測。僅管如此，本
研究並非否定專業知識對預測的重要。這樣的結果不僅延伸了函式
學習的範圍，也替預測找到心理運作機制。同時，也對未來的預測
研究開啟了新的研究方向。

中文關鍵詞： 預測、函式學習、類神經網路、知識分化

英 文 摘 要 ： Forecasting is referred to predicting the future status of
a variable according to a series of its historical
statuses. Normally, forecasting is thought to be more
relevant to decision making, specifically in the field of
economics. For instance, the trend of the stock price in
the past six months often is used as an index to forecast
the current price. Although forecasting the price of a
stock market requires domain knowledge (e.g., economics),
to a normal person, it can be realized as a job just to
predict the future value according to the previous values.
In psychology, this is a case of function learning in that
yt = f(yt?1,yt?2,···). In this study, with this position
held, it is demonstrated that forecasting can have a simple
associative account, just like function learning, and can
be directed by a partially relevant context cue, regardless
of the true forecasting function, just like knowledge
partitioning.

英文關鍵詞： Forecasting, Function learning, Neural Network Model,
Knowledge Partitioning



Psychological Foundation of Forecasting

Lee-Xieng Yang

Department of Psychology and Research Center for Mind, Brain, and Learning

National Chengchi University

Abstract

Forecasting is referred to predicting the future status of a variable according

to a series of its historical statuses. Normally, forecasting is thought to be

more relevant to decision making, specifically in the field of economics. For

instance, the trend of the stock price in the past six months often is used

as an index to forecast the current price. Although forecasting the price of

a stock market requires domain knowledge (e.g., economics), to a normal

person, it can be realized as a job just to predict the future value according

to the previous values. In psychology, this is a case of function learning

in that yt = f(yt−1, yt−2, · · · ). In this study, with this position held, it is

demonstrated that forecasting can have a simple associative account, just like

function learning, and can be directed by a partially relevant context cue,

regardless of the true forecasting function, just like knowledge partitioning.

In this study, the main idea is to explore the psychological foundation of forecasting.

Different from the concern in business research such as how to improve the accuracy of

forecasting or the concern in information technology such as how to make a machine more

accurate on forecasting outcomes, the focus of this study is more put on exploring what

the underling mechanism for people to forecast is. To this end, the forecasting task with

dynamic presentation of time series was adopted. As shown in the study of Kusev, van
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Schaik, Tsaneva-Atanasova, Juliusson, and Chater (in press), in the prediction task with

dynamic presentation of time series, the stimuli are a time series presented to participants

one after one for predicting the immediate next one. This is actually a forecasting task and

different from the usual way of examining forecasting with all historical data displayed as

reference, this kind of forecasting is dynamic forecasting. Due to the similarity between dy-

namic forecasting and function learning, it was assumed that forecasting, at least dynamic

forecasting, shares the same mechanism of function learning. Based on this assumption,

a neural network model was proposed by adapting the well-known neural network model

in function learning (Add model’s name). Also, two experiments were conducted to exam-

ine a special phenomenon in associative learning, namely knowledge partitioning (Yang &

Lewandowsky, 2003, 2004). Shall dynamic forecasting be a special case of function learning

and have an associative account, knowledge partitioning could occur in dynamic forecasting.

Function Learning

Our cognitive system is good at detecting the relationship between variables and fur-

ther generalizing this relationship to predict one variable according to another. For instance,

we can predict how long we need to mow a lawn according to the weather temperature.

Obviously, there must be some relationship between the mowing time mt and weather tem-

perature wt. We can collect the data of these two variables and summarize the relationship

between them as a mathematical function such as wt = f(mt). However, it is unnecessary

to know this function in advance so as to mow a lawn. One can capture the relationship

between mowing time and weather temperature via simply observing a series of pairs of

mowing time and weather temperature.

Of course, not all functions are equally easy to learn. With the experiments adopt-

ing feedback-learning paradigm, the past studies summarized a number of characteristics

of function learning, such as that the linear function is easier to learn than the nonlin-

ear function and that the interpolation of a learned function is more accurate than the

extrapolation when generalizing predictions to novel stimuli (see DeLosh, Busemeyer, &
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McDaniel, 1997; Koh & Meyer, 1991). Although in earlier literature, the representation for

the learned function was assumed to be a rule in a polynomial like format, the rule-based

account seems to overestimate the performance of people when extrapolating the learned

function to the stimuli outside the range of training stimuli. However, the neural network

model proposed by Busemeyer, Byun, Delosh, and McDaniel (1997) can account for the

miss resulting from extrapolating the learned function in virtue of the similarity between

stimuli. Further, Kalish, Lewandowsky, and Kruschke (2004) proposed the POLE model,

which consists of many modules and each of which is a simple neural net, in charge of learn-

ing a linear relationship between two variables. According to the POLE model, a complex

function is not learned as a whole, but is partitioned by the input value to smaller segments

to learn. This idea was actually inspired by a series of studies addressing knowledge parti-

tioning in category learning that people learned to rely on context to generate partial rules

for categorization, instead of learning the true categorization rule (Yang & Lewandowsky,

2003, 2004) and in function learning that people learned to rely on context to generate par-

tial functions instead of the true function (Lewandowsky, Kalish, & Ngang, 2002). These

authors provided behavioral evidence that people do rely on the input value, as context,

to partition the to-be-learned function in order to simplifying the learning difficulty. The

POLE model can accommodate this result.

Neural Network Model for Dynamic Forecasting

Dynamic forecasting refers to predicting the values in a time series one after one.

Apparently, when predicting the value yt at time t, the previously seen values yt−1, yt−2,

· · · , and y1 are the only source of prediction. Thus, forecasting can be formulated as an au-

toregressive problem f , where ŷt = f(yt−1, yt−2, · · · , yt−n+1). In fact, when the correlation

between successive values is high, forecasting can be done by relying on only the last value

(Yang & Lee, 2015). Thus, the forecasting function can have the format of yt = f(yt−1).

Recall that the function designed for examining function learning always has the format

of y = f(x). Due to the similarity between these two types of functions, it is reasonable
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y at time t

y at time t−1context node

Figure 1. The Neural Network Model for Forecasting.

to regard forecasting as a kind of function learning with the input and the output as the

values at successive moments. Therefore, it is straightforward to treat the neural network

model proposed by Busemeyer et al. (1997) as a candidate model for accounting for dynamic

forecasting.

The neural network model of Busemeyer et al. (1997) is a two-layered neural net,

with the input and the output layers respectively represent for the input dimension and the

output dimension. However, in the current study, the input and the output respectively

represent for the values of a time series at time t− 1 and t. See Figure 1.
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There are n input nodes as well as n output nodes. In no matter the input or output

layer, each node corresponds to a value s on the stimulus dimension and functions as the

exemplar in the exemplar-based categorization model. When the stimulus at time t − 1,

xt−1, is received, the input nodes are activated to the extent of the closeness of them to

that stimulus, which is computed as

ATt−1 = exp(−||xt−1 − s||2/σ), (1)

where ATt−1 is an n-element vector containing the activation of input nodes. The parameter

σ is used to tune the size of the receptive field of each input node. When σ is large, the

system is less able to tell the difference between stimuli and vice versa. In addition to the

input nodes, the context node is used to represent the context on observing the stimulus

value. In the situation where no particular context should be considered to predict the

stimulus value in a time series, the context node can be omitted. In the experiments in the

latter sections where context was the color of the stimulus, the activation of context node

is set up as 1 and -1 for two different colors. The activation of context node is weighted by

an attention weight 0 ≤ α ≤ 1.

The activation of input nodes is normalized to 0 and 1 and then weighted by the

associative weights W and summed as the activation of output nodes ATt as

ATt = WATt−1. (2)

If a context cue is considered as input signal as well, here ATt−1 is changed to ATin =

[At−1, Ac]
T , where Ac is the activation of context node. Therefore, in this circumstance,

the output activation is computed as

ATt = WATin. (3)

When generating the prediction, only the activation of the output nodes around the

winning output node is considered, in order to counterbalance the privilege for the central

value due to blending all output activation. This is done by setting as 0 the activation of
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output nodes outside the receptive field of the winning node. The system output is the

expected value of the stimulus values S, whose corresponding output nodes are within the

neighborhood of the winning output node M . The probability of each candidate stimulus

value to be chosen as the system output is computed as

p(sκ) =
Aκ,t∑
k∈M Ak,t

. (4)

Of course, the larger activation the output node has, the more likely its corresponding value

is to be chosen. The system output then is

ŷt =
∑
k∈M

p(sk)sk. (5)

This neural network model adopts the error-driven learning algorithm to adjust the

associative weights. First, the target value observed at time t will be transformed to the

the activation of output nodes using Equation 1 and also be normalized to 0 and 1, just

like what is done for the input activation. Second, the activation of output nodes now is

called the target activation T . Therefore, the error on each output node k is Tk,t − Ak,t.

Therefore, the associative weight between the kth output node and the ith input node will

be changed by summing

∆wi,k = ηβ(Tk,t −Ak,t)Ai,t−1. (6)

where η is the learning rate, a small positive number, and β = exp(−ξ(t− 1)) is the decay

rate to attenuate the learning step according to the elapsed time with ξ is a freely estimated

parameter. The larger ξ the more quickly the learning is halted.

Experiment

As shown in the discussion in the previous sections that forecasting can be viewed

as a special case of function learning, in this experiment, a time series was defined by

yt = 7 sin(0.17(t− 1)− 7.2) as a forecasting function for participants to learn. See Figure 2.

The abscissa shows the position of the values in the time series. The coordinate shows the
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value of y. In the experiment, the participants were asked to predict by moving the mouse

cursor the position of a target trial by trial. The target would be presented on a horizontal

line with the left and right ends corresponding to the minimum and maximum of y. When

a response was made, the correct position would be indicated with an arrow printed in

color red or color green. Here the color is partially predictive of the target position, as it

can only predict the moving direction of the target not the moving distance. In fact, the

true forecasting function does not include the context cue. That is, it is unnecessary to

attend to the color in order to make a forecast. In the past research, it was found that

people might rely on an irrelevant context cue to decide which rule should be applied for

current categorization (Yang & Lewandowsky, 2003, 2004) and to decide which function

should be applied for generating the current response (Lewandowsky et al., 2002). This

phenomenon is called knowledge partitioning. Due to that forecasting is highly similar to

function learning, it is reasonable to expect that knowledge partitioning should occur in

this experiment.

Method

Participants and Apparatus

Thirty-seven undergraduate students in National Chengchi University participated in

this experiment. The whole experiment was conducted on an IBM-compatible PC in a quiet

booth. The processes of stimulus displaying and response recording were under the control

of a computer script composed by PsychoPy (Peirce, 2007). After testing, each participant

was reimbursed with NT$ 120 (' US$ 4) for their time and traffic expense.

Procedure

The participants were instructed to predict (by moving the mouse cursor to) where

the target would appear on a horizontal line on the computer screen. Before the onset of

experiment, every participant had gone through four trials for practicing how to move the

mouse cursor to a given position. There were two sessions in this experiment, each of which
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Figure 2. The Forecasting Function.

consisted of a learning phase and a transfer phase. The second session was actually the

repetition of the first one.

In the learning phase, the target moved back and forth in a sine function as shown in

Figure 1. Note the final learning trial in the first session was by accident paired with a color

for going right, but it instead provided a chance to check for knowledge partitioning in the

learning phase. See the increment on the prediction for this trial in Figure 2. The pairing

between the color (i.e., red or green) and the moving trend of the target (i.e., moving left

or right) was counterbalanced across the odd-numbered and even-numbered participants.

Once the prediction was made, the correct position would be indicated with a colored arrow

together with a textual message Hit or Miss message. If the different between the predicted
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position and the correct position is close enough, a Hit message would be presented and

otherwise a Miss message would be presented.

In the transfer phase, the participants were instructed to predict the next three po-

sitions of the target, given its current position as a cue. There were four transfer positions

paired with two colors. Thus, there were eight transfer trials in total. The cue positions

were randomly presented. There was a self-paced break between the two sessions.

Results

Learning Performance

The averaged predictions across all participants are shown as gray dots in Figure 3.

The correct answers are denoted by red or green crosses. In this case, red means going right

and green means going left. Apparently, the participants learned very well to forecast the

target positions.
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Figure 3. The participants’ predictions and correct answers in the learning phases. H: Human, L:

Left, and R: Right.

For the convenience of data analysis, the items in each cycle of the sine wave are

aggregated as one block. Thus, there are three blocks in each session. The learning per-
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formance gets better, in respect of the accuracy and prediction error, as the learning trials

increase. Then the accuracy is computed as the proportion of Hit received in each block.

The prediction error is the squared difference between the predicted and correct positions.

A Context (2) × Block (3) × Session (2) within-subject ANOVA shows a higher accuracy

on the left context than the right context (Mleft = .40 vs. Mright = .35), F (1, 36) = 26.99,

MSe = 0.01, p < .01. This is reasonable, as the left context appeared later in the learning

phase.

The low accuracies result from a rigorous threshold to get a Hit message. Also, the

accuracy gets better along the learning blocks (from .31 to .44), F (2, 72) = 36.88, MSe

= 0.02, p < .01 and the learning accuracy is higher in the second session as well (M1 = .34

vs. M2 = .42), F (1, 36) = 26.44, MSe = 0.03, p < .01. The interaction effect between

Context and Block is significant, F (2, 72) = 3.38, MSe = 0.02, p < .05. This is because the

accuracy in the right context catches up that in the left context in the last block. There is

no other significant interaction effect [for Context × Session, F (1, 36) = 2.48, MSe = 0.02,

p = .12; for Block × Session, F (2, 72) < 1; for Context × Block × Session, F (2, 72) = 1.30,

MSe = 0.01, p = .28].

For the prediction error, again a Context (2) × Block (3) × Session (2) within-subject

ANOVA is conducted. The results show a significant main effect for Context [F (1, 36) =

22.88, MSe = 7.49, p < .01], Block [F (2, 72) = 33.95, MSe = 8.6, p < .01], and Session

[F (1, 36) = 13.67, MSe = 3.32, p < .01]. The prediction error decreases as the block number

increases (from 2.59 to 0.11) and as the session number increases (from 1.25 to 0.61). All

interaction effects are significant: Context × Block [F (2, 72) = 22.51, MSe = 7.49, p < .01],

Context× Session [F (1, 36) = 9.72, MSe = 3.56, p < .01], Block× Session [F (2, 72) = 11.91,

MSe = 3.42, p < .01], and the three way interaction effect [F (2, 72) = 10.43, MSe = 3.57,

p < .01].

Transfer Performance

If knowledge partitioning occurs, it should be expected that the target is predicted

to move right in the right context and left in the left context. The difference between
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successive positions can tell us the information of moving direction. Thus, the differences

between the predicted positions as well as the difference between the first predicted position

and the cue position are computed. The mean of these differences is the dependent variable

in data analysis. If the mean difference is positive, the target is predicted to move right;

whereas if the mean difference is negative, it is predicted to move left.

The transfer performance can be seen in Figure 4. It looks like that the predicted

moving direction differs in different contexts. Specifically, for the two middle cue positions

(i.e., the ordinate values as -1.5 and 1.5 in Figure 2), this context-gated response pattern

is more salient. However, for the cue positions on the two sides (i.e., the ordinate values

as -6 and 6 in Figure 1), this pattern is not that clear. As the side positions are at around

the edges of the position scale in the learning phase, this might display the characteristic of

function learning that the extrapolation prediction is less accurate than the interpolation

prediction.

A Session (2) × Context (2) × Stimulus (4) within-subject ANOVA is conducted for

these mean differences. The results show that the mean difference is different in different

contexts [F (1, 36) = 23.43, MSe = 29.60, p < .01] and for different stimuli [F (3, 108) =

23.86, MSe = 18.6, p < .01], and there is a marginally significant difference on the mean

difference in different sessions [F (1, 36) = 3.59, MSe = 6.98, p = .07]. The observed context-

dependent pattern on the mean difference is more clear in Session 2 than Session 1, that

is supported by the significant interaction effect between Context and Session [F (1, 36) =

9.20, MSe = 7.50, p < .01]. The marginally significant interaction effect between Context

and Stimulus [F (3, 108) = 2.38, MSe = 7.99, p = .07] supports the observation that the

predictions are more context dependent for the middle cue positions than the side cue

positions. The predictions for the stimuli are not different in different sessions, F (3, 108) <

1. The three-way interaction effect is also not significant [F (3, 108) = 1.01, MSe = 9.13,

p = .39].
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Figure 4. The mean difference of predictions for cue positions made by all participants. L: Left,

and R: Right. Bar: Human data, Dot: Model prediction.

Individual Differences

The response pattern in Figure 4 is partly consistent with the expectation for knowl-

edge partitioning (i.e., for the middle cue positions). One reasonable suspicion is that

there might be individual differences behind the averaged response. We first compute the

squared mean difference on the transfer predictions for each participant and preclude from

data analysis those participants whose squared mean difference is smaller than 75% of the

participants. Ten participants are precluded.

For the rest twenty-seven participants, we compute the distance from their prediction

patterns to the ideal KP pattern and the ideal sine wave pattern (SW). As we care about

the moving direction not the moving distance, the ideal pattern on the eight trials in each
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transfer phase can be coded as a 16-element vector with 1 as moving right and -1 as moving

left. Thus, in the KP pattern, 1 and -1 are coded respectively for the trials in the right and

left contexts. However, in the SW pattern, 1s and -1s are coded respectively for the trials

with the left and right two cue positions. The participants’ mean differences are recoded

as 1 and -1 for a positive and negative mean difference on each of 16 trials. A participant

would be classified as the KP group, if his/her response pattern has a shorter Euclidean

distance to the KP pattern and vice versa. Consequently, there are 14 KP participants and

11 SW participants and 2 participants equidistant to these two groups.

The transfer response pattern of KP group can be seen in Figure 5. Comparing with

Figure 4, the context-gated prediction gets more clear even for the cue positions on the left

and right sides.

A Session (2) × Context (2) × Stimulus (4) within-subject ANOVA is conducted for

the mean differences of these 14 participants. The results show that the pattern of mean

differences is not different in different sessions [F (1, 13) = 2.81, MSe = 1.04, p = .12],

but it is in different contexts [F (1, 13) = 51.01, MSe = 2.19, p < .01] and for different

stimuli [F (3, 39 = 11.5, MSe = 1.08, p < .01]. None of the interaction effects is significant

[for Session × Context, F (1, 13) = 2.76, MSe = 1.45, p = .12; for Context × Stimulus,

F (3, 39) < 1; for Session × Stimulus, F (3, 39) = 2.34, MSe = 0.97, p = .09, and for Session

× Context × Stimulus, F (3, 39) = 1.26, MSe = 1.01, p = .30].

The mean differences of the SW group (N = 11) can be seen in Figure 6. Different

from the KP group, these participants do not go with context, but go with the cue position:

predicting the target to move right for the left cue-positions and left for the right cue-

positions. A Session (2) × Context (2) × Stimulus (4) within-subject ANOVA is conducted

for the mean differences. Among all effects, only the main effect of Stimulus is significant,

F (3, 30) = 20.84, MSe = 2.94, p < .01. The main effect of Session is not significant

[F (1, 10) = 2.21, MSe = 1.04, p = .17] and nor is the main effect of Context [F (1, 10) < 1].

The interaction effects are not significant [for Session × Context, F (1, 10) = 2.58, MSe

= 0.51, p = .14; for Session × Stimulus, F (3, 30) < 1; for Context × Stimulus, F (3, 30) < 1;
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Figure 5. The mean difference of predictions made by the KP group. Bar: Human data, Dot:

Model prediction.

for the three-way interaction effect, F (3, 30) < 1].

We also examine the confidence of these two groups with their predictions for different

cue positions (middle vs. side) in different contexts. With the absolute mean differences as

the dependent variable, a Group (2) × Context (2) × Stimulus-Type (2) between-within

ANOVA shows that only the interaction effect Group and Stimulus-Type is significant

[F (1, 23) = 10.58, MSe = 0.81, p < .01]. This is because the SW group is more confident

than the KP group with their predictions for the side positions (1.53 vs. 1.00) [F (1, 23) =

7.19, MSe = 1.93, p < .05], but not for the middle positions (1.26 vs. 1.20) [F (1, 23) < 1].

The SW group knows well that the target will turn to another direction at the two sides,

according to the sine-wave moving trend. However, the KP group hesitates due to the
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Figure 6. The mean difference of predictions made by the SW group (i.e., the group learning the

true sine-wave function). Bar: Human data, Dot: Model prediction.

considering the context.

Modeling

In order to understand the mental mechanism to forecast the target position in this

experiment, we propose a simple neural network model1. In this model, the target position

is not a scalar but is represented as the activation distribution of 100 position nodes. It is

assumed that each of the position node activates the most to a real location on the horizontal

line, where the target will appear. If a stimulus appears at x and the i-th position node

1The MoE architecture is not adopted, as context is involved in generating predictions in weak knowledge

partitioning.
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activates the most to the location li, the activation of this node Si for the stimulus is

computed as Si = exp−(x−li)
2/σ, where σ is a freely estimated parameter, representing for

the size of the receptive field of the position node. The activation of all position nodes S is

then normalized to 0 and 1. Of course, the closer the stimulus to the location corresponded

to by a node, the stronger the activation of that node is.

The input layer consists of 100 position nodes as well as a context node2, which is

weighted by an attention weight α. Each trial starts with the correct target position on the

preceding trial, which is presented by a colored arrow on the screen3. Thus, the input layer

represents the perceived location of the target and its color as a 101-element vector, Ain.

The output layer consists of 100 position nodes only, as the participants were not

asked to predict the target color. The output vector Aout is the model prediction for the

target position, which is computed as Aout = WAin, where W is the associative weights

between these two layers. The associative weights are set up as 1 for the connections

between the nodes in different layers corresponding to the same location and 0 for the other

connections. With this design, the model starts learning from copying the observed target

position as its prediction.

When the colored arrow, as feedback, is provided to the participants, the location

of it is represented as an activation distribution over 100 position nodes, which is then

normalized to 0 and 1 and used as the target vector T for the model to learn. In fact, the

target vector on trial t is the input vector without the element for the context node on trial

t+ 1.

The associative weights are adjusted by error-driven learning, as ∆W = ηβ(T −

Aout)A
T
in, where η is the learning rate. The parameter β = exp−ξ(t−1) is used to gradually

attenuate the learning rate along trials and the parameter ξ is estimated when modeling.

As we are particularly interested in how the context-gated forecasting occurs, we fit

the model to each participant’s data with the goodness-of-fit as the RMSD (Root-Mean-

2-1 for the left context and 1 for the right context.
3Thus, the first guess made by the participants is not included and the first correct position of the target

launches the whole process of learning.
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Square Deviation) between the participant’s predictions in the transfer phase and the model

predictions. The model prediction is a scalar representing for the predicted position, which

is converted from the activation of output nodes. That is, we focus on the nodes C within

the receptive of the winning node and normalize their activation to 0 and 1. Then the

activation of each node i ∈ C is turned to a probability Pi = Aout,i/
∑
Aout,j∈C . The model

prediction is the weighted sum of
∑
Pili, i ∈ C. When modeling, the model goes through

all trials in each phase in each session, which the participants went through as well. Four

parameters are freely estimated to optimize the model’s performance: the learning rate

[0.0001 ≤ η ≤ 0.9], the size index for receptive field [0.01 ≤ σ ≤ 0.25], the decay rate

[0 ≤ ξ ≤ 2], and the attention weight on context [0 ≤ α ≤ 1].

Results

The transfer predictions of the model can be seen as the colored dots in the figures

from Figure3 to Figure 5. The means of goodness of fit and the parameter values providing

a best fit are listed in Table 1. Apparently, the model accounts for well the performance of

each group.

Table 1: The mean GOF and parameter values providing a best fit for different groups.

RMSD η σ ξ α

All 0.09 0.30 0.08 0.22 0.56

KP 0.08 0.32 0.06 0.11 0.69

SW 0.15 0.41 0.19 0.31 0.46

Table 1 shows the statistics of modeling data. The GOFs are good in all modeling

situations. However, the model is relatively better at accounting for the KP pattern than

the SW pattern, t(23) = −2.58, p < .05. This might be because context in weak knowledge

partitioning still can predict something about the outcome. The comparison between the

KP and SW groups suggest that their starting learning rates are not different [t(23) = −0.75,
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p = .46], but the SW group has a larger size of receptive field [t(23) = −3.04, p < .01],

more quickly halts learning [t(23) = −3.96, p < .01], and puts less attention on context

(marginally significant) [t(23) = 1.82, p = .08]. Nonetheless, it is suggested that knowledge

partitioning in forecasting can have an associative-based account.

Conclusions

It is clear that the participants can learn to forecast the values in a time series

generated by a complex sine function. Also, it is found that some participants learn to

perform weak knowledge partitioning in forecasting, whereas some others learn to ignore

context when making a forecast. A simple two-layered neural network model can provide

good accounts for the performance of different groups. This is consistent with the past

studies about function learning and knowledge partitioning.
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出國報告	

	

本人於 2016年赴美國波士頓參加 2016	annual	meeting	of	Psychonomics，並以海報

發表研究成果。本次報告的研究內容主題是”A	Reference	Point	Explanation	for	XOR	

Extrapolation	in	Categorization	with	Kernel	Methods”。這個主題主要動機來自於 Conaway和

Kurtz（2015）於認知科學年會中發表之論文。這些作者主張以歧義類別結構（ambiguous	

category	structure）測驗實驗參與者所習得的分類策略時，發現有 1/3的參與者自行演生

出一個對稱的 XOR結構，而另外 2/3的參與者則滿足一般範例為基礎的分類模型的預

測，以相似性進行分類。這些作者並同時提供電腦模擬的結果說明，以範例為基礎的分類

模型，例如 ALCOVE，無法解釋那 1/3使用 XOR策略的參與者的表現。因為在測驗階段中

新出現的刺激竟被判斷為與之較不相似的類別。同時，這些作者也提出證據說明，DIVA

模型可以同時解釋這兩種分類策略。	

本次研究主要在於證明，以範例為基礎的分類模型，確實可以預測 XOR的分類策

略，只需要將原先的距離相似性改成向量相似性即可。研究同樣使用電腦模擬並以機器學

習中的 2次方多項式核心（polynomial	kernel）作為計算相似性的公式。結果顯示，即使

是範例為基礎的分類模型，也一樣可以預測 XOR分類策略。	

會議中除了與許多國外學者討論本研究的內容，也和美國雪城大學Mike	Kalish教

授討論後續可能的研究，並且討論可以如何進行工作記憶廣度與分類學習之相關的研究。

Kalish教授並允諾將於 2018年 4月來台灣，商討進一步的合作研究可能。此外，會議中

也與南澳阿得雷得大學的 John	Dunn教授一同討論關於 state	trace	theory的可能延伸議

題。	

會後並接獲 Ken	Kurtz的來信，其為 DIVA模型的開發者，並於信中表示對本研究的

高度興趣。同時也與本人分享他最新的論文，一同切搓關於分類策略的心得。	
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