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中 文 摘 要 ： 存貨記錄錯誤是指一個產品的系統庫存記錄不同於其實體庫

存數量，這在零售業很普遍的問題，並造成不少獲利損失。

為了瞭解造成這個問題的成因，我們首先建立一個連續時間

存貨控制系統，此系統運用一系列的非線性微分方程式，來

描述單一零售店中貨架與倉庫的存貨動態，我們並透過全因

子模擬實驗設計來分析不同的人為作業錯誤對存貨記錄錯誤

的影響。基於人為錯誤的重要性，我們進一步後設零售店員

工是降低那些錯誤的關鍵，並分析店內員工配置決策對錯誤

的影響。我們收集了零售店的追蹤資料，由於存貨更正紀錄

資料的不完整性，我們採用貝式階層模型和馬可夫鏈蒙地卡

羅方法來估計出一個堅實的「存貨記錄錯誤」指標，運用追

蹤資料模型和因果回饋模型(causal loop modeling)，進一

步分析員工配置決策和存貨資料品質的交互影響，本研究運

用多種不同分析方法，產生的洞見能幫助經理人瞭解如何防

止「存貨記錄錯誤」的產生，進而改善營運績效。 

中文關鍵詞： 零售業、服務業作業、存貨記錄錯誤、系統動力學、實驗設

計、貝式統計推論、計量經濟學。 

英 文 摘 要 ：  

英文關鍵詞：  

 



Inventory Record Inaccuracy: Causes and Labor Effects 

ABSTRACT 

Inventory record inaccuracy (IRI) is a pervasive problem in retailing and causes non-trivial profit loss. In 

response to retailers’ interest in identifying antecedents and consequences of IRI, we present a study that 

comprises multiple modeling initiatives. We first develop a dynamic simulation model to compare and 

contrast impacts of different operational errors in a continuous (Q, R) inventory system through a 

full-factorial experimental design. While backroom and shelf shrinkage are found to be predominant 

drivers of IRI, the other three errors related to recording and shelving have negligible impacts on IRI. 

Next, we empirically assess the relationships between labor availability and IRI using longitudinal data 

from five stores in a global retail chain. After deriving a robust measure of IRI through Bayesian 

computation and estimating panel data models, we find strong evidence that full-time labor reduces IRI 

whereas part-time labor fails to alleviate it. Further, we articulate the reinforcing relationships between 

labor and IRI by formally assessing the gain of the feedback loop based on our empirical findings and 

analyzing immediate, intermediate, and long-term impacts of IRI on labor availability. The feedback 

modeling effort not only integrates findings from simulation and econometric analysis but also 

structurally explores the impacts of current practices. We conclude by discussing implications of our 

findings for practitioners and researchers. 

Keywords: Retail operations; store execution; inventory record inaccuracy; system dynamics; design of 

experiments; Bayesian inference; econometrics. 

 

1. Introduction 

Inventory record inaccuracy (IRI) refers to the discrepancy between physical and recorded inventory 

levels, and is a pervasive problem in retailing. Kok and Shang (2014) conclude that IRI can be attributed 

to shrinkage (e.g., spoilage and theft), transaction errors, and misplacement. Because it is difficult to fully 

eliminate these execution errors, IRI becomes a norm rather than an anomaly in the retail sector. Kang 

and Gershwin (2005) report that inventory accuracy in a global retailer is on average only 51%. 

DeHoratius and Raman (2008) find 65% of the inventory records at a retail chain to be inaccurate, and 

Oliva et al. (2015) observe that more than 60% of SKUs in a European retail store have IRI. Most 

surprisingly, in a retail store that had not even started operating, Raman et al. (2001) found that the system 

had incorrect records for 29% of the items and estimated that IRI reduces a company’s total profits by 

10%. At the firm level, IRI can significantly distort aggregate book value of inventory and business 

decisions. At the item level, IRI can delay ordering decisions because most extant inventory models do 

not differentiate between physical and system inventories. IRI also interrupts shelf replenishment even 
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when there is plenty of inventory in the backroom. Consequently, retailers suffer severe out-of-stock 

(OOS) and significant economic loss.  

 To tackle IRI and associated OOS in retailing environments, radio-frequency identification (RFID) 

has been deemed as a promising solution (Heese, 2007; Lee and Ozer, 2007). However, issues such as 

cost, ownership, and privacy/security hinder the full implementation of RFID at the item-level (Kapoor et 

al., 2009). Even when RFID becomes cheap enough to be fully adopted like barcoding, the fact that retail 

operations is a complicated issue involving people, processes, and technology makes error-free operations 

extremely difficult to achieve. In order for retailers to enhance execution quality and data integrity, it is 

important for managers to understand the causes of IRI and identify the policy levers that they can use to 

reduce it. 

 While some empirical work has focused on product and store attributes that affect IRI (e.g., 

DeHoratius and Raman, 2008), in this work we explore the impact of store staffing levels and operational 

performance on IRI. Our study comprises multiple modeling initiatives. First, grounded on empirical 

observations and field work, we formulate a dynamic model of continuous review (Q, R) inventory 

system and explicitly incorporate multiple execution errors into the model. The (Q, R) policy is often used 

for fast moving products and widely adopted by retailers, including numerous mass merchants that carry a 

large number of items (Kang, 2004; Kang and Gershwin, 2005) and stores that we work with. To compare 

and contrast the impact of different errors and their interactions, we conducted a full-factorial 

experimental design. We find that backroom shrinkage and shelf shrinkage errors are the dominant drivers 

of IRI and that, under-shelving, along with erroneous checkout and data capture, have negligible impact 

on IRI when compared to shrinkage. We also find that the interaction effects between error sources are 

non-substantial and mostly seem additive and linear. These primary findings hold under different 

distributional assumptions and parameter settings.  

 Next, we investigated the relationships between labor availability and IRI using longitudinal data 

from five stores in a global retail chain. After deriving a robust measure of IRI through Bayesian 

computation and estimating panel data models that control for store-section and time fixed effects, we 

find strong evidence that more full-time labor reduces IRI whereas part-time labor fails to alleviate it. 

Finally, we articulate the reinforcing relationships between labor and IRI by formally assessing the gain of 

the feedback loop based on our empirical results. We find that the work pressure introduced by IRI does 

further increase IRI, but the gain of feedback loop is not enough to compound its growth. We also analyze 

the intermediate and long-term effects of IRI on labor availability and use the developed structure to 

assess the impact of current staffing practices on performance. 

 Our paper contributes to practice and theory in four significant ways. First, the simulation model has 

a simple but realistic structure that addresses the issue that most retail inventory models ignore – the 
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dynamics between the retail shelf and the backroom used for extra storage (Eroglu et al., 2013) – and 

allows for a joint assessment of the relative impact of operational errors in IRI. Second, despite the 

abundance of optimization models developed to tackle IRI, empirical investigations are scant. By 

econometrically estimating the effects of labor allocation on IRI, we broaden empirical knowledge of IRI 

and develop new research opportunities. Retail managers should be aware of labor effects on data quality, 

which is deemed to be an important source for competitive advantage (Redman, 1995). Third, we 

articulate the reinforcing relationships between labor and IRI by formally assessing the gain of the 

feedback loop based on our empirical findings and analyzing immediate, intermediate, and long-term 

impacts of IRI on labor availability. The feedback modeling effort not only integrates findings from 

simulation and econometric analysis but also structurally explores the implications of current practices. 

Last, we illustrate the utility of a joint use of system dynamics and econometrics. Such a combination 

widens our ability to answer questions of what-if and what-is given unobservable factors (i.e., execution 

errors) and limited observations of IRI over time. Using dynamic simulation, Bayesian shrinkage 

estimation, panel data modeling, and causal loop modeling enhances our understanding of IRI while 

responding to the call for adopting multiple methods (Boyer and Swink, 2008). 

 The rest of our article is organized as follows. Section 2 briefly reviews relevant literature to frame 

our contribution. Section 3 presents a continuous-time simulation analysis that enables us to identify the 

main drivers of IRI. We then postulate and articulate how those drivers of IRI are associated to store labor. 

Section 4 shows econometrical estimation results of labor availability on IRI. Section 5 presents feedback 

loops and behavioral dynamics associated with the impact of IRI on labor availability. We conclude by 

discussing managerial and theoretical implications of our findings.  

2. Literature review 

A significant number of studies have attempted to analyze causes and effects of IRI in recent years (e.g., 

Fleisch and Tellkamp, 2005; DeHoratius and Raman, 2008). Due to the randomness of errors that cause 

IRI and uncertainties in the distribution of IRI, simulation has been widely adopted to assess the effect of 

IRI on a retail supply chain (Fleisch and Tellkamp, 2005) or a retail outlet (Nachtmann et al., 2010). 

Among simulation studies on IRI, the continuous review (Q,R) system has been the focus of investigation. 

Kang and Gershwin (2005) analyzed how stock loss (shrinkage) causes IRI and severe OOS. They found 

that OOS increases monotonically in stock loss. Thiel et al. (2010) simulated the impact of IRI on service 

level and in contrast with Kang and Gershwin (2005), they observed that OOS is not a monotonic 

function of IRI when error rate is symmetric with a zero mean. Following Kang and Gershwin (2005), 

Agrawal and Sharda (2012) concentrated on IRI attributed to stock loss, and examined how the frequency 

of inventory audit affects OOS and average inventory. Similarly, in the first part of our paper we develop 

a dynamic simulation model of the (Q, R) inventory system. Our model differs from the aforementioned 
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studies in two ways. First, while most models address a single source of error (Sahin and Dallery, 2009), 

Lee and Ozer (2007) point out that modeling efforts are needed to articulate the joint effect of multiple 

errors. Our model takes into account multiple errors (both operational and information-related) 

simultaneously. Although Fleisch and Tellkamp (2005) also assessed the impact of several errors using 

stochastic simulation, we analyze operations inside a retail store instead of flows in a three-echelon 

supply chain. Second, while existing simulation studies on IRI stress the consequences (e.g., inventory 

level, fill rate) of poor data quality (Nachtmann et al., 2010), our analysis focuses on the impacts of 

different antecedents of IRI. 

    While simulation analysis enhances our understanding about antecedents and consequences of IRI, 

there is still limited empirical knowledge about IRI due to the low availability of data. Few studies 

empirically investigate IRI through analyzing actual data on inventory discrepancies. Sheppard and 

Brown (1993) presented the first analysis to empirically assess how product-related factors affect IRI 

within a manufacturing plant. In retail stores, Raman (2000) and Oliva et al. (2015) both found that more 

than 60% of items had inaccurate records. Using data from a single store, Oliva et al. (2015) derived 

empirical estimates of an aggregate model that characterizes inventory information decay. The estimated 

functional form is further incorporated into inspection policy design. To our knowledge, the only 

cross-store econometric analysis of IRI is by DeHoratius and Raman (2008). They collected 

cross-sectional data on IRI from a retail chain to empirically examine IRI. The econometric analysis 

performed in the second part of our paper differs from DeHoratius and Raman (2008) in three important 

key ways. First, expanding their efforts on examining how product- and store-related attributes affect IRI, 

we assess the association between labor decisions and IRI in each product sector. Second, we obtain 

longitudinal observations of IRI and labor decisions, which allow us to test labor effects while tackling 

unobserved factors. Third, our econometric estimation focuses on developing an operational functional 

form for the impact of labor on IRI (Richmond, 1993), as opposed to a correlational study to test 

hypotheses. 

 Finally, our work is also informed by system dynamics (Forrester, 1958; Sterman, 2000) efforts to 

assess the impact of labor and staffing levels on operational performance (e.g., Anderson, 2001; Oliva and 

Sterman, 2001; Lyneis and Ford, 2007). While we adopt from these articles the feedback perspective on 

staffing issues, our work differs in that we focus on data quality and its consequences on labor 

availability. 

3. Errors in retail operations  

In this section we present a dynamic simulation model to assess the impact of multiple execution errors 

on IRI. The model characterizes a continuous review (Q, R) inventory system in which Q denotes the 

order quantity and R denotes the reorder point. We articulated different types of error and identified 



 5

primary drivers of IRI through design of experiments (DOE).  

3.1. Continuous (Q,R) system  

The core structure of the model was developed from the review of re-stocking and re-shelving policies of 

five different retailers, as well as extensive interviews with 18 managers responsible for the re-shelving 

activities for a group of SKUs (on average around 1,800 SKUS per manager); twelve of these managers 

also had final decision rights on the re-stocking orders proposed by the firms automated system. While 

the core structure of the model is highly stylized, and does not match perfectly any single retailer in our 

sample, the model does capture the main feedback mechanisms used by store and category managers to 

ensure continuous supply of products and accurate information about their holdings. 

For clarity, we first present an error-free system and introduce random errors later. Similarly to 

previous work (Kang and Gershwin, 2005; Thiel et al., 2010), we assume single product/location, no 

backorder/fixed order cost, and reliable supply. We start with constant demand (δ) and fixed lead time (L). 

Setting the two elements deterministic allows us to clearly identify the impacts of random execution 

errors. The store physical inventory at time t, Ia(t), can be divided into shelf inventory (Sa(t)) and backroom 

inventory (Ba(t)), i.e., Ia(t)=Sa(t)+Ba(t). Since inventory is held in two locations (shelf and backroom) in most 

retail environments, explicitly modeling the two components enables us to assess operational complexity 

incurred by storing extra inventory in the backroom (Eroglu et al., 2013). In our model, the subscript a 

denotes actual physical flows, and we use it to differentiate from recorded information flows indexed by r. 

Table 1 summarizes the notation used in this section.  

Table 1 Notation 
Stocks 

Sa Physical shelf inventory Sr Recorded shelf inventory 
Ba Physical backroom inventory Br Recorded backroom inventory 
O Order in transit   

Rates 
wa Actual withdrawal rate wr Recorded withdrawal rate 
da Actual delivery rate dr Recorded delivery rate 
sa Actual shelving rate sr Recorded shelving rate 
δ Demand rate o Order rate 

Parameters 
Q Order quantity εw Checkout error 
R Reorder point εc Data capture error 
L Lead time εS Shelf error 
S*

 Desired shelf stock εS- Shelf shrinkage 
dt Time step of simulation εB- Backroom shrinkage 
τs Shelving time τp Store purchase time 

 
We present our model using the system dynamics convention, i.e., in continuous time and as a set of 

nonlinear differential equations, where the change rates represent information or material flows (measured 

in units/time) and the accumulation of these rates are represented as stocks (measured in units). We keep 

track of products in three distinct stocks: shelf, backroom, and orders-in-transit. For convenience we drop 
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the time index t. The shelf stock (Sa) is augmented by the shelving rate (sa) and depleted by the 

merchandise withdrawal rate (wa).  

 a
a a

dS s w
dt

    (1) 

With enough items on the shelf, the withdrawal rate (wa) will equal the constant demand rate (δ). 

Otherwise, the amount withdrawn will depend on remaining stock quantity and the store purchase time 

(τp), i.e., the time it takes a customer to make a purchase and walk out of the store. 

  (2) 

The shelving rate (sa) is the flow of inventories pulled from the backroom to the shelf. For simplicity, 

re-shelving is assumed to be continuous and proportional to the gap between desired shelf stock S* and 

recorded shelf inventory Sr, and the process is adjusted by the time it takes store associates to identify the 

gap and replenish the shelf (τs). The shelving operation is also subject to a physical constraint since the 

retailer cannot replenish more than the amount stored in the backroom (Ba). Thus,  

   (3) 

The backroom stock (Ba) is depleted by the shelving rate (sa) and augmented by the delivery rate (da), 

which refers to the actual goods shipped to the backroom inside a retail store.  

   (4) 

We assume a reliable supplier, and thus the delivery rate (da) is the order rate (o) with a fixed time delay 

L.  

   (5) 

The order-in-transit stock (O) represents the orders that have been placed to the supplier but have not been 

delivered yet. Accordingly, it is augmented by the order rate (o) and depleted by the delivery rate (da): 

   (6) 

The order rate (o) in a continuous review (Q,R) is activated whenever inventory position, i.e., the 

sum of recorded inventory on-hand (Ir=Br+Sr) and order-in-transit (O), drops to/below the reorder point 

R.  

   (7) 

where dt is the time step of simulation and a very small time interval to reflect the negligible time of 

placing an order from the automated ordering system. Ind( ) is an indicator function that returns one if the 

trigger criterion is met.   

Equations (1)–(7) capture physical flows of the item from supply line to customers. Under perfect 

( , / )a a pw Min S 

*

( , )ar
a
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BS Ss Min
 




a
a a

dB d s
dt
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a
dO o d
dt

 

( / )* ( )ro Q dt Ind I O R  
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store operations, the information flows will be identical to physical flows. Therefore, the recorded shelf 

stock (Sr) and recorded backroom stock (Br) change rates are just  

   (8) 

 Equations (1)–(8) capture error-free inventory execution. The upper side of Figure 1 exhibits stocks 

and flows of physical inventories. The bottom side of Figure 1 exhibits stocks and flows of system 

inventories. The dashed lines in Figure 1 reflect information processing. During normal operation the 

retailer continuously monitors Ir (the sum of Br and Sr) to place orders to supply line. The retailer also 

monitors Sr to take reshelving actions. The shelving follows a goal-seeking structure (Sterman, 2000) 

captured in (3), aiming to bring the shelf stock S back to its desired target S* (see loop B1 in Figure 1). 

The two stocks modeled in (8), together with equations (6) and (7), comprise the ordering mechanism and 

two feedback loops – ordering (B2) and supply (B3) – aimed at maintaining the desired inventory level in 

the store. 

 
Fig. 1. Stock and flow diagram of store inventory management 

Under perfect store operations, constant demand rate, and deterministic lead time, the system in 

Figure 1 reaches equilibrium and no lost sales are incurred nor does the system generate IRI (differences 

the values of the physical stocks and the corresponding information stocks). However, management of 

retail backroom and shelf involves many activities, and random errors may occur at picking, shelving, 

labeling, and checkout. Thus, we introduce an array of commonly reported and cited errors to represent 

  , ,

r
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more realistic operating conditions.  

3.2. Inventory system subject to errors 

We modified the equations developed earlier to capture an inventory system subject to five types of 

random errors, including three asymmetric errors (i.e., shelving error, shelf shrinkage, backroom 

shrinkage) and two symmetric errors (checkout error, data capture error). Despite being in a 

continuous-time setting, all errors are transaction-based and multiplicative. The multiplicative error 

formulation is realistic based on field interviews and technically more robust than additive error 

formulation (Khader et al., 2014). The goal of our model is to formally describe the interactions between 

inventory policies and operational errors and allow us to simulate the effects of these interactions on IRI.  

Under imperfect execution, the shelf stock (Sa), in addition of being depleted by the withdrawal rate 

wa (Eq. 2), is affected by shelf error and shelf shrinkage. Shelf error (εS) arises when less than desired 

quantities are put onto the shelf. Under-shelving is not uncommon since store employees could forget 

items in the backroom or misplace items (Eroglu et al., 2013). Since in most cases, the retail shelf space 

for a particular item is fixed, our model excludes the possibility of over-shelving. The exclusion of 

over-shelving is consistent with our conversation with retail managers and our experience of walking 

through aisles with retail inventory auditors. The under-shelving error in our model is captured as a 

fraction of the shelving rate (sa). 

Shelf shrinkage (εS-) refers to shelf stock loss caused by shoplifting and unrecorded damaged 

products (Lee and Ozer, 2007). In essence, this shrinkage should be a function of the number of items in 

the shelf (a fraction of the current shelf contents). However, to be consistent with to industry reporting 

practices (Hollinger, 2009) and our interviewees, we formulate this error as a fraction of the flows out of 

the stocks (% of sales). Both under-shelving (εs) and shelf shrinkage (εs-) are one-sided (non-negative) 

random errors, as they cause direct reduction of available stock. The rate of change of the shelf stock (Sa) 

(Eq. 1) in the presence of errors becomes  

 
.
  (9) 

The backroom is also exposed to undetectable stock loss. Backroom shrinkage (εB-) can be attributed 

to unobserved spoilage and employee theft, which is not unusual in the retail sector (Fan et al., 2014). 

Like shelf-shrinkage, and for the same reasons, we model backroom-shrinkage as a faction of the 

outgoing flow. Under the fallible shelving operations shown in (9), the backroom stock (Ba) change rate 

(Eq. 4) becomes 

 
.
  (10) 

Similar to shelf error (εS) and shelf shrinkage (εS-), backroom shrinkage (εB-) is a one-sided and 

(1 ) ( )a
a S a a S

dS s w w
dt

     

(1 ) ( )a
a a S a B

dB d s s
dt
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non-negative random error.  

The formulations of (9) and (10) do not capture the case that the item is taken out of the backroom 

but never makes it onto the shelf due to ignorance or low engagement. Nonetheless, this error is emulated 

by backroom shrinkage (εB-) in (10) where the outflow of the backroom stock (Ba) is different from the 

inflow to the shelf stock (Sa).  

We assume that the processing of inventory information is also subject to errors. The recorded shelf 

stock (Sr) can deviate from the shelf stock (Sa) because the recorded shelving rate (sr) is distorted by the 

data capture error (εc) and the withdrawal rate (wr) is distorted by checkout error (εw). A typical cause of 

checkout error is misclassification – scanning two different items as two of the same item. For instance, a 

customer purchases a chicken-flavored soup and a beef-flavored one. When the employee uses POS 

scanner to record sales, he may scan one flavor twice instead of scanning the items separately. Such 

time-saving behavior causes IRI (Raman, 2000). Following how Nachtmann et al. (2010) operationalize 

errors regarding point-of-sale data records in their simulation, we model information errors as a 

symmetric fraction of the withdrawal rate with a uniform distribution around a mean of zero. Under 

imperfect checkout, the recorded shelf stock change rate (Sr) (Eq. 8) becomes 

   (11) 

Note that the recorded shelving rate considers the actual shelving rate (without the shelving errors 

included) as the base for adjustment for the data capture error. Not only is this assumption consistent with 

the information that would be available to data entry personnel – assuming that the shelving errors were 

not intentional – but it also allows for an exploration of the interaction effects of operational and 

information-processing errors. 

The rates affecting the recorded backroom stock (Br) shown in equation (8) are also subject to 

information processing errors. Specifically, the outflow – recorded shelving rate (sr) – can deviate from 

actual shelving rate (sa) because of data capture error (εc), which occurs when store employees do not 

correctly record re-shelving quantities, so the store fails to keep track of the true flow of products. While 

the recorded delivery rate could also deviate from the actual delivery rate, we left it unaffected for this 

analysis. In the presence of data capture error, the rate of change of Br in (8) is modified into   

   (12) 

Similar to checkout error (εw), we model data capture error (εc) as a symmetric fraction of the 

corresponding rate with uniform distribution with zero mean. While our model could capture random 

errors with any known distribution, the uniform distribution setup is consistent with prior simulation 

studies that model random errors in system inventory levels (Angulo et al., 2004; Waller et al., 2006; 

(1 ) (1 )r
r r a c a w

dS s w s w
dt

      

(1 )r
r r a a c

dB d s d s
dt
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Nachtmann et al., 2010).  

Note that consistent with the goals for the model, i.e., to assess the impact of different sources of 

error, the model does not contain the structure to capture the traditional mechanisms to correct IRI: 

inventory auditing policies and discovery of shelf stockouts by walking around. While these efforts 

certainly have an effect on the resulting magnitude of IRI, we justify this model boundary choice by 

observing that any reasonable implementation of these efforts would make them proportional to the IRI 

level, regardless of its source. Fixing IRI through audits only sets IRI back to zero at a point of time (i.e., 

interrupts the growth of IRI) and does not affect the underlying execution errors that persist to make IRI 

re-accumulate after record reconciliation. Thus, the inventory correction efforts would not have an impact 

on the relative impact of different operational error sources. 

The performance metric – IRI – is the average absolute difference between physical (Ia) and system 

inventory levels (Ir) over the simulation horizon. Our focus on absolute deviation is consistent with prior 

studies (e.g., DeHoratius and Raman, 2008), and the average is more reliable than a single snapshot of IRI 

at a point of time. The IRI metric is calculated as 

   (13) 

where T is the length of simulation. We also keep track of shelf-OOS (out-of-stock) ratio – the total 

duration of Sa being empty relative to T. Shelf-OOS ratio is a relevant metric that helps us better explain 

the impact of errors on IRI and defined as    

 . (14) 

3.3. Experimental design 

We built the model using VENSIM DSS (Ventana Systems, 2010) and simulated the model using Euler 

integration method for 360 days with an integration interval (dt) of 0.03125. Based on interviews with 

retail executives who provided data for our study, we set the model parameters as follows: δ=10 units/day, 

Q=100 units, Sa(0)=S*=50 units, τt=0.125 day, and τs=0.25 day. The reorder point R is S*+δ*(Safety 

Coverage+L)= (50+10*(3+3))=110. We assume initial inventory records to be accurate (i.e., Br(0)=Ba(0) 

and Sr(0)=Sa(0)) and Ia(0)=S*+R. Note that those parameter values were not set for optimal restocking 

decisions (there are no cost considerations in our model), but selected to eliminate shelf-OOS under 

normal operations. Specifically, the desired shelf level (S*) is set to be five times the daily demand, and 

reorder point (R) includes safety coverage despite the fact that our model has deterministic demand and 

reliable suppliers. The findings and insights are qualitatively the same given different parameter values. 

We tested the model under extreme conditions and a variety of scenarios (Forrester and Senge, 1980; 
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Sterman, 2000). The model behavior is not affected by changes in simulation interval, and the main 

results are robust to changes in the assumptions for demand – i.e., introducing a random element on the 

demand, or changing its relative magnitude.  

As an illustration of model behavior, we report in Figure 2 the simulation results of a store that 

experiences shelf and backroom shrinkage. The figure shows the behavior of actual (Ia) and recorded 

inventory levels (Ir), as well as the shelf inventory position (Sa). As a result of the shrinkage, the actual 

inventory position drops below the recorded inventory. Since the recorded position is used to make 

shelving (and purchasing) decisions, the amount of inventory in the shelf drops. Eventually the shelf 

empties (day ~320) and the system falls into the “freezing” scenario that has been reported in previous 

works (Kang, 2004; Kang and Gershwin, 2005), i.e., the ordering mechanism is not triggered (frozen) as 

Ir is still greater than the reorder point R and there are no additional sales to diminish it. The rise in Ir over 

time is another known attribute of “freezing” in which each time shrinkage errors occur, the gap between 

Ir and Ia grows. Since the reorder quantity is a fixed Q, the accumulation of error makes Ir rise to a point 

where Ir stays above R and remains unchanged (Kang and Kershwin, 2005). 

 
Fig. 2. Effect of shrinkage on inventory and shelf stocks† 

†Illustration assumptions εS ~ Uniform(0, 0.03) and εB ~ Uniform(0, 0.04) 

 In line with prior simulation studies related to IRI (e.g., Fleisch and Tellkamp, 2005; Waller et al., 

2006; Nachtmann et al., 2010), we employ a full factorial design with three levels of experimental factors 

to evaluate principal and interaction effects of multiple errors on IRI. Documentation of the full model 

and simulations runs, according to system dynamics standards (Martinez-Moyano, 2012; Rahmandad and 

Sterman, 2012), are available in the electronic supplement of this paper. 
Table 2 reports the levels of the errors that create variations in the system. We set the experimental 

values of the five random errors based on interviews with retail managers. For the shelf error, we could 



 12

not find reference values from the literature and set the values following managers’ estimates. Although 

Kang and Gershwin (2005) and Rekik et al. (2009) tested the impact of shrinkage in a range from 1% to 

7% of inventory flows, we found these estimates to be too high for our research sites. In line with our 

interviewees’ responses and the National Retail Security Survey (Hollinger, 2009), we restricted the range 

of each shrinkage error within 0% to 2% of sales, for a combined expected shrinkage as high as 4% of 

sales. As for the two information-related errors, checkout and data capture, we specify symmetric and 

uniform distributions following prior studies that use error terms from +/– 5% to +/– 15% (Waller et al., 

2006; Nachtmann et al., 2010), although we limited the worst case scenario to +/– 10% error, which was 

deemed more reasonable by our interviewees. This reduced error range is consistent with the checkout 

inaccuracy estimated by Zabriskie and Welsch (1978) and the standard deviation of the resulting 

distribution is similar to the one used by Sahin and Dallery (2009). The full factorial design has a total of 

35=243 cases and we replicated each scenario 50 times to ensure stable statistical results. 

Table 2 Factors and experimental levels for simulation 
Factors Corr. Time Level 

  B = 0 
Shelf error (εS) 5 days L ~ Uniform[0, 0.01] 
  H ~ Uniform[0, 0.02] 
  B = 0 
Shelf shrinkage (εS-) 1 day L ~ Uniform[0, 0.01] 
  H ~ Uniform[0, 0.02] 
  B = 0 
Backroom shrinkage (εB-) 3 days L ~ Uniform[0, 0.01] 
  H ~ Uniform[0, 0.02] 
  B = 0 
Checkout error (εw) 1/3 day L ~ Uniform[-0.05, 0.05] 
  H ~ Uniform[-0.10, 0.10] 
  B = 0 
Data capture error (εc) 5 days L ~ Uniform[-0.05, 0.05] 
  H ~ Uniform[-0.10, 0.10] 
B: Base; L: Low; H: High 

The introduction of random errors on continuous time models like ours, however, requires special 

treatment since the numbers generated by random functions are independently and identically distributed 

(white noise). However, calling these functions on every simulation time step results on an oversampling 

of the independent process and yields stochastic disturbances with constant power spectral density, that, 

while having the appropriate distribution properties (correct mean and standard deviation), might be 

changing too quickly relative to the underlying process generating the disturbances. In reality, the 

processes generating the disturbances have some inertia, as real quantities cannot change infinitely fast 

and the future values of the disturbance depend on its history. Realistic stochastic processes with 

persistence are called “pink noise” and are characterized by a correlation time that determines the historic 

window that anchors the future values of the stochastic distribution (i.e., the inertia). We adopt the pink 
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noise structure to model random execution errors as suggested by Sterman (2000).1 We determine the 

correlation time τε (i.e., inertia) in the pink noise structure for the errors in our model based on each 

error’s process characteristics. We set the correlation time of 5 days for the shelving (εS) and data capture 

(εc) errors since these operations take place simultaneously and with this expected frequency. Given that 

checkout errors are related to the operators, we assume a correlation time of one shift for the checkout 

errors (εw). As for the two shrinkage errors, we posit that the correlation time for shelf shrinkage (εS-) is 

smaller than the correlation time for backlog shrinkage (εB) since the former is likely to be attributed to 

mishaps on the shop floor with intense customer contact, while the latter is caused by staff theft or 

operational errors. Accordingly, we set these correlation times to one and three days respectively. We 

discuss the effect of these distribution and correlation time assumptions when analyzing our experimental 

results below. 

3.4. Results and analysis 

We analyze simulation results using analysis of variance (ANOVA) by least-square fit (Ye et al., 2000) 

and assess the significance of each experimental factor using an F-test, which is widely used in simulation 

studies (Nachtmann et al., 2010). Table 3 shows the F-Ratios and p-values for the main effect of the five 

types of errors and the second order interactions on Average |IRI|.2 All of the main effects are statistically 

significant and the adjusted R2 for the full model is 0.90. Figure 3 shows the response profile, with 95% 

confidence intervals, for the main effects of each error under the three treatment levels. To illustrate the 

interaction effects, we plot the response profile under the three experimental levels for the two dominant 

errors, i.e., shelf and backroom shrinkage. 

                                                   
1 To generate pink noise error that are uniformly distributed, we first generate standard normal random errors (i.e., 

white noise) every dt and filter the white noise to generate standard normal pink noise. By using standard normal 

white noise instead of uniform white noise as inputs, this structure improves Sterman (2000) and no longer relies on 

central limit theorem to generate normally distributed pink noise (Fiddaman, 2010). We transform the standard 

normal pink noise into uniform[0, 1] pink noise numerically, using the probability integral transform (Rice, 2006) 

and then rescale into uniform[0, a] or uniform[-a, a]. 
2 We also assessed performance using final IRI (i.e., | Ia - Ir| at t=360) and the results were statistically similar. 
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Table 3 Observed effects for each factor 
Source F Ratio Prob > F 

Shelving Error (SE) 226.45 <.0001* 
Shelf Shrinkage (SS) 24458.78 <.0001* 
Backroom Shrinkage (BS) 28520.67 <.0001* 
Checkout Error (CO) 53.86 <.0001* 
Data Capture Error (DC) 184.81 <.0001* 
SE*SS 61.51 <.0001* 
SE*BS 13.16 <.0001* 
SE*CO 0.29 0.8861 
SE*DC 3.69 0.0052* 
SS*BS 72.01 <.0001* 
SS*CO 55.50 <.0001* 
SS*DC 27.58 <.0001* 
BS*CO 45.92 <.0001* 
BS*DC 10.97 <.0001* 
CO*DC 0.70 0.5938 

 
Fig. 3. Effects of errors on IRI  

(Top: SS=B & BS=B; Middle: SS=L & BS=L; Bottom: SS=H & BS=H) 

Inspection of results reveals that the shrinkage errors (εS- and εB-) dominate the response profile as 

they account for 98% of the observed variance. Both error terms are highly significant (F=24458.78, 

p-value<0.0001 and F=28520.67, p-value<0.0001 for shelf and backroom shrinkage) and have the 

expected direction of increasing the IRI as the shrinkage rates increases. The interaction term between 

these two errors is also the largest interaction term (F=72.01, p-value<0.0001) and accounts for an 

additional 0.27% of the explained variance. Note that this dominance of the shrinkage errors is despite the 

fact that our worst-case scenario for shrinkage rates – 0.02 – is much lower than those tested in previous 

studies (e.g., Kang and Gershwin, 2005; Rekik et al., 2009). These two errors represent outflows from the 

physical supply line (one from the shelf stock and one from the backroom stock) that are not reflected on 
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the information system thus directly affecting product availability but leaving inventory information 

unchanged. These two errors also account for 38% of the variance observed in shelf-OOS. Finally, it is 

interesting to note that the magnitude of the impact of these two errors is almost identical, indicating that 

there is no operational difference on where the shrinkage takes place. 

The third operational error – shelving error (εS) – is statistically significant (F=226.45, 

p-value<0.0001) but much less impactful than the two asymmetric shrinkage errors (it explains only 

0.42% of the observed variance in IRI). The impact of the two information-processing errors is also 

statistically significant (F=53.86, p-value<0.0001 and F=184.81, p-value<0.0001 for checkout error and 

data capture error) but not substantial (0.44% of the observed variance). To our surprise, these three 

often-mentioned errors (Rekik et al., 2008; Sahin and Dallery, 2009) are dominated by the two shrinkage 

errors and reveal interesting interaction effects. As shown in the top panel of Figure 3, when shrinkage 

errors are absent (B), the other three errors have positive (although weak) effects on IRI. However, their 

impacts are in the opposite direction (i.e., average IRI is decreasing in the error rate) when shrinkage 

errors are present (see the middle and bottom of Figure 3). The negative interactions are explained by the 

fact that the simulated SKU ‘freezes’ more frequently (see Figure 2 above) under higher shrinkage rates. 

The shelf-OOS likelihood jumps from 0.15 when there are no shrinkage errors (B) to 0.36 when shrinkage 

rates are set to 0.01 (L), and to 0.63 when both shrinkage rates are set to 0.02 (H) and these differences 

are highly significant when assessed using the relative risk (Morris and Gardner, 1988) (p-value<0.001 

for L/B and p-value<0.001 for H/L). When shrinkage errors result in freezing and there are no inventory 

transactions, the associated shelving, checkout, and data capture errors are inactive, thus truncating the 

growth of IRI. Even if the system does not reach persistent shelf-OOS, both sales and shelving flows will 

still be reduced by both shrinkage errors, thus weakening the overall impact of other three errors on IRI.  

Note that the results reported above are robust to changes in the distribution assumptions for the 

random errors, and to changes in the correlation time for the asymmetric errors. While the average IRI 

does decrease with the increase in correlation time of the symmetric errors, the relative magnitude of the 

effects does not change. Please refer to this paper’s electronic supplement for detailed results and 

discussion of these tests. 

The observed results are consistent with the claim that shrinkage is more difficult to tackle than other 

sources of IRI (Lee and Ozer, 2007) and suggest that retail managers aiming to improve inventory data 

quality should pay attention to shelf as well as backroom shrinkage. In retrospect, this result is not 

surprising, as operational errors represent a deviation from the desired product flow and the 

disinformation related to these flows, whereas information-processing errors represent only information 

deviations. IRI is directly associated with information processing and as such, managers may tend to 

focus on fixing the symptoms by demanding information personnel to be more careful about data capture. 
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However, our findings suggest that errors arising from physical operations can actually be the underlying 

causes of IRI and should be focal improvement targets. The electronic supplement also reports results to 

changes in the error distribution symmetry assumptions that support conjectures about error interactions 

put forward by Sahin and Dallery (2009) and Nachtmann et al. (2010). 

Finally, the interaction profile graphs reveal that there are no strong interaction effects among 

operational errors in the system. This is confirmed by the fact that the eight (out of ten) statistically 

significant interaction terms explain only 1% of the observed variance in IRI. By specifying a model that 

explicitly accounts for conservation of matter and information distortions, we uncover that the effects of 

all the errors’ interactions on IRI are almost linear. That said, a potential explanation for this lack of 

interactions is the fact that the model does not contain the reinforcing relationships between labor 

availability and existing IRI. We explore labor effects on data integrity in the next two sections.  

4. Impact of labor availability on IRI 

The prevalence of execution errors reflects the retailer’s inability to manage not only its floor but also 

labor (DeHoratius and Raman, 2007). Evidently, the behaviors and skills of labor affect the occurrence of 

those five errors that are significantly associated with IRI. For instance, Zabriskie and Welch (1978) show 

that checkout accuracy is significantly associated with labor experience and attitude. Also, while 

transaction errors may be fixed through better scanning technologies, and misplacement/under-shelving 

may be tackled by shelf audits, the two most impactful shrinkage errors identified from simulation are 

closely related to employees’ behaviors and monitoring efforts. Shrinkage (especially in the backroom) 

must be fixed from inside by employees who are capable of meeting process conformance standards. In 

line with Ton (2009), we posit that an easy way to tackle the primary drivers of IRI is to enhance process 

conformance by increasing labor capacity in retail stores. Allocating enough labor and retaining a stable 

mix of full-timers and part-timers relieves employees’ workload and reduces poor execution of prescribed 

tasks that cause aforementioned errors. However, deploying sufficient labor with adequate skills is 

something fundamental but unfortunately ignored by retail managers who pursue payroll minimization 

(Fisher et al., 2009). In this section, we attempt to empirically assess the impact of labor availability on 

inventory data integrity. We explore this relationship by measuring labor availability in terms of staffing 

levels and the employees’ experience and training.  

 Sufficient staffing levels ensure seamless handling of customer services and in-store logistics, both 

of which are determinants of sales performance. Ingene (1982) finds a positive and linear association 

between staffing levels and sales volume per store. Three more recent studies (Fisher et al., 2006; 

Perdikaki et al., 2012; Chuang et al., 2015) suggest that sales volume is a non-decreasing, concave 

function of staffing levels. While staffing levels are found to positively affect sales performance, 

understaffing is a norm rather than an anomaly in the retail sector due to the common practice of wage 



 17

minimization (Fisher et al., 2009). Oliva and Sterman (2001) show that understaffing in a service context 

leads to fatigue, corner-cutting, and service quality erosion. Staffing levels also affect conformance 

quality that reflects how well store employees execute the prescribed processes. Ton (2009) finds that 

increasing staffing levels is positively associated with process conformance. In addition to its negative 

impact on service quality and conformance quality, understaffing potentially can undermine data quality. 

Since understaffing can cause personnel fatigue, hurried/mindless actions, and poor conformance, all the 

foregoing consequences of understaffing could lead to execution errors discussed in the simulation 

analysis. Those errors in information-processing and material handling increase the occurrence and 

magnitude of IRI. Finally, a fundamental approach to tackle IRI is to frequently inspect the shelves — 

through predefined cycle-counting or intensive random aisle walking. Frequent data audits are only 

possible when the organization has sufficient workforce so that employees are not overwhelmed with 

other tasks.  

Simple head-count, however, is not enough to account for labor availability, as individuals’ 

capabilities have an impact on their ability to perform a task. This is particularly salient in the retail 

industry where, due to volatile customer demands, retailers often bring in less-expensive and more 

flexible part-time-employees (PTEs) to cover the short-term mismatches between required labor and the 

capacity available through full-time-employees (FTEs) (Kesavan et al., 2014). However, unlike FTEs, 

most PTEs receive limited training and do not accumulate as much experience on the job since they are 

the last to be hired and the first to be dismissed. As a result, PTEs are consistently assigned to supporting 

tasks such as re-stocking shelves. To date, there is scant evidence on how the mix of FTEs and PTEs 

affects store performance. A notable exception is Netessine et al. (2010) who find that allocating more 

FTEs as opposed to PTEs has positive effects on basket values. 

The idea that more PTEs may be counterproductive or detrimental to store performance is not only 

because of lack of training/experience but also due to the fact that PTEs often obtain minimum benefits, 

have unstable schedules, and consequently, are less committed to their job (Netessine et al., 2010). Such a 

lack of commitment causes high turnover of PTEs. The high turnover, unfortunately, is exacerbated by the 

retailers’ efforts to cut wages and eventually causes low process conformance (Ton and Raman, 2010). 

Ton (2014) calls the practice of cutting labor budgets by myopically hiring more PTEs a “bad job” 

strategy that creates a vicious cycle of low quality/quantity of people, poor operational execution, and lost 

sales/profits. 

In the following subsections we describe the research setting, data collection, and operationalization 

of variables we used to explore the structural functional relationship between labor availability, 

considering labor mix, and IRI.  

4.1. Data and measures 
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4.1.1. Inventory record inaccuracy 

We obtained observations over a period of 10 months on IRI, labor, and time-variant (e.g., number of 

transactions) and time-invariant (e.g., store area) store characteristics from 5 stores of a global retailer of 

DIY supplies. A typical store has 100,000 square-feet of retail area and carries 33,000 SKUs. Each store 

has 13 different product sections in which section managers coordinate the stores’ internal operations. A 

section is a group of related SKUs that are normally placed in close proximity within the store. Section 

managers are responsible for maintaining the shelves, displaying the product (i.e., order, access, price 

labels, etc.), re-stocking the shelves from the backroom, and making adjustments to system-generated 

order decisions. Each section manager also has the autonomy to make labor allocations and variations on 

those decisions allow us to examine the effect labor availability has on data quality. Each section manager 

is also responsible for setting a monthly target of inventory counts to ensure data integrity, as all 

restocking decisions in the store are driven by an automated replenishment system.  

Each of the 13 product sections had its own inspections in which a portion of SKUs with faulty 

inventory records (i.e.,|Ia-Ir|>0) was detected and corrected on a nearly daily basis. The inspection 

intensity varied from day-to-day and was subject to managers’ orders as well as slack in labor capacity. 

Understandably, these inventory counts have low priority relative to the task of restocking shelves or 

helping customers and it is not infrequent that the actual counts are only a fraction of the stated goals. 

When performing shelf inspections, store associates only recorded error corrections along with Ia and Ir 

that were useful for manages to diagnose the severity of IRI.  

One of the challenges of working with the data was to derive a robust measure for the dependent 

variable IRI for each store-section-month as category managers gave inspection different priority. Even 

within the same section, there was high variance in the inspection rate from month to month. For the 5 

stores*13 sections*10 months=650 units (from now on a unit refers to a store-section-month), we had a 

total of 66,525 corrections that can be used to estimate time-variant metrics of IRI. The number of 

corrections at month t in section j of store i (kijt) ranges from 0 to 1242 with a mean of 102 and a standard 

deviation of 152. One potential metric of IRI for each unit is mean absolute deviation (MAD), a simple 

and useful measure to capture the mean and spread of IRI (DeHoratius and Raman, 2008). However, the 

small number of correction records in many units (i.e., 200 out of 650 units have less than 30 correction 

records) makes MAD (i.e., raw IRI average) unreliable. Furthermore, all observed IRI are zero-truncated 

as only corrections, i.e., |Ia-Ir|>0, were recorded. That is, we do not have record of all the inspections that 

were performed but resulted in no correction. 

To tackle small-sample biases in many units and the censoring issue, we adopted Bayesian shrinkage3 

                                                   
3 This is a statistical shrinkage that refers to a Bayesian estimator and is not to be confused with inventory shrinkage 



 19

estimation to make robust mean inferences given a small sample. This method has been used in marketing 

studies (e.g., Johnson et al., 2004; Shin et al., 2012) and aims to take advantage of information across 

subsamples. We defined Yijt=(Yijt,1,…, Yijt,m(t)) as a vector of IRI corrections at month t in section j of store i. 

We assumed the sampling model p(Yijt |μijt, ) ~ zero-truncated Poisson-inverse Gaussian(μijt, ) 

following Oliva et al. (2015) who showed that the Poisson-inverse Gaussian distribution is flexible 

enough to characterize the distribution of IRI at store, section, or subsection levels. Based on the fact that 

SKUs within a section are more similar and closely related to each other across months than to SKUs 

randomly sampled from the entire store, we set μijt ~ Normal(θij, ) (Hoff, 2009) and developed a 

Bayesian hierarchical model for each store-section (5 stores*13sections). The proposed model does not 

allow between-store interactions since it is unreasonable to assume that IRI of a store affects IRI of 

another store. Below is a visualization of the hierarchical model where θij and  are hyper-parameters 

that define the distribution of the means of the Poison-inverse Gaussians. 

 
The objective of each store-section model above is to estimate a posterior mean μijt for a unit. The 

posterior mean is robust in that it allows μijt with a small sample in one month to “borrow” some 

information from a larger sample of corrections in the same store-section but from other months. The 

information sharing also accommodates unknown inspection frequency since it is reasonable to assume 

proportionality between the number of observed corrections and inventory counts. The model also 

assumes a common variability parameter  for Yijt. Since all corrections are within the same year and 

from stores in the sample company with standard procedures, this assumption is reasonable and avoids 

more complicated parameterization (Hoff, 2009). Note that it is possible to devise a more complicated 

model that shares information content across 13 sections within each store. However, the model becomes 

cumbersome as the number of parameters to be estimated in a single model increases from (T+3) to 

(T+3)*13+m additional hyper-parameters. Our model strikes a balance between quality of estimation and 

complexity of computation.   

                                                                                                                                                                    
described in §3. 
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We derived the joint conditional distribution based on the set up – for convenience we drop the store 

(i) and section (j) indices: 

  (14) 

Based on equation (15), we developed a Markov Chain Monte-Carlo (MCMC) (Jackman, 2009) 

sampling scheme that allowed us to approximate the Bayes IRI average (i.e., posterior means of IRI 

E[μij|Yij]) using simulation and derive the full conditional distribution for all model parameters – θ, τ, σ, 

and the key parameter μ (see the detailed derivation in the Appendix). The posterior mean vectors E[μij|Yij] 

are robust measures of data quality for all units and serve as dependent variables of regression later. 

Figure 4 shows that the posterior mean differs more from the raw mean when the sample size of a unit is 

small (e.g., <30). This correction of small sample bias comes from incorporating information from other 

months and reflects the effect of Bayesian shrinkage. The Bayesian and raw means of IRI become nearly 

identical when the sample size increases and more information is available.  

 

 
 Fig. 4. Effect of Bayesian shrinkage 

Descriptive statistics in Table 4 show significant variability among units. Compared to Raw IRI 

average, the Bayes IRI average has a higher mean but a significantly smaller variance (p-value<0.001), as 

would be expected from the shrinkage procedure (Hoff, 2009), which reduces variability by sharing 

observed information across periods within each store-section. The higher mean is also a direct 

consequence of shrinkage as a large number of corrections in a unit have more influence on the resulting 

value than those units with low number of corrections. Note that the sample size of Raw IRI average and 

Bayes IRI average is only 617 because for 33 units we have no observed corrections (kijt=0).  

4.1.2. Labor availability and controls 

We obtained monthly data on total labor hours (LabHrs) allocated to each store-section as well as the 
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number of full-time employees (FTEs) and the part-time employees (PTEs) in a store-month. We used the 

staffing numbers to calculate the fraction of FTEs hours in store labor (FullFr) as FTEs/(FTEs+PTEs*θ). 

Such a fractional operationalization based the number of persons is common in panel data econometrics 

and labor economics (McKee and West, 1984; Baltagi, 2006). The parameter θ (0≤θ≤1) reflects the fact 

that a PTE may not work for as many hours as a FTE does. Based on our interviews with the director of 

operations and store managers), we set θ=0.5 and estimated the labor availability as the addition of 

full-time labor (FullTime) as LabHrs*FullFr and part-time labor (PartTime) as LabHrs*(1-FullFr).  

Finally, we identified relevant control variables from DeHoratius and Raman (2008) and secured 

their corresponding data. The first two controls are product variety and inventory density, both of which 

cause higher environmental complexity and are considered as drivers of IRI. We approximated product 

variety as the number of SKUs and inventory density as inventory value (€)/store area. Finally, since 

increased transactions may lead to more checkout errors, we also controlled for the number of 

transactions. All these controls were available at the store-month unit of analysis. Table 2 presents 

descriptive statistics and pairwise correlations of variables used for empirical estimation.  

Table 4 Descriptive statistics and pairwise correlations 

Store-Section-Month (ijt) Variables 

N Mean Stdev. Min Max L YR    

LabHrs(L) 650 1071.09 546.10 217.88 3014.39      

RawIRIAvg(YR) 617 5.92 5.96 1.00 61.24 -0.11**     

BayesIRIAvg(YB)  617 7.09 4.66 1.11 38.99 -0.22** 0.77**    

Store-Month (it) Variables 

N Mean Stdev. Min Max FTE PTE FF N I 

EmpFull(FTE) 50 147.12 43.76 92.00 207.00      

EmpPart(PTE) 50 46.92 16.71 18.00 85.00 0.26**     

FTEFraction(FF) 50 0.86 0.05 0.77 0.96 0.52** -0.68**    

# of SKUs(N) 50 32346.95 3536.72 26131.00 40591.00 0.33** 0.62** -0.28**   

InvDensity(I) 50 1049.06 247.89 614.63 1668.73 0.14** 0.21** -0.09* 0.27**  

Transactions(T) 50 523298.20 159715.50 289732.00 876240.00 0.79** 0.56** 0.10* 0.61** 0.17** 

*sig. 0.05 level; **sig. 0.01 level 

 

4.2. Results and analysis 

Considering that IRI is the consequence of deviations in the stores’ operating procedures, we assume that 

the improvement resulting from any efforts applied to improving the execution of those procedures would 

follow the well-established-empirical-finding of reducing defects at a constant fractional rate 

(Schneiderman, 1988; Keating et al., 1999). That is, IRI should show an exponential decline as 
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incremental resources are applied to store’s operations. In our case, we assumed that the ability to perform 

the store operations correctly is a function of the staffing level, and we specified a non-linear function that 

characterizes the impact of full-time and par-time labor on IRI 

   (15) 

where the coefficients β1 and β2 indicate the impact of full-time and part-time labor allocation on IRI. A 

negative coefficient indicates that IRI is reduced by the availability of that type of labor. X is an array of 

other factors that may affect IRI.  

 To econometrically estimate equation (16), we took natural logarithms of (16) and specified a 

two-way fixed effects (FE) model that considers store-section FE (αij) as well as time effects (Dt) 

(Cameron and Trivedi, 2010). FE modeling allows for the store-section-specific FE (αij) to be correlated 

with other regressors. Specifying αij helps absorb store- and section-specific time-invariant factors that 

may affect IRI. The model is also robust to the unbalanced panel data we have (since we did not have 

observations of IRI for all units).   

 .  (16) 

Table 5 shows the results of de-mean estimation of (17) (Cameron and Trivedi, 2010). The standard 

errors shown in parentheses are robust to heteroskedasticity and allow for intra-panel correlations. We 

performed the Wooldridge test (Wooldridge, 2001) and find no evidence of autocorrelation in residuals 

(ωijt). To test the proposed functional form, we compared our log-linear model specification to the linear 

and inverse forms. The log-linear model in eq. (17) achieved a better fit than the other models, and 

performing the Box-Cox model specification test (Box and Cox, 1964) we failed to reject the log-linear 

model specification (p-value=0.425) while rejecting the other two. 

 In model I we included full-time labor hours (FullTime) and part-time labor hours (PartTime) as 

well as time dummies. The regression is significant (p-value<0.001), explains 60% of the observed 

variance and coefficients of both variables are significant at the .05 level. The coefficient β1 for full-time 

labor is, as expected, negative, indicating that additional FTEs reduce the IRI. β2, however, is positive 

indicating that more PTEs increase the IRI. In models II-IV we controlled for product variety 

(ProductVar), inventory density (InvDensity), and number of transactions (Transactions). For all models 

only the control for Transactions is significant. For completeness we also performed random effects (RE) 

estimation (model V). RE modeling is more efficient but assumes αij to be a random number uncorrelated 

with other regressors. We conducted the Hausman test (Wooldridge, 2001) and find no systematic 

differences between FE and RE estimates. Further, we performed RE estimation (model VI) with 

Mundlak correction (Mundlak, 1978) for heterogeneity bias by adding two terms for the unit mean of 

FullTime and PartTime (Bell and Jones, 2015). The results of model VI are consistent with those from 

1 2exp( )IRI FullTime PartTime    πX
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ordinary RE modeling (model V) and Transactions is still the only significant control. 

 
Table 5 Parameter estimates of panel data models 

Variable I (FE) II (FE) III (FE) IV (FE) V (RE) VI (RE_M) 

Intercept  2.1717*** 
(.1432) 

1.8040*** 
(.4456) 

1.3467*** 
(.5066) 

0.4021 
(.6622) 

1.1026**   
(.4827) 

1.3256**   
(.5225) 

Full-time Labor -.0004**     
(.0002) 

-.0004**     
(.0002) 

-.0004**     
(.0002) 

-.0004**     
(.0001) 

-.0005***         
(.0001) 

-.0004***       
(.0002) 

Part-time Labor .0007** 
(.0003) 

.0007** 
(.0003) 

 .0005 
(.0004) 

.0003 
(.0004) 

.0003 
(.0004) 

.0005 
(.0003) 

Product Variety  .0132 
(.0149) 

.0141 
(.0148) 

.0250 
(.0159) 

.0220 
(.0142) 

.0212 
(.0143) 

Inventory Density   .0005 
(.0003) 

.0005 
(.0003) 

.0002 
(.0002) 

.0001 
(.0002) 

Transactions     .0016**         
(.0006) 

 .0009**         
(.0003) 

 .0007**         
(.0003) 

Time Dummies Included Included Included Included Included Included 

R-square 0.607 0.608 0.609 0.612 0.610 0.610 

Adj. R-square 0.600 0.600 0.601 0.603 0.601 0.600 

F-statistic 2.770*** 2.540*** 2.550*** 2.650***   

Wald χ2     44.350*** 56.040*** 

No. of Groups 65 65 65 65 65 65 

No. of Obs 617 617 617 617 617 617 
        *sig. 0.1 level; **sig. 0.05 level; ***sig. 0.01 level 

 The estimates for the two labor components are stable across all models, but part-time labor 

becomes insignificant when inventory density and transactions are included in the model. According to 

our field interviews, most PTEs were brought in to assist shelf restocking operations in busy season and 

the number of PTEs varied month by month, which is supported by a high ratio of within variance to total 

variance (0.60). However, each section has a stable base level of FTEs and the variance between sections 

is much larger than the variance within sections, yielding a within-to-total variance ratio of 0.02. The drop 

in significance of PartTime is explained by the inclusion of controls with a relatively high within-to-total 

variance ratio, i.e., inventory density (0.63) and Transactions (0.15). Nevertheless, the remaining positive 

estimates of PartTime are consistent with store managers’ perceptions that PTEs are not as well trained 

and more likely to make mistakes that cause IRI (e.g., grab the wrong SKU from the backroom or place a 

particular SKU in the wrong place).  

As a final check, we tested alternative values of θ for FullFr=FTEs/(FTEs+PTEs*θ) as different θs 

would cause slight variations in the FullTime and ParTime estimated coefficients. We re-estimate the FE 

and RE models for each θ in the relevant range of [0.3, 1.0] with an increment of 0.005. The results 
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remain unchanged and still provide significant evidence of the negative effect of full-time labor on IRI 

and the non-significant effect (when controls are included) of part-time labor on IRI.  

5. Impact of IRI on Labor Availability 

The results from the previous section provide clear evidence that labor availability has an effect of IRI. 

Furthermore, it is reasonably easy to identify scenarios where IRI, or its consequence, shelf-OOS, could 

have an impact on the workload of store employees. For example, as discussed in §3, once IRI is present, 

the restocking system becomes unreliable, increasing the probability of shelf-OOS. Empty shelves 

translate into confused or angry customers that interrupt normal operations and require special attention 

through help with searches (either physical or in the computer system), trips to the back room, or placing 

orders for the missing SKUs. Eventually, high IRI will trigger a response from management that will 

require employees to perform inventory counts or walk-by shelf inspection. All these activities represent 

distractions from ‘regular’ operations, thus reducing the labor available to perform them. As per §4, lower 

labor availability translates into even higher IRI, thus creating a reinforcing loop. Figure 5 operationalizes 

this reinforcing loop (R1) through the construct of work pressure – the ratio of labor required to effective 

labor available (Oliva, 2001). 

 
Fig. 5. IRI-Induced work pressure 

Nevertheless, it is hard to imagine a situation where this reinforcing loop would run out of control 

and all employees will be responding to IRI-created work. Customers, for one, would quickly realize that 

the establishment is not the best option for their purchases and would search for alternative retailers. This 

would reduce the amount of base labor required to handle regular traffic and would bring work pressure 

back to normal operating range. However, a quick inspection of the shape and strengths of the links in 

loop R1 reveals that the gain of this loop saturates very quickly as only a limited fraction of total labor 

goes into IRI activities.4 Specifically, to assess the gain of the loop around the backlog-shrinkage error, 
                                                   
4 The gain of a link is defined as the ratio of the output to the input, and the gain of a loop is the product of all the 

link gains in the loop. A reinforcing loop has a positive gain, but to create exponential growth the gain has to be 

greater than one. 
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we first used the model described in §3 to estimate the impact of the error rate on IRI. Simple OLS 

regressions explained 99% of the observed variance and yielded tight estimates for the error rate 

coefficients on average IRI (βεB-=907.0, p-value<0.0001). We further assumed that work pressure (WP) 

has a multiplicative effect on the operational error rates defined in §3, that is, 휀 = 휀 ∗푊푃	, and that 

IRI can take up to 10% of the base labor required per SKU once it reaches the magnitude of the desired 

shelf level (S*). Finally, we assumed that the impact of IRI is not felt instantaneously by the workforce, 

but takes time to accumulate. We approximated this adjustment through a first order exponential process 

with a time constant of one week. With those assumptions the gain of the loop around εB- is only 0.004 at 

the average observed IRI and assuming a normal initial work pressure.5 Even if all the other error rates 

were similarly activated, the addition of the five loop gains will still be less than one, and it would take a 

work pressure greater than 50, i.e., a severe understaffing, for loop R1 to have a gain greater than one. 

Note finally, that as formulated, the gain of the loop decreases with IRI as only a limited fraction of labor 

can realistically be allocated to handling IRI issues. 

However, the feedback loop depicted in Figure 5 is not working in isolation and poor data integrity 

could induce negative consequences with different time delays. Figure 6 shows two simple, yet relevant, 

feedback loops that characterize the intermediate and long-term impacts of work pressure on labor 

availability. The loop R2 suggests that IRI-induced work pressure could lead to higher work intensity. 

Extended periods of work intensity results in employees’ fatigue, thus reducing their effectiveness and 

reinforcing work pressure. Extended periods of fatigue, in turn, results in employee burnout, which 

eventually increases FTE turnover rate, not only reducing headcount (R3), but also affecting the nominal 

labor productivity as new FTEs will require time to assimilate (not shown in the figure) (see Oliva and 

Sterman, 2001 and 2010 for evidence and calibration of these feedback loops in service settings). Of 

course, IRI is not the only source of increasing work pressure: normal variations in customer arrivals, 

delays in the recruiting processes, and introduction of new product lines are just few examples of normal 

variations that could trigger the cascading effects on operational error rates and compound the growth of 

IRI. 

                                                   
5 The gain of the loop is given by the expression 훽 휀 푒 / ∗

∗, where IRI is the average |Ir-Ia| (~20 units), S* is 

the desired shelf inventory level (50 units), εi is the base error rate for error type i, βi is the estimated impact of the 

error rate on IRI (from regression of model output), τ is the time constant for the impact of IRI to affect labor 

requirements (7 days), δ is the maximum effect of IRI on labor requirements (10%) and γ is a parameter that controls 

the shape of the impact of IRI on labor requirements in the range [0, δ], in our case γ=5. 
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 Fig. 6. IRI-Induced fatigue and burnout 

The situation described above can easily be prevented if the effective labor available is maintained 

above the base labor required and work pressure is maintained below one. However, common hiring 

practices in the retail industry do not seem to be in line with this basic tenant. First, as shown in §4, there 

is no evidence that PTEs have an effect on improving IRI performance – if anything; there is weak 

evidence that they make things worse. Second, addressing IRI issues (helping customers, placing orders 

or realizing audits) is most likely done by FTEs, a reasonable assumption given the low training of PTEs. 

Consequently, the current practice of using PTEs to cover temporary staffing gaps has no substantial 

effect on the labor available for the purposes of the structure depicted in Figure 6, as PTEs are not capable 

of containing the IRI from regular operations and are not capable of supporting the customer to deal with 

the consequences of IRI. We integrate this structural element in Figure 7 and show in a dashed link the 

weak effect that PTEs have on nominal labor availability. While the effect of PTEs on the described 

dynamics is inconsequential, the fact that management perceives PTEs as being helpful and reduce the 

FTEs’ hiring rate does have an effect on the dynamics as it sustains the work pressure that triggers all the 

reinforcement loops described above. 
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 Fig. 7. Myopic PTE adjustment to labor availability 

6. Discussion 

Our study takes an empirically grounded multiple-modeling approach to derive insights that help 

managers prevent occurrence of IRI. We began with modeling a continuous (Q,R) system with explicit 

considerations of recorded and actual inventories in the backroom and on the shelf. We used this model, 

through a full-factorial simulation experiment, to assess the impact five different operational errors that 

are thought to drive IRI. We set our error rates to values observed in our research context, but the impact 

of those rates in IRI was inferred through the model. We found strong support for the premise that 

inventory accuracy is vulnerable to operational errors. More importantly, while the literature (Kok and 

Shang, 2007; Chen and Mersereau, 2015) identifies three operational sources of IRI – shrinkage, 

transaction errors, and misplacement – no formal effort had been made to assess their relative impact. Our 

experimental design identified that all operational errors were significant, but we also found that transaction 

errors (e.g., checkout and data capture) and misplacement (e.g., under-shelving) have negligible impact on 

IRI and that shrinkage, either shelf or backroom, is the largest contributor to IRI.  

We then empirically estimated the relationship between labor availability and IRI. We 

operationalized labor availability as a function of the level as well as mix of store workers. Our estimation 

model focused on a structural explanation of IRI, as opposed to a correlational study to test hypotheses, 

and we were able to identify significant labor effects on operational outcomes. While the negative 

association between FTEs and IRI conforms to the advocate that increasing FTEs improves operational 

execution (Ton, 2012; 2014), the partially significant positive impact of PTEs on IRI reveals the potential 

drawback of increasing temporary workers. Finally, we articulated the reinforcing relationships between 
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labor and IRI by formally assessing the gain of the feedback loop based on our empirical findings and 

presented multiple feedback loops with the intermediate and long-term impact of IRI on labor availability. 

The feedback modeling exercise not only illustrates unanticipated consequences of IRI with different time 

delays but also reinforces the need for more effort and dedication to tackle IRI. Allocating adequate labor 

to prevent operational errors identified in §3 would be instrumental in enhancing process conformance 

and data accuracy. Our analysis of labor and IRI, however, does not rule out alternative drivers of IRI 

(e.g., those identified by DeHoratius and Raman, 2008). We simply aim to inform retail managers that 

employees matter when it comes to IRI and add to the newly emerging stream of studies on labor effects, 

store execution, and retail performance. 

A major limitation of our paper is the generalizability of labor effects on retail data quality. Similar 

to DeHoratius and Raman (2008), we analyze secondary data from stores of a single retailer. Although the 

significance and appropriateness of random effects modeling in §4 help us generalize beyond this 

organization, statistically we may not be able to claim that our finding will hold beyond this retail chain. 

Another limitation of our analysis is that we only focus on quantities of labor. Labor quality could also 

moderate the effects of full-time and part-time labor on IRI. Although we could not obtain data on 

education, age, experience, engagement, and attitude of employees to assess such moderations, our 

conversation with the senior manager gives us no reason to suspect that significant differences in labor 

quality/training exist among the five stores. While we focused more on labor allocation, it would also be 

interesting to investigate the impact of section manager skills and background on the relationships 

identified in our paper.  

Despite the limitations, our modeling efforts carry pragmatic implications for retail managers. Our 

findings suggest that management should re-direct their efforts to address shelf and backroom shrinkage. 

Extensive surveys from both US (Hollinger and Davis, 2003) and European retail companies (Bamfield, 

2004) suggest that employee, customer, and supplier theft cause approximately 80% of shrinkage — the 

other 20% being caused by internal errors (e.g., poor compliance, spoilage, accidentally damaging goods). 

While a technical fix for shrinkage would be item-level RFID (Lee and Ozer, 2007), this solution is too 

expensive to be adopted by most retailers. Instead, our findings suggest that improving labor availability 

could be an effective solution, at least in reducing employee theft and internal errors, which account for 

~63% of shrinkage in US and ~ 47% of shrinkage in Europe (Bamfield, 2004). Ensuring sufficient 

staffing levels and adequate labor mix may be the easiest thing for retailers to do in order to tackle 

execution failures and IRI induced by those errors. That said, retail managers should not just expand labor 

capacity as doing so may lead to over-staffing. Managers ought to adopt prescriptive labor planning 

models that avoid myopic wage minimization and consider costs of errors/IRI associated with staffing 

levels and labor mix. For example, Chuang et al. (2015) propose a data-driven staffing heuristic based on 
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observed store traffic. Following the principle of profit maximization, traffic-based labor planning 

significantly outperforms actual staffing decisions that are primarily budget- or cost-driven. Moreover, 

labor decisions should explicitly strike the balance between FTEs and PTEs rather than naively increasing 

PTEs to address staffing shortfalls. As mentioned earlier, lack of commitment and training may cause 

PTEs to commit errors that hamper data integrity more easily. For retailers who are not able/willing to 

increase staffing levels or change labor mix, labor quality can be improved by aligning incentives (Gino 

and Pisano, 2008), building awareness (Fisher, 2004), or developing the appropriate processes (Oliva and 

Watson, 2011). 

Our study also carries theoretical implications for researchers. First, the proposed simulation model 

can be used to assess the impact of random errors on not only IRI but also lost sales. By expanding our 

model, researchers can reassess the backroom effects (Eroglu et al., 2013) in a generic setting subject to 

different execution errors while exploring the impact of decisions on shelf space, reorder point, order 

quantity/case pack size on inventory performance. Researchers can also design and test the efficacy of 

different shelf inspection policies (e.g., zero-balance walk, cycle-counting, daily counts) after adequately 

modifying the model. Moreover, since the errors investigated through simulation are common enough, the 

assumption that the decision maker knows the actual inventory level is not credible (Cachon, 2012). Our 

findings support the necessity to infer erroneous inventory records and incorporate statistical estimates 

into inventory control (DeHoratius et al., 2008; Mersereau, 2013).  

Second, while previous studies show that sufficient staffing levels help improves service quality 

(Oliva and Sterman, 2001) and conformance quality (Ton, 2009), our empirical estimation suggests that 

full-time store workforce enhances data quality as well. The dependence between labor availability and 

data integrity warrants future investigation. More efforts are needed to articulate the impacts of labor mix 

as well. Even though PTEs could be an effective means of responding to demand spikes (Kesavan et al., 

2014), inexperienced PTEs often need assistance from FTEs and this mentoring requires increasing the 

workload of FTEs. As a result, it becomes more difficult for FTEs to prioritize assignments and causes 

productivity loss (Oliva and Sterman, 2010). These dynamics arisen from labor allocation deserve further 

examination since it is important for managers in service settings to understand the pros and cons of 

building operational flexibility through mixed workforce. 

Lastly, our combination of multiple methods to analyze IRI creates advances in empirical research. 

We enrich research angles and insights applying simulation of differential equations, Bayesian statistics, 

panel data econometrics, and causal loop diagrams. On the empirical front, we are fairly cautious about 

imposing assumptions on the data generating process. Instead of following the predominant Gaussian 

thinking criticized by Singhal and Singhal (2012), we take an empirically-grounded approach to set up a 

sampling model in Bayesian shrinkage, which results in robust econometric estimation. From the system 
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dynamics approach (Forrester, 1958; Sterman, 2000), we deploy two ideas that hopefully we will find 

broader adoption in operations management research. First, our empirical exploration of the relationship 

between labor and IRI is operational. That is, we focused on identifying the functional form of the 

relationship and providing operational explanations and consequences of our findings (Richmond, 1993). 

We believe that this type of analysis is more meaningful than hypotheses-testing correlational studies and 

is more conducive to generating operational recommendations. Second, our study expanded the boundary 

of the IRI problem to include the feedback mechanisms and managerial decisions that cause and sustain 

the problem. We believe that this broader perspective and the formal assessment of the feedback 

mechanism are becoming increasingly relevant as operations management is tackling ever broader issues 

and problems e.g., supply chain management, strategic operations, etc. 
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Appendix 1. Bayesian Shrinkage Estimation  

For convenience we drop the store (i) and section (j) indices. We first specify the following prior 

distributions for the four parameters in the Bayesian hierarchical model. 

’ 

    Using equation (15) and the property of conjugacy, the full conditional distributions of θ and τ2 

belong to known parametric distributions (Hoff, 2009). 

 

    

The full conditional distributions of σ2 and μt are only known proportionally.

  

    Given the two closed-form full conditionals and the two proportionality conditions, we use a 

Metropolis-Hasting within-Gibbs sampler (Hoff, 2009) to derive posterior estimates. Take the mean 
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parameter μt for example, the algorithm works in the following way. 

 

    The selection of proposal distributions is critical to the implementation of the algorithm. For 

and that cannot be directly sampled from known distributions, we use random walk 

proposals (Hamada et al., 2008) 

 

The parameters s1 and s2 need to be fine-tuned to ensure the effective transition of Markov chains. The 

acceptance rates of the two proposal distributions are important performance measures of the 

Metropolis-Hastings step. A rule of thumb is that acceptance rates should fall between 25% and 50%. We 

set s1=1 and s2=2, which result in successful convergence of MCMC according to different metrics (e.g., 

acceptance rates, trace plots, autocorrelation).  
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摘要 
本次參加 2015 年 POMS Annual Conference，受邀於 Information and Service 

Operations Management session 發表 論文，與會期間並和國內外學者交流，獲得許多

研究上的回饋和尋求未來合作可能性。 
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正文 
本次出席 POMS Annual Conference at Washington DC，POMS 年會為國際上作業管理

領域最重要的學術會議之一，與會者包含學界和業界頂尖的專業人才。此次會議由

05/08 到 05/11，本次應昔日博士班同窗 Dr. Emre Demirezen 邀請發表“Inventory 

Record Inaccuracy: Empirical Characteristics and Analytical Applications，在數學模型的

假設、建構和分析上獲得與會者許多寶貴意見。 
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本次研討會除了論文發表，也和國外的合作學者們，包括 Dr. Rogelio Oliva, Dr. 

Subodha Kumar, Dr. Olga Perdikaki, Dr. Guanyi Lu 等花了不少時間交流、研討，也和

新加坡南洋理工大學的陳建銘助理教授(下圖中)及成功大學李家岩助理教授(下圖右)

共同參與了多場大會活動與論壇，獲益良多。 
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