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Construct the closed-form solution of
A-net of Petri nets by case study

Daniel Yuh Chao and Tsung Hsien Yu

Abstract
After our researches on the effect of a non-sharing resource in a kth order which is the concept of customization manu-
facturing, in this article we extend the research on the closed-form solution of control-related states to the so-called A-
net which has one top non-sharing circle subnet connected to the idle place of left process in a deficient kth order system
and is the fundamental model of different productions sharing the same common parts in manufacturing. The formulas
just are depended on the parameter k and states’ function of top non-sharing circle subnet for a subclass of nets with k
sharing resources. By combining the concept of the partial deadlock avoidance/prevention policy, the moment to launch
resource (controller) allocation based on the current state, and the construction of closed-form solution for deficient
kth order system, it can realize the concept of dynamic non-sharing processes’ allocation.
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Introduction

Petri nets (PNs) have been used for modeling and ana-
lyzing concurrent systems such as flexible manufactur-
ing system (FMS) or resource allocation system
(RAS).1–10 The net behavior depends not only on the
graphical structure but also on the initial marking of
the net. Therefore, they cannot be determined by static
analysis such as dependency analysis; rather, they can
be obtained with reachability analysis.11–16 It has been
shown that the complexity of the reachability analysis
of the PNs is exponential.15

When using the Integrated Net Analyzer (INA)17 as
reachability analysis tools, there are some potential
risks in large model systems: the first is the time-
consuming risk as it may take 1month to complete the
reachability analysis; the second is validating the input
net structure data by a human; it may take a long time
to waiting an error result while the input net structure
is wrong; the third is non-significant error due to the
fact that presently INA cannot detect the so-called live-
lock states as shown in section ‘‘Computation of CRSs

of an ordinary A-net’’; the information of reachability
analysis will become not valuable.

The deadlock avoidance/prevention policy for PNs
presently is to find critic first-met bad markings
(FBMs) for maximally permissive control purpose
which is the policy based on the net structure.18–23 The
structural analysis based deadlock prevention has been
extensively studied by researchers, in which siphon
computation and control play an essential role.24–30

However, current advanced approaches such as those
in Chen et al.31 produce maximally permissive supervi-
sors while not being able to synthesize large controllers
since reachability analysis of the PN must be employed;

Department of Management Information Systems, National Chengchi

University, Taipei, Taiwan

Corresponding author:

Tsung Hsien Yu, Department of Management Information Systems,

National Chengchi University, No. 64, Section 2, ZhiNan Road, Wenshan

District, Taipei 11605, Taiwan.

Email: yutsunghsien@gmail.com

Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution 3.0 License

(http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://doi.dox.org/10.1177/1687814017691210
https://journals.sagepub.com/home/ade


Chen et al.20 applied the methodology of interval inhi-
bitor arcs to optimal supervisory control under
resources containing multi-token circumstance while
suffering from the exponential increment state explo-
sion problem. One solution is to apply mathematics to
solve the reachability-related problem of PN in terms
of closed-form solutions. As a result, an infinitely large
system can be handled with ease.

To efficiently break the ever exponential time plight
of getting control states’ information into reasonable
waiting time, Chao32 applied the concept of complete
reachability graph and graph theory to split the reach-
ability graph of the control net into reachable, live,
forbidden, deadlock, non-reachable, and non-reachable
+ empty-siphon states (below we call all different types
of states as control-related states (CRSs), described in
section ‘‘Methodology of closed-form solution of kth
order system’’). Enumerating the tokens’ distribution
and applying combinatorial mathematics, Chao32 pio-
neered the very first closed-form solution of the num-
ber of CRSs for kth order system (defined in Definition
1). This is the first step that allows the exponential
computation time for particular and very large PNs to
be reduced into intra-seconds. We have also progressed
one step further to analyze the effect of non-sharing
resources of kth order and k-net systems based on the
token number of idle place in each process being equal
to the number of resource places in the associated pro-
cess33–37 and proposed the ‘‘proof by model’’ methodol-
ogy to accelerate the construction of the closed-form
formula for PNs.36,37

One of contributions of the closed-form solution of
PN is that the solution can enhance the capability of
dynamically modeling large real-time systems.
Examples of application are the concept of moment to
launch resource (MLR) (controller) allocation and the
deadlock avoidance algorithm introduced below.

On the research of the deadlock prevention policy
topic, Chao18 showed that in a kth order system, it
needs additional 10 controllers; Li et al.28 showed that
in a kth order–like system where k=3 and initial
marking=4, it needs additional three controllers
where the total token number in these additional con-
trollers is 5. The derived problem is, ‘‘Should we need a
deadlock prevention policy for very (infinitely) large
nets?’’ Meanwhile in the structural analysis method,
there is no indicator to show when to allocate the con-
trollers for a partial deadlock prevention policy.

To solve this problem, based on the contributions of
our closed-form solution researches listed above, we
proposed a partial deadlock avoidance/prevention pol-
icy concept for a very large real-time dynamic RAS: the
MLR35,38 for such policy. Presently, the moment can
be calibrated by the future deadlock ratio (the number
of deadlock states/the number of reachable states) of
the current state, which can be derived real-time by

closed-form solution, as the indicator. Letting the dead-
lock thread-holder (DTH) be regarded as a dummy
non-sharing waiting resource that can provide one pro-
cess holding this DTH and wait for the other processes’
work flow, a simple deadlock avoiding algorithm with
the transitory maximum number of int(k/2)+1 DTH
is proposed in Yu.37 The decision-making of a DTH
allocation is based on the maximum value of the reach-
able states that the DTH can be allocated at different
location in a kth order system subnet, which will con-
sume heavy computation time by applying mixed inte-
ger programming (MIP) method for a large system due
to the non-deterministic polynomial-time hard (NP-
hard) characteristic of the MIP problem39 but can be
derived by closed-form solution intra-seconds.

However, another symmetry system problem that we
propose to solve is the effect of top non-sharing subnet
connected to idle place (we call this kind of subnet as
top non-sharing circle subnet below (TNCS)) in which
structure the position of subnet will affect the token dis-
tribution for CRSs caused by some tokens flowing into
TNCS but not going through the entire process of kth
order system. In other words, with a TNCS connected
to a kth order system, we have to construct the closed-
form solution of CRSs of a modified kth order system,
in which case the number of tokens of idle place is less
than the number of places in the belonging process.
Here, we call such a modified kth order system as defi-
cient kth order system, defined in Definition 1, and an
A-net as a net composed by TNCS and deficient kth
order system, defined in Definition 4.

In this article, an example of A-net called a-net
adopted from Liu et al.40 will be deconstructed and
analyzed, followed by the construction of the closed-
form solution for the deficient kth order system to com-
pute the number of CRSs of the a-net.

It is important to use A-net as a target net for
research: first, it is most suitable and easy understand-
ing net structure to enter the new research domain,
especially the concept of states’ classification, the meth-
odology for closed-form solution of kth order system,
integration analysis of different net structures, and the
generalization of both deficient kth order system and
TNCS adopted in this article. Second, the information
obtained from the INA tool shows that A-net has no
deadlock states, as explained in section ‘‘Computation
of CRSs of an ordinary A-net.’’ Hence, we focus on the
characteristic of livelock states where the corresponding
kth order system is in deadlock states, which can be
analyzed by our methodology. Here, we improve the
blind spot of INA tools. Third, by combining the con-
cept of the partial deadlock avoidance/prevention pol-
icy, MLR, and the construction of closed-form solution
for deficient kth order system, it can realize the concept
of dynamic non-sharing processes’ allocation.
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The rest of the article is organized as follows.
Appendix 2 presents the preliminaries about PNs and
S3PR, respectively. Section ‘‘Methodology of closed-
form solution of kth order system’’ defines deficient kth
order system and lists the relative methodology of
closed-form solution of kth order system. Section
‘‘Computation of CRSs of an ordinary A-net’’ analyzes
and deconstructs an ordinary A-net structure to com-
pute the number of CRSs. In sections ‘‘Computation of
CRSs of deficient kth order system’’ and ‘‘Computation
of CRSs of A-net,’’ we construct the closed-form solu-
tion of CRSs for both deficient kth order system and
A-net. Section ‘‘Conclusion’’ concludes the article.
Appendix 3 shows how to apply our methodology to
construct the closed-form solution for AR+-net which
is a net structure extended from A-net and contains
multi-processes on the right-hand side.

Methodology of closed-form solution of
kth order system

Let N be a PN and Nr be the reverse net of N. Nr is the
net that all the input arcs in N reverse to output arcs;
output arcs reverse to input arcs. Chao32 defined the
kth order system (as shown in parts of Definition 1);
proposed the concept of complete reachability graph
(Figure 5) that lists all states and all paths that any
state can be reachable from all states in a kth order sys-
tem; split the reachability graph of the control net into
reachable, live, forbidden, deadlock, non-reachable, and
non-reachable+ empty-siphon states; and called all the
different types of states as CRSs. Table 1 lists all the
CRSs of a third-order system. Based on the concept of
complete reachability graph, the relationship of the
number of different types of CRSs in a kth order sys-
tem is that the number of non-reachable states is the
number of total states2R (R is the number of reach-
able states); L=R2 q where L (resp., q) is the num-
ber of live (resp., forbidden) states.

According to graph theory, Chao found and proved
Lemma 1, Lemma 2, and Theorem 1; Lemma 3 (resp.,
Theorem 2) enumerated the number of live (resp., reach-
able) states of a kth order system; based on the relation-
ship between each type of CRSs, Corollary 2 derived

the closed-form formulas of the number of forbidden,
non-reachable, and non-reachable+empty-siphon
states, respectively.

Here, we first define more general form of the kth
order system, called deficient kth order system below.
A kth order system is just one of its special cases.

Definition 1. A deficient kth order system is a subclass of
S3PR with k resource places r1, r2, ., rk shared
between two processes N1 and N2:

32

1. For all r2PR, M0(r)=1.32

2. N1 (resp., N2) uses r12 rk (resp., rk2 r1) in that
order.32

3. 1 � M0(p0)\ k, M0(p
0
0)= k, where p0 and p00

are the idle places in processes N1 and N2,
respectively. When M0(p0)=M0(p

0
0)= k, the

system is called a kth order system.
4. Holder places of rj in N1 and N2 are denoted as

pj and p0j, respectively.
32

5. The compound circuit containing ri, ri+1, .,
rj21, rj is called (ri 2 rj) region.

32

6. There are three possibilities for the token ini-
tially at ri to sit at pi (N1), p0i, (N2), and ri. The
corresponding token or ri state is denoted by 1,
21, and 0, respectively.32

Examples are shown in Figures 1–4. Figure 4 is an
example of deficient fourth-order system with
M0(p0)=3.

Definition 2.32 s=(x1, x2, ., xk), xi=1, 0, or 21, i=1
to k, is a state for a kth order system N, xi is the token

Table 1. Control-related states of third-order system.

Types of states Lists of states

Reachable (0 0 0), (0 0 21), (0 21 0), (0 21 21), (21 0 21), (21 –1 0), (21 21 21), (21 0 0),
(1 0 0),(0 1 0), (1 1 0), (1 0 1), (0 1 1), (1 1 1), (0 0 1)

Forbidden (1 0 21), (1 21 0), (0 1 21)
Non-reachable (0 21 1), (21 1 0), (21 0 1), (21 21 1), (21 1 1)
Deadlock (1 21 21), (1 1 21)
Non-reachable + empty-siphon (1 21 1), (21 1 21)

Figure 1. First-order system.
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at ri to sit at pi (N1), ri, or p0i (N2), respectively. (xi,
xi+1, ., xq, xq+1), k� i� 1, k� q� i� 1 (embedded
in s) is a sub-state of s.

For example, (0 0 0) is the state of third-order system
that only resource places r1, r2, and r3 carry tokens.

In Figures 3 and 4, reversing all the input arcs to out-
put arcs, output arcs to input arcs, and inverting the net
structures, we can find the reverse net of a (deficient)
kth order system is also a (deficient) kth order system
but the index of sharing resource is reversed. The
reverse state of state (a b c) in third-order system N is (c
b a) in its reverse net Nr. This implies that a (deficient)
kth order system and its reverse net have the same num-
ber of each type of CRSs. In Table 1, the reverse state
of the forbidden state (1 0 21) in N is (21 0 1) in Nr

which is a non-reachable state as shown in Lemma 1.
For the third-order system, there are three kinds of
unmarked (resp., non-reachable) siphon states: (1 21
x), (x 1 21), and (1 0 21) (resp., (21 1 x), (x21 1), and
(21 0 1)), where x=21, 0, 1. Extending Lemmas 1
and 2, Chao et al.36 found that the reverse state of a live
state in a PN N is a live state in its reverse net Nr, and
the number of live states in N is equal to the number of
live states in Nr which is the main theory of the concept
of proof by model.

Lemma 1.32. Any forbidden state in N is non-reachable
in Nr.

Lemma 2.32. Any non-reachable state s in N is a forbid-
den one or a non-reachable one in Nr.

Theorem 1.32. q(k)=U(k)2B(k), where q(k), U(k),
and B(k) are the number of forbidden, non-reachable,
and non-reachable+empty-siphon states in a kth order
system, respectively.

Lemma 3.32. (1) s is a live state if and only if (iff)
s={y1, ., yk)|yi=21 or 0}, or s={(x1, ., xk)|xi=
1 or 0}. (2) The set of live states Lk={(x1, ., xk)|xi=
1 or 0}[ {(y1, ., yk)|yi=21 or 0}=La[Lb. (3) The
total number of live states is 2k+12 1.

Figure 2. Second-order system.

Figure 4. Deficient fourth-order system.

Figure 3. Third-order system.
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Theorem 232

1. The possible reachable states are s={(x1, x2,
., xj, yj+1, ., yk)|0 � j � k}={(x1, ., xj 1
yj+2, ., yk)|1 � j � k}[ {(y1, ., yk)}, where
xi=1 or 0 (i=1 to j) and yp=0 or 21
(p= j+2 to k)=Rc[Rd.

2. The total number of reachable states is
(k+2)2(k21).

Corollary 2.32. (1) The number of forbidden states
q(k)=
(k2 2)2(k21)+1. (2) The number of non-reachable
states U(k)=3k2 (k+2)2(k21). (3) The number of
non-reachable+empty-siphon states
B(k)=3k2 k2k2 1.

Theorem 3.32 In kth order system, a deadlock state has
the pattern: (11 12, ., 1m21m+121m+2, ., 21k),
1 � m\ k. The total number of deadlock states
D(k)=k2 1.

To sum up, shown below are the total number of
each type of CRSs in a kth order system that Chao32

proved.
The total number of states is 3k.
The total number of live states L(k)= 2k+12 1.
The total number of reachable states R(k)=

(k+2)2(k21).
The number of forbidden states q(k)=R(k)2L(k)

= (k2 2)2(k21)+1.
The number of non-reachable states U(k)=3k

2R(k)=3k2 (k + 2)2(k21).
The number of non-reachable+empty-siphon states

B(k)=U(k)2 q(k)= 3k2 k2k2 1.
The total number of deadlock states D(k)=k2 1.

Based on the concept of complete reachability graph
(Figure 5) and letting a livelock state be the state that
has a directed path to itself state but has no path to ini-
tial state, here we extend the definition of forbidden
states as the states that have no directed path to the ini-
tial state but have a directed path to a deadlock or live-
lock states. Due to that, the sets of live and forbidden
states are two independent sets in a static complete
reachability graph, and the number of forbidden states
still is q=R2L.

Computation of CRSs of an ordinary A-net

Compared with Figure 3, Figure 6 is a kth order–like
system connecting with the TNCS on the left-side

Figure 5. Complete reachability graph of a third-order system (Figure 3).32

Figure 6. a-net, an ordinary A-net: composed by deficient kth
order system and TNCS.40
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process formed by (t1, t11, p12, p11, t12, p13, t13, p14, p0),
where the link point is t1.

Since there is no empty siphon in TNCS, it will have
no deadlock states in this subnet. The tokens in p12 can
either fire t1 or t12, which shows that TNCS and the left
process can be concurrently processed. However, there
are so-called livelock states where tokens can only flow
in the left process TNCS when the kth order–like sys-
tem contains the deadlock states’ pattern as shown in
Theorem 3. When tokens flow into left process TNCS,
it will affect the A-net’s state.

We follow the kth order system to compute the num-
ber of states. Since p11 and p14 are resources, and p12 is
a holder of p11; p13 is a holder of p14. We can focus on
tokens’ distribution of resource set of {p11, r1, r2, r3,
p14} to simplify presentation and computation of CRSs,
where {r1, r2, r3} is a resources’ set of a third-order sys-
tem; {p11, p14} is a resources’ set of TNCS.

Let z be the token number that has flowed into
TNCS. We can use (g(f(z),i)x1, x2, x3) to denote the state
of an A-net, where x1, x2, x3 are r1, r2, r3 states defined
in step (6) of Definition 1; f(z) is a sequence function
mapping to two-dimensional vector set which is token
distribution of {p11, p14}. In this case, f(0)= {(011,
014)}; f(1)= {(111, 014)), (011, 114)}; f(2)= {(111, 114)}
where 011 (resp., 014) is token in p11 (resp., p14); 111
(resp., 114) is token in p12 (resp., p13). |f(0)|=1;
|f(1)|=2; |f(2)|=1. g(f(z), i) is a function mapping to
a TNCS state according to given f(z) and i, 1\= i
\=|f(z)|, i is the sequence of the set of f(z). For exam-
ple g(f(1), 1)= (111, 014); g(f(1), 2)= (011, 114); g(f(2),
1)= (111, 114).

Up to now, we have constructed the presentation of
state of an a-net that not only can show the sequence
of state transformation but also provide the important
variable, f(z), to compute the number of CRSs.

Computation of CRSs of a-net

Let R(k) (resp., L(k) and D(k)) be the number of reach-
able (resp., live and deadlock) states of the kth order
system; RD(k, q) (resp., LD(k, q) and DD(k, q)) be the
number of reachable (resp., live and deadlock) states of
deficient kth order system with the token number of left
idle place being q; R#(3) (resp., L#(3) and D#(3)) be the
number of reachable (resp., forbidden and livelock)
states of a-net. We have the below:

The number of reachable states of a-net is
R#(3)= |f(0)|R(3)+ |f(1)|RD(3, 2) + |f(2)|RD(3, 1)=
R(3)+2RD(3, 2) + RD(3, 1).

The number of live states of a-net is
L#(3)= |f(0)|L(3)+ |f(1)|LD(3, 2) + |f(2)|LD(3, 1)=
L(3)+2LD(3, 2) + LD(3, 1).

The number of livelock states of a-net is D#(3)=
|f(0)|D(3)+ |f(1)|DD(3, 2) + |f(2)|DD(3, 1)=D(3)+
2DD(3, 2) + DD(3, 1).

When the token number in TNCS is 0, the number
of reachable states in the right third-order system is
|f(0)|R(3) since there is only one state (011, 014); hence,
the number of reachable states is R(3) for the third-
order system. The case of |f(1)|RD(3, 2) is when the
token number in TNCS is 1; there being two states
(111, 014) and (011, 114), the number of reachable states
is 2RD(3, 2), in which case the token number of the left
idle place is 2. The case of |f(2)|RD(3, 1) is the token
number in TNCS being 2, the token number of left idle
place being 1, and the state of TNCS being (111, 114)
only. The analysis of L#(3) and D#(3) is similar to that
for R#(3).

By Theorem 2, R(k)= (k+2)2(k21)=.R(3)=
(3+2)2(321)=20.

Extending Theorem 2, RD(3, 2)= |Rc|+ |Rd|=
(2(321)+2 3 2(322)+2(321)2 1)+ (23)=19, where
Rc={(1 y2 y3)}[ {(x1 1 y3)}[ {(01 02 13), (01 12 13),
(11 02 13)}, where x1=0 or 1, y2 and y3 can be 0 or 21.
Rd={(y1, ., y3)} yp=0 or 21, p=1 to 3.

RD(3, 1)= |Rc|+ |Rd|= (2(321)+2(2–1)+2(1–1))+
(23)=15, where Rc={(1 y2 y3)}[ {(01 1 y3)}[ {(01 02
13)}, where y2 and y3 can be 0 or 21. Rd={(y1, ., y3)}
yp=0 or 21, p=1 to 3.

Hence, R#(3)=R(3)+2RD(3, 2)+RD(3, 1)=20
+2 3 19+15=73.

By Lemma 3, L(k)=2k+12 1=.L(3)=23+12 1
=15.

Extending Lemma 3, LD(3, 2)= |La|+ |Lb|=
(2(323)+2(322)+2(321)2 1)+ (23)=14, where
La={(11 02 03)}[ {(x1 12 03)}[ {(01 02 13), (01 12 13),
(11 02 13)} where x1=1 or 0}, Lb={(y1 y2 y3)|yi=21
or 0, i=1 to 3}.

LD(3, 1)=|La|+ |Lb|=(2(323)+2(322)2 1+1)+ (23)
=11.

Hence, L#(3)=L(3)+2LD(3, 2)+LD(3, 1)=
15 + 2 3 14+11=54.

By Theorem 3, D(k)= k2 1. Since the total number
of deadlock states corresponds to the position m, hence
D(3)=DD(3, 2)=DD(3, 1)= 2. D#(3)=D(3) +
2DD(3, 2) + DD(3, 1)= 8.

The number of forbidden states of a-net is
R#(3)2L#(3)=732 54=19.

To sum up, shown below are the total number of
reachable, live, forbidden and livelock states of a-net.

The total number of reachable states R#(3)=73.
The total number of live states L#(3)=54.
The number of forbidden states q#(3)=19.
The total number of livelock states D#(3)=8.

Computation of CRSs of deficient kth
order system

To extend to general A-net, we have to complete the
general formula of RD(k, q) and LD(k, q) of the deficient
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kth order system described in section ‘‘Computation of
CRSs of an ordinary A-net’’ first.

The phenomenon of the deficient kth order system in
an A-net is when the token number flowing into TNCS
is greater than 1 as described in section ‘‘Computation
of CRSs of an ordinary A-net.’’

Construct general formula of RD(k, q) and LD(k, q)

Let kq be a deficient kth order system with q (q � k)
tokens in the left idle place; that is, M(p0)= q and
M(p00)= k.

Definition 3. An impossible state in a deficient kth order
system is a reachable state in kth order system, but not
a legal state due to the token number in left process
being greater than that of the left idle place p0.

For example, state s=(11 12 13 14 05) is a reachable
state in fifth-order system but an impossible state in
deficient 53-th order system, since the token number in
left process is 4, greater than 3 which is the token num-
ber of the left idle place in deficient 53-th order system.

Theorem 4. Let R(k) be the reachable states of a kth
order system and RD(k, q) be the number of reachable
states of kq, a deficient kth order system, then

RD(k, q)=R(k)�
Xk

l = q+ 1

Xl�q�1

i= 0

C(l � 1, l � 1� i)

 !
(2k�l)

where C(l2 1, l2 12 i)= (l2 1)!/[(l2 12 i)!i!], is a
binomial coefficient.

Proof. The line of thinking is RD(k, q)=R(k)2 (the
impossible states in kq but are all reachable states in
kth order system). According to Theorem 2, comparing
with RD(k, q) and R(k), the same value both in RD(k, q)
and R(k) is |Rd|, where Rd={(y1, ., yk)|yi=0 or 21

(p=1 to k)}, which is the token distribution on the
right S2PR (Definition 7 in Appendix 2). In Rc, the
same number of reachable states’ subsets both in RD(k,
q) and R(k) are from subset {(11, y2, ., yk)|1 � q � k,
yp=0 or 21 (p=2 to k)} till subset {(x1, ., xq21

1qyq+1, ., yk)|1 � q � k, where xi=1 or 0 (i=1 to q
2 1) and yp=0 or 21 (p= q+1 to k)}. By induction,
the impossibility of reachable states in subset
Rq+1={(x1, ., xq 1q+1yq+2, ., yk)|.} of RD(k, q)
is subset Iq={(x1, ., xq 1q+1yq+2, ., yk)|where xi=
1, i=1 to q, yp=0 or 21 (p= q+2 to k)}, and
|Iq|=C(q, q)2(k2q21). When Rq+2={(x1, ., xq+1

1q+2yq+3, ., yk)|.}, the set of impossibility is
Iq+1={(x1, ., xq+1 1q+2yq+3, ., yk)} where xi=
1, i=1 to q+1 (the number is 2(k2q22)C(q+1,
q+1))[ {(x1, ., xq+1 1q+2yq+3, ., yk)|xi=0 or 1,
i=1 to q+1, x1+ ���+ xq+1= q, yp=0 or 21
(p= q+3 to k)} (the number is 2(k2q22)C(q+1, q));
hence |Iq+1|= [C(q+1, q+1))+C(q+1,
q)]2(k2q22), till Rk={(x1, ., xk21 1k)|.} the subset of
impossibility is Ik21={(x1, ., xq+1xq+2xq+3.
1k)|xi=0 or 1, i=1 to k2 1, x1+ ���+ xk–1� q}, and
|Ik–1|= [C(k2 1, k2 1))+ ���+C(k2 1, q)]2(k2k). We
have all subsets of impossibility occurring from Rq+1

to Rk, and the number of impossibility counts
from C(q, q)2(k2q21) to [C(k2 1, k2 1)) + ���+
C(k2 1, q)]2(k2k)=

Pk
l = q+ 1 (

Pl�q�1
i= 0 C(l � 1, l � 1

�i)) (2k�l).
Hence, RD(k, q)=R(k)�

Pk
l= q+ 1 (

Pl�q�1
i= 0 C(l � 1,

l � 1� i))(2k�l). j

Let k=8, q=2, impossible states of RD(8, 2) are
shown below. l is the first position of xi=1 (Table 2).

Theorem 5. Let L(k) be the live states of a kth order sys-
tem, LD(k, q) be the number of live states of kth order
system with token number of left idle place being q

LD(k,q)=L(k)�
Pk

l=q+1 (
Pl�q�1

i=0 C(l�1, l�1� i)),
where C(l2 1, l2 12 i)= (l2 1)!/[(l2 12 i)!i!] is a
binomial coefficient.

Table 2. Counts of impossible states of RD(k, q) where k = 8, q = 2.

l i x1 x2 x3 x4 x5 x6 x7 x8 Total

1 – 1 0: there is no impossible state 0
2 – 1 0: there is no impossible state 0
3 0–0 C(2, 2) = 1 1 25: xj = 0 or 21, j = 4 to 8 (k 2 l = 8 2 3 = 5) 32
4 0–1 C(3, 3) + C(3, 2) = 4 1 24: xj = 0 or 21, j = 5 to 8 (k 2 l = 4) 64
5 0–2 C(4, 4) + C(4, 3) + C(4, 2) = 11 1 23: (k 2 l = 8 2 5 = 3) 88
6 0–3 C(5, 5) + C(5, 4) + C(5, 3) + C(5, 2) = 26 1 22: (k 2 6 = 2) 104
7 0–4 C(6, 6) + C(6, 5) + C(6, 4) + C(6, 3) + C(6, 2) = 57 1 21 114
8 0–5 C(7, 7) + C(7, 6) + C(7, 5) + C(7, 4) + C(7, 3) + C(7, 2) = 120 1 120
Total impossible state 522
RD(8, 2) = R(8) 2 522 = 1280 2 522 = 758
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Proof. The proof is similar to that of RD(k, q). The dif-
ference is that by Lemma 3, s is a live state if and only
if s={(y1, ., yk)|yi=21 or 0}, or s={(x1, .,
xk)|xi=1 or 0}. Hence, comparing to RD(k, q), the
impossibility of live states in subset Lq+1= {(x1, ., xq
1q+1yq+2, ., yk)|.} of LD(k, q) is subset Iq= {(x1,
., xq 1q+1 0q+2. 0k)| where xi= 1, i=1 to q, yp=0
(p=q+2 to k)}, |Iq|=C(q, q). Iq+1= {(x1, ., xq+1

1q+2 0q+3. 0k)} where xi= 1, i= 1 to q + 1
(the number is C(q + 1, q + 1))[ {(x1, ., xq+1 1q+2

0q+3. 0k)|xi= 0 or 1, i= 1 to q+1,
x1+ ���+ xq+1= q} (the number is C(q+1, q)), hence
|Iq+1|=C(q + 1, q+1)) + C(q + 1, q). Similar to
RD(k, q), we have all the subsets of impossibility occur-
ring from Lq+1 to Lk; the number of impossibility
counts from C(q, q) to [C(k2 1, k2 1)) + ��� +
C(k21, q)=

Pk
l=q+1(

Pl�q�1
i=0 C(l�1,l�1�i)).

Hence, LD(k, q)= L(k)�
Pk

l = q+ 1 (
Pl�q�1

i= 0 C(l � 1,
l � 1� i)). j

The forbidden states of kq is qD(k; q) ¼ RD

ðk; qÞ � LDðk; qÞ. Table 3 shows the number of reach-
able, live and forbidden states of kq where k = 8 and
q = 1 to 7

Computation of CRSs of A-net

According to RD(k, q) and LD(k, q) of deficient kth
order system derived in section ‘‘Computation of CRSs
of deficient kth order system,’’ and a given state func-
tion of TNCS, f(z), in this section we construct closed-
form solution to compute CRSs of A-net.

Definition 4. An A-net system is a subclass of S3PR
composed by a kth order system and a deadlock-free
TNCS connected to idle process of left process:

1. The link point of kth order system and TNCS is
the top-left transition of kth order system.

2. None of transition of TNCS is firable by the
resources and places of kth order system.

3. Let m be the maximum token number that can
flow into TNCS; the limitation of m is m\ k.

4. Under the limitation of m\ k, both kth order
system and TNCS can expand its net structure
independently.

5. There is a measurable state function of TNCS
f(z), where z is the number of tokens flowing
into TNCS, such that |f(z)| can map to a non-
ambiguous number of different states of combi-
nation under current information of z in TNCS.

Let RD(k, k)=R(k). Hence, we have the following:
The reachable state of A-net is R0A(k;m)=

Pm
l = 0

(jf (l)j)RD(k, k � l)).
The live state of A-net is L0A(k;m)=

Pm
l = 0

(jf (l)j)LD(k, k � l)).
The forbidden state of A-net is q0A(k;m)=

R0A(k;m)�L0A(k;m)=Pm
l=0 (jf (l)j)(RD(k,k� l)�LD(k,k� l)).
The livelock state of A-net is D0A(k;m)=

Pm
l = 0

(jf (l)j)DD(k, k � l))=
Pm

l = 0 (jf (l)j)D(k).
The important characteristic of A-net is that m and

k can be expanded independently under the condition
m\ k. Extending k of A-net from 4 to 8, we have the
value of R0A(k;m),L0A(k;m), and q0A(k;m) as listed in
Table 4.

Table 3. The value of RD(k, q), LD(k, q), and LD(k, q), where k = 8, q = 1 to 7.

q 8 7 6 5 4 3 2 1

RD(8, q) 1280 1279 1270 1233 1140 977 758 511
LD(8, q) 511 510 502 474 418 348 292 264
qD(8, q) 769 769 768 759 722 629 466 247

Table 4. The value of R0A(k;m),L0A(k;m), and q0A(k;m), where k = 4 to 8; m = 2.

k 4 5 6 7 8

R0A(k;m) 184 439 1014 2293 5108
L0A(k;m) 117 244 499 1010 2033
q0A(k;m) 67 195 515 1283 3075

Table 5. The value of R0A(k;m), where m = 3 to 5; k = 8.

m 3 4 5

R0A(k;m) 10,160 20,088 39,382
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These results of R0A(k;m) have been validated experi-
mentally by INA.

Extending m of A-net from 3 to 5 with k=8, we
have the value of R0A(k;m) as listed in Table 5.

Application. Based on the closed-form solution and the
concept of proof by model, we can accelerate the con-
struction of the closed-form formula of the reverse net
of A-net, rev(A-net), which is the fundamental model
of merging two different manufacturing processes, due
to that the live states’ pattern of rev(A-net) will be the
reverse states of A-net’s live states and they have the
same number of live states.

In Appendix 3, we will show how to extend our
methodology to derivate the closed-form solution of
AR+-net which is a net structure containing a non-
sharing subnet and multi-processes on the right-hand
side extended from A-net.

Conclusion

Here, we not only report the very first method to com-
pute in closed form the number of CRSs of A-net with-
out constructing a reachability graph but also
demonstrate the procedure of how to construct defi-
cient kth order system by particular case step by step.
The most important line of thinking is RD(k,
q)=R(k)2 (the impossible states in kq but are all
reachable states in kth order system), as shown in the
proof procedure of Theorem 4. According to the proce-
dure listed above, readers can derive the closed-form
solution of more complicated A-net or even of which
case non-sharing circle subnet can be any position in
left or right process. Besides, by our closed-form solu-
tion, we can provide live, forbidden, and livelock states’
information that INA tool cannot offer, which show
non-significant reachable states’ information only, due
to no deadlock states in A-net and that INA tool can-
not detect livelock states. This helps estimate the per-
centage of livelock (deadlock) and legal state losses due
to the addition of a monitor and avoid the dire situa-
tion of mid-run abortion of reachability analysis due to
exhausted memory. Furthermore, here we extend the
MLR concept to the variant kth order system with
non-sharing subnet.

Future work should extend the analysis method in
this article to A-net with one non-sharing resource (e.g.
used by only one process) located in any position of the
system.
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Appendix 1

Notation

a-net ordinary A-net
A-net net composed by deficient kth order

system and TNCS
B(k) total number of non-reachable+empty-

siphon states in kth order system
D(k) total number of deadlock states in kth

order system
D0A(k;m) total number of livelock states in A-net
DD(k) total number of deadlock states in

deficient kth order system
INA tool package supporting the analysis of

place/transition nets (Petri nets) and
colored Petri nets (http://
www2.informatik.hu-berlin.de/~starke/
ina.html)

L(k) number of live states in kth order system
L0A(k;m) number of live states in A-net
LD(k) number of live states in deficient kth order

system
M marking
M0 initial marking
M0(p) all tokens initially in p
MG marked graph
N Petri net (P, T, F, W)
Ni S2PR in N, i=1, 2, ., n
Nr reverse net of N
(N, M0) marked net or a net system
P set of places
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pi operation place, i=1, 2, ., n
Pi set of operation places of Ni, i=1, 2, ., n
r resource place
R(k) number of reachable states in kth order

system
R0A(k;m) number of reachable states in A-net
RD(k) number of reachable states in deficient kth

order system
R(N, M0) set of reachable marking in the net

(N, M0)
S siphon or strict minimal siphon
SMS strict minimal siphon, that is, a minimal

siphon that does not contain a siphon as a
proper subset

S2P simple sequential process
S2PR simple sequential process with resources
S3PR systems of simple sequential process with

resources
U(k) total number of non-reachable states in

kth order system

q(k) number of forbidden states in kth order
system

q0A(k;m) number of forbidden states in A-net
qD(k) number of forbidden states in deficient kth

order system

Appendix 2

Preliminaries

A Petri net (PN) is a four-tuple N=(P, T, F, W),
where P is the set of places; T is the set of transitions;
F4 (P 3 T)[ (T 3 P) is called flow relation of the
net, represented by arcs with arrows from places to
transitions or vice versa; and W: F!Z (the set of non-
negative integers) is a mapping that assigns a weight to
an arc. M0: P!Z is the initial marking assigned to
each place p2P, M0(p) tokens. (N, M0) is called a
marked net or a net system. In the special case that W
maps onto {0, 1}, the PN is said to be ordinary (other-
wise, general). N#=(P#, T#, F#, W#) is called a subnet
of N where P# 4P, T# 4T, F#=F\ ((P# 3 T#)[
(T# 3 P#) and W#: F#!Z#.

The set of input (resp., output) transitions of a place
p is denoted by �p (resp., p�). Similarly, the set of input
(resp., output) places of a transition t is denoted by �t
(resp., t�). Finally, an ordinary PN such that
(s.t.)"t2T, |t�|= |�t|=1 is called a state machine. It is
called a Marked Graph if "p2 �P, |p�|= |�p|=1. A PN
is strongly connected (SC) if "x, x#2 (P[T), such that
x 6¼ x#, there is a directed path from x to x#. A node x
in N=(P, T, F, W) is either a p2P or a t2T. Nr is the
reverse net of N obtained by reversing the direction of
all arcs in N with the initial marking unchanged.

R(N, M0) is the set of markings reachable from M0.
A forbidden (resp., live) marking or state is one that
(resp., not) is a—or necessarily evolves into—deadlock
marking.

A transition t2T is live at M0 if "M2R(N, M0),
dM#2R(N, M), and t is enabled at M#. A PN is live at
M0 if "t2T, and t is live at M0. A PN is said to be
deadlock-free, if at least one transition is enabled at
every reachable marking.

For a Petri net (N, M0), a non-empty subset S (resp.,
t) of places is called a siphon (resp., trap) if �S4S�

(resp., t�4 �t), that is, every transition having an out-
put (resp., input) place in S has an input (resp., output)
place in S (resp., t). A siphon is a set of places where
tokens can continuously flow out so that
M0(S)=

P
p2S M0(p)= 0; S is called an empty siphon

or unmarked siphon at M0; all output transitions of S
are permanently dead. A minimal siphon does not con-
tain a siphon as a proper subset. It is called a strict min-
imal siphon (SMS), denoted by S, if it does not contain
a trap.

Definition 5.5 A simple sequential process (S2P) is a net
N=(P[ {p0}, T, F) where (1) P 6¼[, p0;P (p0 is called
the process idle or initial or final operation place), (2) N
is strongly connected state machine, and (3) every
circuit of N contains the place p0.

Transitions in p0� and �p0 are called source and sink
transitions, respectively.

Definition 6.5 A simple sequential process with resources
(S2PR), also called a working process (WP), is a net
N=(P[ {p0}[PR, T, F) so that (1) the subnet gener-
ated by X=P[ {p0}[T is an S2P; (2) PR 6¼[ and
P[ {p0}\PR=[; (3)"p"P, "t2 �p, "t#2 p�,
drp2PR,

�t\PR= t#� \PR={rp}; (4) the two follow-
ing statements are verified: "r2PR, (a)
��r\P= r�� \P 6¼[; b) �r\ r�=[; (5)
��(p0)\PR=(p0)�� \PR=[. "p2P, p is called an
operation place. "r2PR, r is called a resource place.
H(r)= ��r\P denotes the set of holders of r (operation
places that use r). Any resource r is associated with a
minimal P-invariant whose support is denoted by
r(r)={r}[H(r).

Definition 7.5 A system of S2PR (S3PR) is defined recur-
sively as follows: (1) an S2PR is defined as an S3PR
and (2) let Ni=(Pi[Pi

0[PRi, Ti, Fi), i2 {1, 2} be two
S3PR so that (P1[P1

0)\ (P2[P2
0)=[. PR1\PR2=

PC(6¼[) and T1\T2=[. The net N=(P[P0[PR,
T, F) resulting from the composition of N1 and N2 via
PC (denoted by N1 o N2) defined as follows: (1)

Chao and Yu 11



P=P1[P2; (2) P
0=P1

0[P2
0; (3) PR=PR1[PR2; (4)

T=T1[T2, and (5) F=F1[F2 is also an S3PR.

Appendix 3

Applying to AR+ -net

An AR+-net is a k-net32-like system connecting with
the TNCS in left side process as shown in Figure 7.

Let zi
j denote the ith token state at Process j (.1).

z
j
i = � 1 means the ith token is at operation place pi of
Process j and not at operation place pi of other pro-
cesses. Hence, z2

i + z3
i + � � � + z

m
i = zi = � 1 with (m

2 1) possibilities; that is, exactly one of z2
i , z

3
i , . . . , z

m
i

equals 21; the rest are 0. z
j
i = 0 means that the ith token

is at resource place ri. Thus, zi � 0.
Chao32 constructed the formulas of live (L(k, m))

and reachable (R(k, m)) states for the k-net as shown in
Theorems 6 and 7:

Theorem 6.32 For a k-net with m processes, the total
number of live states is L(k, m)=2k+(m)k2 1.

Theorem 7.32 For a k-net with m processes, the total
number of reachable states is R(k,
m)=2k+(m 2 1)y(12xk)/(12 x), where x=m/2 and
y=2(k2 1).

Here, we extend to construct the formulas of live
(LAR(k, m, m)) and reachable (RAR(k, m, m)) states for
the AR+-net based on these results.

Theorem 8. For an AR+-net with m processes, the total
number of reachable markings is
RAR(k;m;m)=

Pm
l = 0 (jf (l)j) RD(k, k � l,m)), where

RD(k, q,m)=R(k,m)�
Pk

l= q+ 1

(
Pl�q�1

i= 0 C(l � 1, l � 1� i))(mk�l) and f(l) is a
measurable state function of TNCS, where l is the
number of tokens flowing into TNCS.

Proof. In the proof procedure of Theorem 4 replacing
the token distribution number of the sharing resources
of the impossible states 2 (yp=0 or 21) by m

(zp = 0, z2
p, z

3
p, . . . , or zm

p ), we have the formula. j

Theorem 9. For an AR+-net with m processes, the total
number of live markings is LAR(k,m;m)=

Pm
l=0 (jf (l)j)

LD(k,k� l,m)), where LD(k,q,m)=L(k,m)�
Pk

l=q+1

(
Pl�q�1

i=0 C(l�1, l�1� i)) and f(l) is a measurable state
function of TNCS, where l is the number of tokens
flowing into TNCS.

Proof. In the proof procedure of Theorem 5, the token
distribution numbers of the sharing resources of impos-
sible state are the same both in kth order system and k-
net system, and we have the formula. j

Figure 7. AR+ -net: composed by deficient k-net system and
TNCS.
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