
‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

$����4."1(4���

0�4�3�

AppScan:
68�,���7/#+%*-�

iOS��

AppScan : Static mobile application behavior scanning on iOS

executable

�5'&� �)�

����� ! � 2

� - � $ ��	 � �

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Abstract

Mobile application is the most popular and dominant software applications nowa-
days, so the actual behaviors of the application and the related security and privacy
issues become more and more important. On the other hand, as time goes by, there
are more and more applications on the AppStore stop to update or being abandoned
but not removed from AppStore. However, the users know nothing about the lack of
maintenance problems and still download and use it. In this research, we will resolve
the issue for checking specific property method sequence within an application. By
using IDApro[29] to generate function call graph and the subroutine control flow
graphs, we use syntax checking strategy to perform a across subroutines sequential
checking solution. We will check the application behavior by predefining a property
method sequence as pattern and then check with applications’. The analysis method
can illustrate whether a property method sequence exists in the application which is
available on App Store. This may help us to check some malicious behavior property
method sequence or specific behavior method sequence (ex. using deprecated api
methods) in the applications. We have prepared some property method sequence as
our system input pattern extracted from all the available iOS SDK methods fetching
by our web crawler. We will check whether an application contains the prepared
method sequence or not. If the sequence exists in the application, we would record
the method sequence call included in the subroutine within the application. Then
the results data will be aggregated in our database, and export as api service for
visualizing and statistic uses. Finally, we construct a call sequence analysis system
for the above checking functions and show the result in a web service form.

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Contents

Abstract

1 Introduction 1

1.0.1 Strategy of sandbox policy and iOS program standard agreement . 2

1.0.2 Public, private frameworks and private APIs on iOS 2

1.0.3 Deprecated APIs . 3

1.0.4 Hadoop . 4

1.0.5 MapReduce . 4

2 Literature review 4

3 Application properties and checking 7

3.1 iOS developer api reference web crawler . 8

3.2 Definition of an application property . 8

3.2.1 Behaviors in iOS applications . 8

3.2.2 iOS API reference best practice . 9

3.2.3 Application property subsequence 10

3.2.4 Producing a property checking pattern 10

3.3 Behavior pattern syntax checking . 12

3.3.1 Automatically generated asm file, functions call dependency and

subroutine function call dependency by IDA pro 12

3.3.2 Annotation generated by IDA pro 12

3.3.3 Application property existence checking 13

3.3.4 Application property sequential checking with LCS in single sub-

routine . 14

3.3.5 Application property sequential checking in function call depen-

dency graph and subroutine method dependency graph 17

3.4 Checking deprecated APIs . 20

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

3.5 Checking golden rules . 23

4 AppScan System 24

4.1 System Structure . 24

4.2 Research and system process . 26

4.2.1 Data collection and processing . 26

4.2.2 Application methods property list and iOS API reference web crawler 28

4.2.3 Property syntax sequence processing 29

4.2.4 Web service . 29

5 Experiment Analysis 31

5.1 Intro . 31

5.2 Usage of Deprecated APIs Result . 31

5.3 Syntax pattern check Result . 34

5.4 Conclusion and evaluation . 39

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

List of Figures

1 The web crawler structure of iOS developer reference guide. 9

2 This picture show a graph of a subroutine within an application disassem-

bled by IDA pro. 13

3 This picture show a part of an application all functions (subroutines) calls

dependency graph disassembled by IDA pro within an app. 13

4 Two stages All common subsequence checking processing. 21

5 This structure show the whole system data flow and used tools and tech. . 25

6 This flow show the whole system logic flow and processing sequence. 25

7 Landing page of website AppScan. 32

8 Apps we downloaded and disassembled from AppStroe. 32

9 The job progressing of deprecated API usage checking. 34

10 Deprecated APIs distrubution of iOS SDK frameworks. 35

11 Deprecated APIs distribution of iOS SDK classes. 35

12 Top 10 usage deprecated APIs of iOS SDK methods. 36

13 Deprecated APIs distrubution of iOS SDK methods. 36

14 The distribution of deprecated APIs of Gmail. 37

15 The distribution of deprecated APIs of Youtube. 37

16 The distribution of deprecated APIs of GoogleDrive. 38

17 The job progressing of pattern checking. 39

18 The top 4 of evalJS checking result. 40

19 The evalJS LCS count result of an application. 40

20 All patterns compare results between single subroutine and across subrou-

tines checking methods. 41

21 Javascript core pattern compare results between single subroutine and

across subroutines checking methods. 41

22 LAPermit pattern compare results between single subroutine and across

subroutines checking methods. 42

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

23 Get user location pattern compare results between single subroutine and

across subroutines checking methods. 42

24 Load by Webkit pattern compare results between single subroutine and

across subroutines checking methods. 43

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

1 Introduction

Mobile applications (To be short, I will call it “apps” in the following paragraphs) become

popular in recent years due to the rise of smart devices and application stores. On Apple

WWDC 2015 (World Wide Developer Conference 2015) [22] , Timothy Donald Cook, the

CEO of Apple.Inc, announced that the download times of apps has reached 100 billion on

Apple’s o�cial app store during the 7 years. Besides, Cook also claimed that there are

1.5 million apps in the App Store, and still increasing rapidly. The tremendous amount

implies the fact that mobile apps are extremely close to our daily lives. In the app store,

we could simply find almost any type of apps we need. With the assistant of these apps,

we can enjoy convenient communication, better productivity, various music and games,

thus simplifying our works and enriching our lives. However, though we frequently use

applications in our daily life, we do not completely realize how an application do when the

system is executing. Also, we can not confirm the claim of an application that they are not

o↵ensive to our personal and confidential data is true or not. A study ProtectMyPrivacy:

Detecting and Mitigating Privacy Leaks on iOS Devices Using Crowdsourcing [7] pointed

that most of applications were developed by certain companies with scale and trusty,

and more small companies and developers develop mobile apps in recent years, and these

developers may access private data at will, and these privacy data may leak from mobile

device and being abuse. Further, there are many malicious applications around us, espe-

cially in applications downloading from non-o�cial repositories, such as Cyndia. However,

relatively large proportion of users would jailbreak their iDevices in order to download

applications from the non-o�cial repositories without any defensive measures on their

device. Many security issues have to be concerned in current mobile dominant software

applications. Therefore, in this research, we perform a system, AppScan, to clarify an

application behavior by their program context, but not by the words and descriptions

provided by application developers. In this way, we will be more confident to know what

an application actually do in our mobile system. As we have mentioned previously, the

objective of this research is to clarify what an application actually do in our system, and

1

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

we would like to further analyze how most developers implement an application behavior,

what classes or methods they use and if there’s any pattern existing or not. Therefore,

we make AppScan can continuously and automatically fetch new application from App

store, and quickly judge that if the specific behavior we want to check is existed in the

application or not.

For well implement our system in this research, we took a survey of works related to

mobile applications behaviors and how to detect these behaviors with reverse engineering.

Besides, we will encounter problems when processing lots of tasks in parallel computing,

so we will also study the issues about distributed computing.

1.0.1 Strategy of sandbox policy and iOS program standard agreement

Apple Inc. has a strategy for system stability, and compulsively lock some system fea-

tures in the o�cial developer standard agreement - iOS Developer Program License

Agreement[6], and the sandbox policy is to achieve the target. It will only permit and

dispatch part of the resources in system for each executing application. Therefore, devel-

opers or users are forbidden to get the root right inside the iOS system. To some degree,

the strategy keeps the system’s performance and stability. However, it limits some users’

rights when manipulating in iOS.

1.0.2 Public, private frameworks and private APIs on iOS

The o�cially provided iOS frameworks can be divided into two forms, traditional C

functions exported by shared library and methods in Objective-C classes that are managed

at the runtime. However, only public frameworks can be used by the third party developers

because the private frameworks have private APIs [30], and even some public frameworks

may contain private APIs. Both of the private APIs are forbidden to use by third-party

developers or it may cause security and user privacy o↵ensive issues[26] in iOS system.

2

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

1.0.3 Deprecated APIs

There will have some methods outdate in iOS SDK, with the version updated. These

methods name as ”Deprecated APIs”. The Deprecated APIs are the methods or classes

that are outdated and will eventually be removed by the Apple Inc.. Generally speaking,

Apple Inc. will deprecate API when they introduce a replacement, usually because the

new one can take advantage of new hardware, operating system or programing language

feature.

For example, from iOS8 Apple Inc. provide new UIAlertController class which you

can use instead of UIAlertView which is deprecated, it is also stated in depreciation

message ”UIAlertView is deprecated. Use UIAlertController with a preferredStyle of

UIAlertControllerStyleAlert instead”.

These old methods will not terminate immediately, and the Apple Inc. will still support

these methods for a while. When developers use some method and the deployment target

is set to equal or a higher version when the method was deprecated, they will get the

compiling warnings. Once the Apple Inc. decided to remove some deprecated APIs, and

those applications use the deprecated APIs will not be supported anymore, and may lead

to crush problem in these applications.

Eventually, these deprecated apis will be terminated in SDK, so developers should

follow the system update information, and avoid using the deprecated apis.

A massive applications context analysis need much computing powers, it is necessary

to enforce our e�ciency by using distributed computing solutions. To solve the problems

and speed up the system performance, we adopt MapReduce[11], a distributed computing

model, and implement the model idea with Hadoop[1], the Apache open-source software

project, for the target of providing a reliable, scalable, distributed computing solution.

We take Hadoop Definitive Guide[34] as our reference and build up a hadoop cluster

with general hardware to o↵er enough computing power and scalable storage space with

hadoop file system(HDFS) to achieve our distributed infrastructure environment. Then,

we implement our sequence analysis algorithm with MapReduce model, and adopt many

3

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

useful features in our map function thus reducing functions in the MapReduce Design

Patterns[14].

1.0.4 Hadoop

Hadoop[1] is an apache project provides a solution that we can build a reliable distributed

environment with some commodity hardware. By linking these hardware, it can provide

more computing power, memory and hard-disk storage. Moreover, these resources own

high tolerance and good scalability.

1.0.5 MapReduce

MapReduce[12] was proposed by Dean and Ghemawat of Google Inc. The basic idea of

this distributed computing model is the divide and conquer concept. We will construct

one or many map functions for digesting repeat tasks in our job, and reducing functions

to gather the results from map functions. After processing literately, we will converge a

final result in our job. Through the divide and conquer algorithm, we can figure out huge

data processing problem.

2 Literature review

In recent years, more and more studies concerned about mobile applications’ behavior,

related privacy and security issues. Early in the ”A survey of mobile malware in the

wild”[17], it discusses many isssues about leaking of the user sensitive information, and

later in year 2013, a survey on security for mobile devices[23], they describe many di↵erent

types of mobile malware and predictable potential issue in many di↵erent mobile apps

operating system. The behviors of apps were not only disscuss in any single platform, it

is a general issues in both iOS and android operating system. Because of the di↵erent

o�cial policy between Google Inc. and Apple Inc. on apps. Android apps are more open

than apps on iOS apps. Therefore, many statements claim that the iOS apps are more

safer than android apps. However, in the research ”Android or iOS for better privacy

4

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

protection?”[20] are also clearly analysis the privacy and security issues on both two plat-

forms, and further points that additional SS-APIs(Security sensitive APIs) are always

invoked on iOS, and these may cause higher risks on privacy leak. In these researchs,

they have developed many analysis tools and methods. However, the bolcked policy on

iOS apps lead the di↵erent research progress between android system and iOS system.

In contrast of iOS platform, most of these studies focus on android platform, and many

analysis tools were built for android apps only such as TaintDroid[16], AsDroid[21], Flow-

Droid [8], Droidra[25] and the research ”Static analysis of implicit control flow: resolving

Java reflection and Android intents”[31].

In general, two di↵erent approches are use in these research to detect behaviors of

apps, the static analysis and the dynamic analysis.

Static analysis methods are usually use on application behavior detectations. In

Flowdroid[8], it adopts static analysis by building a control flow graph of API meth-

ods call within android app for detecting privacy leakage. However, the dynamic loaded

classes problems will be ignored by only construct the control flow graph. Futher, in

Droidra[25] they use constant propagation solver to solve this problem, and the ”Static

analysis of implicit control flow: resolving Java reflection and Android intents”[31] is also

facing the problem, they focus on control flow related to Java reflection and android in-

tent checking of applications and they also use static analysis on constructing control flow

graph, and in the Appintent[35], and IccTA[24], they both adopt static taint analysis to

preprocess and extract the information from apps. Appintent focus on all possible data

transmission paths and possible events related to each path.

However, static analysis have the limitations on checking the behavior that trigger by

external input in application runtime, and the dynamic checking related methods can be

apply with this situation. Dynamic analysis will observe application by actually executing

it. The TaintDroid[16] is one of researches that adopt dynamic anaylsis. They detect

privacy-sensitive data and tracing data will be passed to external or not as a risk evaluation

and perform a dynamic taint analysis tool to detect sensitive data leaves from device, and

5

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

for another research, IccTA detects specific ICC (Inter-Component Communication, a

base communication model provided by android os) links and leak in android apps.

Apparently, there are relatively rare studies on iOS than android. PiOS[15] is an im-

portant study for detecting privacy leak in iOS apps, they introduce a way to reconstruct

apps CFG (Control flow graph) from binaries of apps, and checking the privacy leak with

data flow.

In PSiOS[33], and Jekyll on iOS[32], they are not only detect the leak of privacy data,

they also provide a tool to prevent the leak, and the AppBeach[36] uses the static way

to check the possible malicious behavior pattern in an application. Then, iRiS[13] reveals

issues of abusing the private API illegally in iOS apps with both static and dynamic

analysis.

Besides, in these researches, they also use many other aspects to analysis mobile apps,

and eager to solve these malware application issues. In the PMP[7], they gather the feed-

backs from real users, and build up this system to receive and analysis the applications’

behavior in crowdsourcing power. In Checking app behavior against app description[19],

they clustered apps with their description topic, and identify the sensitive APIs usage

in each cluster, and the Apposcopy[18] adopt static analysis along with semantics ap-

proach to figure and detect the malware apps issue. The AsDroid[21] focus on the UIUX

logic conflict with the program behavior and regard these abnormal situation as strange

and need to be removed. The research ”Hey, you, get o↵ of my market: detecting mali-

cious apps in o�cial and alternative android markets.”[38] detect the apps accroding the

behaviors that need to request permission with user in app.

In this research, we are going to check iOS applications by adopting static analysis

and sequential checking method with distributed computing framework, Hadoop, and we

want to study the deprecated APIs of iOS SDK usage and specific API usage pattern

within these applications. The deprecated APIs issues are very common problems in

software, and many studies are related to this, they explore many di↵erent points like

APIs retrospective[37] and design or programing issues of empirical[27] [10]. In this paper,

6

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

we will identify the deprecated usage and many defined patterns of iOS applications. It

can help to improve the bad or wrong using APIs problems in iOS applications.

3 Application properties and checking

Before we get start to process the applications, it is necessary to define some behavior

properties may be found in an app. In our research, we defined a sequence of method

calls as a application behavior property. We will prepare a behavior property filter list

for those behaviors we are interested in, then we will use it to check by our distributed

sequencial analysis program. These property filters are consists of several aspects. The

first one we focus on the methods that are deprecated by iOS SDK. These methods may

create the risk of crash issues when operating system updated by Apple Inc., and the

problems will cause the inconvenient for users who downloaded the apps. The second

part is related to some specific method usages which is especially mentioned in iOS API

developer reference[2] such as asking for user permissions, or asking for device locations...,

the Apple Inc. given a sample to demonstrate how to use these methods to perform the

property feature, so we called these properties as ”Golden rules”.

On the order hand, in order to check the correct context in binary, we have to decrypt

apps downloaded from App Store in advance and convert them into readable assembly files

with annotations. By using disassemble tool, IDA pro[29], we can turn decrypted binary

into assembly file. Every application assembly file contains many subroutine blocks, and

when we dive into each subroutine we will get more small logic area called locations

that can help us analyze the code and realize the classes or methods invoked in the

context. We check context subsequence in assembly files by behavior properties, and use

distributed computing to do the sequence analysis. Before analyzing, we have to do some

data processing and define the meaning of subsequence in our experiment. The details

are described below.

7

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

3.1 iOS developer api reference web crawler

In order to get the frameworks, classes, and methods in iOS SDK, we have to fetch the

data from the iOS developer API reference site[2]. However, the web pages are made by

HTML and CSS contents, so we need to extract the information we need then format and

store them in our database. Therefore, we develop a web crawler to process the data we

need.

Our crawler are basically designed in three parts as show in Figure 1, including the

services, parsers, and stores. The services are reusable, mostly they are used to handle

with file write out and initial http requests. The parsers are used to parse html content

and select the data we need, so basically a parser will map to one or more target web

pages. Stores can be regarded as the data model, we will define the model to shape our

data object and implement the serialize methods.

Therefore, we will dispatch http request to the target page in the iOS developer API

reference site[2], and fetch the data, parsing with our parsers, collect and format the data

into the object we defined in stores. It’s a pipeline working flow to send request, process,

format, collect and write out. Finally, when we got the output files (we use the json

format as output), we will further to write the json into our database.

Through this process flow, we can fetch the API data from the Apple o�cial site, and

generate the deprecated api list and method sequence patterns we need.

3.2 Definition of an application property

In this part we will define the meaning of a behavior property in our analysis, and explain

how we generate a behavior property by method sequence calls as our system input.

3.2.1 Behaviors in iOS applications

iOS executables usually have to apply many methods to complete some specific purpose

such as connecting to bluetooth, sending SMS messages...etc. Most of these behaviors

are implemented by the methods provided by o�cial iOS SDK. In other words, most of

8

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Figure 1: The web crawler structure of iOS developer reference guide.

applications can accomplish their purpose by using the SDK provided methods.

Fortunately, the framework naming rules are always related to the functionalities, for

example, MapKit framework will contain many classes and methods about usages of map

funcitons in iOS SDK. Thus, it is much more convenient for us to clearify the usages of

these classes and methods. Because the SDK defines many specific behaviors in o�cial

documents, we use these behaviors as targets of our application sequence analysis.

By developing our web crawler, we can easily fetch and sort out the frameworks, classes

and methods information from the iOS developer API reference[2] web site. Then we turn

these methods into many lists classified by their di↵erent behaviors, and take these list

as a standard to check the behaviors of our applications downloaded from App store.

3.2.2 iOS API reference best practice

When we build up an iOS application, we must use lots of methods in SDK (Software

Development Kit) provided by Apple Inc. In most scenario we can directly use these

methods with our business logic without authorized or permission required, however, in

some cases (user privacy or mobile device native function related) we have to ask for

permission when call the method. In Apple.Inc developer guide, it provide some example

9

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

codes in a proper or suggested way for calling these SDK methods, and it also suggest

that developers should follow the guideline to call these methods. According to above, in

this research, we adopt the guidelines as a review standard, and use it to check available

apps on app store are truly follow these guidelines or not.

3.2.3 Application property subsequence

We regard each method we may use in an application as a basic unit, and a series of

methods in a specific sequence will form an application behavior that we called a property

of an application, and a property always consists of developers’ self-defined methods and

o�cial iOS SDK methods. Because we can’t predict a developer how to name their

self-defined methods, we will focus on analyze the methods provided by the iOS SDK,

and skip the self-defined ones. Then, we can use some specific method sequence calls to

generate a behavior property as our checking pattern, and check if there is any application

property containing this pattern as its subsequence, thus representing the existence of a

property in an app. For example, there may be a sequence of methods formed like ”A-

B-C-A-D-F-A” in an app, and we may define a pattern like ”A-C-F-A”. The former is

our application property sequence extracted from source code of an application, and the

latter is a behavior pattern we want to check with. Apparently, the sequence ”A-C-F-A”

is one of the subsequences in ”A-B-C-A-D-F-A”, so we can find that the pattern appears

in this app, in other words, we can also say the application have this property.

3.2.4 Producing a property checking pattern

After defining the application property subsequence, we have to prepare method list that

available in iOS SDK for us to select and compose an application property checking

pattern. In order to do this, we extracted all the information we need from iOS Developer

Reference by web crawler mentioned before, and unified all the lists of frameworks, and

the subordinating classes and methods available in iOS SDK, and also, we format these

information and convert into a more serializable structure. Therefore, we can start to

10

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

generate our pattern in specific method call steps. For example, in objective-C, when we

want to get a user location permission, we have to use some methods provided by class

CLLocationManager in a proper way like the sample code in Listing 1

Listing 1: Get user location permission code snippet

- (void)requestAlwaysAuthorization

{

CLAuthorizationStatus status = [CLLocationManager authorizationStatus];

if (status == kCLAuthorizationStatusAuthorizedWhenInUse || status ==

kCLAuthorizationStatusDenied) {

NSString *title;

title = (status == kCLAuthorizationStatusDenied) ? @"

LocationServicesAreOff" : @"Background locationIsNoEnabled";

NSString *message = @"....";

UIAlertView *alertView = [[UIAlertView alloc] initWithTitle:title

message:message delegate:self cancelButtonTitle:@"Cancel"

otherButtonTitles:@"Settings", nil];

[alertView show];

} else if (status == kCLAuthorizationStatusNotDetermined) {

[self.locationManager requestAlwaysAuthorization];

}

}

From the codes in Listing 1, we can pick the method sequences as a checking pattern

like:

1. CLLocationManager:authorizationStatus

2. CLLocationManager:requestAlwaysAuthorization

Next, we can take any application with the pattern as system input to compare. As

the result, we can figure out an application with get user location permission behavior is

11

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

follow the pattern or not.

3.3 Behavior pattern syntax checking

We adopt Hadoop as our distributed computing framework in our system to execute the

checking jobs. However, we need to use IDA pro, a disassemble tool, to extract the

application, then we can get start to execute our comparing.

3.3.1 Automatically generated asm file, functions call dependency and sub-

routine function call dependency by IDA pro

IDApro provided a GUI (Graph User Interface) for users to execute disassemble jobs.

However, we need to execute a batch of disassemble jobs. To figure the problem, we use

a provided plugin idapython, helping us to use python script to manipulate the IDApro.

Therefore, by using idapython, we can continuously execute our disassemble jobs.

3.3.2 Annotation generated by IDA pro

By using IDA pro to disassemble our iOS executable, we can get an .asm file of apps.

In the same time, we can also dump the function calls graph Figure 3 in an app and

the all subroutine call graphs Figure 2 within an app. These graphs construct by the

GDL(Graph Description Language).

In the asm file, it will extract the class names and method names from the application,

and put the names after lines of application assemble file as annotations with a prefix

”selRef ” and ”classRef ”. With these information, we can conduct the sequential syntax

checking. In the subroutine dependency graph, we can trace the method call sequence

inside, and the functions call dependency graph display the dependency relation between

every subroutine. With these information, we can start to execute the syntax checking

and comparing.

12

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Figure 2: This picture show a graph of a subroutine within an application disassembled
by IDA pro.

Figure 3: This picture show a part of an application all functions (subroutines) calls
dependency graph disassembled by IDA pro within an app.

3.3.3 Application property existence checking

After we get the annotations of method name and class name generated by IDA pro,

we use them as key words to compare with the pattern we defined. First, we will check

the whole application subroutines with their class names, and there will be a preliminary

determination to check if the application has the behavior and decide that whether we

need to dive into dig out the methods in it. Second, once we found a class name match

with the class in the pattern, we will continuously check if the method names under this

subroutine block match the methods in pattern. If so, we will say the application has the

property. For example, we have the pattern like this:

1. CLLocationManager authorizationStatus

2. CLLocationManager requestAlwaysAuthorization

When the class ”classRef CLLocationManager” is found in one subroutine block and

matches the pattern class we gave, we will begin to check the subroutine methods and

13

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

match with our pattern. In this example, we will start to check the methods ”autho-

rizationStatus” and ”requestAlwaysAuthorization” is existed in the subroutine or not.

Therefore, we can identify the usage of some specific methods within apps, in this re-

search, we use this method to check the usage of iOS SDK deprecated APIs in apps.

3.3.4 Application property sequential checking with LCS in single subroutine

However, in most situations, a checking pattern is a sequential methods call, so we can’t

just find out the existence of method calls. We need to go further, checking the applica-

tions in sequence and compare the similarity with checking patterns.

Here we use LCS (Longest Common Subsequence) algorithm to execute the analysis,

and we can find the most resembling sequence in the subsequence with checking patterns.

For example, we may get a method call sequence from an application subroutine ”A-B-

D-A-E-F-C-C”, and a user input method subsequence may be like ”A-B-C-A-B-B”. By

using LCS, we can refer the result is ”A-B-A”, and the length of this result ”3” can also

be a index of similarity between checking pattern and a method call sequence.

Therefore, in our example, get user location permission in Listing 1, we may get a

subroutine methods sequence from a application like this:

1. classRef CLLocationManager

2. selRef authorizationStatus

3. classRef UIAlertView

4. selRef alloc

5. classRef UIAlertView

6. selRef initWithTitle:message:delegate:cancelButtonTitle:otherButtonTitles:

7. classRef CLLocationManager

8. selRef requestAlwaysAuthorization

14

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

9. classRef UIAlertView

10. selRef show

Assume we adopt the same checking pattern defined in last paragraph, then we can

execute the sequential checking. From this example, we can easily refer the result will be

[”authorizationStatus”,”requestWhenInUseAuthorization”] and the similarity length is 2,

and the result can represent that this application actually follow the checking pattern we

defined.

Hadoop - FileInputFormat and RecordReader

We adopt Hadoop as our distributed computing solution, and store our data in the HDFS.

Therefore, we have to implement our sequential algorithm under the Map-Reduce frame-

work. The first step to process our assembly file is to read the file into our memory.

In general condition, Hadoop provide a default FileInputFormat and RecordReader to

solve this problem by reading file content line by line and set the key value pair as file

o↵set and line content. However, in our condition, we have to make sure our line content

sequence within each subroutine in a file, so we can’t use default FileInputFormat and

RecordReader to read our files. Instead that, we have to overwrite default FileInputFor-

mat and RecordReader and build up our own implementation to make each subroutine

as input content value and set the key with the assembly file subroutine name.

Algorithm 1 ExtractSbrt(asm)
Require: asm: The ARM assembly file of iOS APP
Ensure:

1: r = false;

2: sbrt = ””;

3: while hasNextLine(asm) do

4: line = nextLine(asm);

5: if line 2 REGEX(” = +SUBROUTINE = +”) then

6: r = true;

7: end if

8: if r then

9: sbrt = concat(sbrt, line);

10: end if

11: if line 2 REGEX(”;Endoffunction. ⇤ ”) then

12: writeKV (nameOf(F), sbrt);

13: sbrt = ””;

14: r = false;

15: end if

16: end while

15

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

MapReduce - Map

In MapReduce framework, the mapper defined the job that will be distributed to execute.

In our mapper, we will receive the subroutine form the RecordReader we modified and

our behavior checking pattern. When we got these in map, we have to find that is there

any class in pattern match with the subroutine class name call, so we have to process our

subroutine by splitting the whole subroutine with empty space and maintain two list for

store class name system calls and methods call sequence. Then we compare the class list

with our pattern. if we got a match result, we will write out the method call sequence

with class and method name as output key, appear times we gather in the subroutine as

value.

Algorithm 2 Mapper(sbrt)
Require: sbrt: The subroutine from a assembly file of iOS APP, pattern[]: Checking pattern list
Ensure:

1: CLASS LIST = [];

2: METHOD LIST = [];

3: while hasNextLine(sbrt) do

4: line = nextLine(sbrt);

5: if line 2 REGEX(”classRef + ”) then

6: Add found to CLASS LIST ;

7: end if

8: if line 2 REGEX(”selfRef + ”) then

9: Add fonded to METHOD LIST ;

10: end if

11: end while

12: if interset(class 2 pattern, CLASS LIST) then

13: LCS(METHOD LIST,method 2 pattern)

14: writeKV (name 2 sbrt,metchedMethodResult)

15: end if

MapReduce - Reduce

In reducer, we will get the result key-value fair form mapper. We have to further separately

accumulate the appear times count for each key form di↵erent map output. When all the

reduce jobs done, the result will be written out into HDFS. In our reducer, we are simple

accumulate all the methods appear counts, then we will process the results, bundle all

the method names and counting records to match our iOS SDK method indexes, add the

related logs in database for statistics and data presenting.

16

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

3.3.5 Application property sequential checking in function call dependency

graph and subroutine method dependency graph

In each subroutine method dependency graph, we can construct a directed graph data

structure by using method call as the vertex and the call sequence represent in arrow

directions. By go through these possible paths in each application subroutine graph

with a limited path length, we can use the LCS method we mention before to check the

application property.

Although a subroutine may call a iOS SDK method (external function) directly, it

usually call the other subroutines and call iOS SDK method in that subroutine. If we

directly check the application property with LCS in each subroutine graph respectively, it

will lead many miss judge cause by ignoring the method call relations between subroutines.

In other words, by using originally strategy, we can only find a property that just included

in one subroutine. To improve this, we join the application function call dependency graph

information to reveal the relations between subroutines. Although the function call graph

only displays the sequential between subroutines, we improved original algorithm into a

two stages LCS checking way, and this new checking method can figure out the property

checking across many subroutines problem.

In first stage, we will compare each subroutine graph paths with our checking property

in each subroutine, and we will get temporary result in this stage. Consider the cycle

situation may happen in a graph, we will define a checking path length as limited. When

we get a match LCS result under first limited length, we will increase length limited then

checking again, until the result won’t get more long LCS result than previous one. In

here we will use the number of vertexes in a graph as limited length initially.

In second stage, we gather all results from first stage, we use these LCS results to

represent the subroutines. With subroutine relations information in function call graph,

we will use these LCS results to reconstruct this function call graph, then use LCS method

to check the new graph with our checking property. Therefore, we can get the correct

matching result, even the checking property across many subroutines.

17

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

To sum up the above-mentioned, we have to deal with three main things ”Reconstruct

Control Flow Graph”, ” Reconstruct function call graph” and ”Compare Graph with

pattern in LCS” to compose our analysis. To be more clear, we will go through our analysis

detail below using our algorithms, and here is a whole checking processing example show

in Figure 4. We use IDApro to generate the FCG(functoin call dependency graph), and

all the control flow graphs of all subroutines. These graphs contain many information,

included the method calls inside that we needed to use in the algorithm. However, these

graphs can’t not apply in our algorithm directly, we have to reformat and construct new

graphs for our needed. Here in algorithm3 and algorithm4 show how we extrated the

method calls and reformat the edges from the original graph and rebuild a new one by

using method calls as vertex.

Algorithm 3 ReconstructureCFG(Graw)
Require: Graw: The control flow graph(.graphml) of a subroutine within an iOS app.
Ensure:

1: G := {}; . Empty result graph
2: Mhead := {} . Empty map which map vertex in Graw to vertex in G
3: Mtail := {} . Empty map which map vertex in Graw to vertex in G
4: for vraw 2 vertices(Graw) do

5: M := getExternalMethodCallSeq(vraw)
6: for mi 2 M do

7: addV ertex(G,mi)
8: if i = 0 then

9: Mhead[vraw] = mi;
10: else if i = |M |� 1 then

11: Mtail[vraw] = mi;
12: end if

13: if i > 0 then

14: addEdge(G,mi�1� > mi);
15: end if

16: end for

17: end for

18: for eraw 2 edges(Graw) do

19: Nhead := findHeadNodes(inV ertex(eraw),Mhead,);
20: Ntail := findTailNodes(outV ertex(eraw),Mtail,);
21: for ntail 2 Ntail do

22: for nhead 2 Nhead do

23: addEdge(G,ntail� > nhead);
24: end for

25: end for

26: end for

27: return G;

This compare algorithm AllCSofGraphComparePattern(All common Subsequence com-

pare with pattern)7 will use in our analysis in two di↵erent stages, we will first apply

this algorithm to compare our reconstructured subroutine CFGs graph with our check-

ing pattern, and second we will apply this algorithm to compare our reconstructured

18

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Algorithm 4 ReconstructureFCG(Gfcg, sbrtAllCSs)
Require: G

fcg

: The function calls graph .graphml file of an iOS app D
sbrtAllCSs

: A dictionary of LCS results list between pattern and all
subroutines in app.

Ensure:

1: G := {}; . empty result graph

2: M
head

:= {}; . empty map which map vertex in G
raw

to vertex in G

3: M
tail

:= {}; . empty map which map vertex in G
raw

to vertex in G

4: for E
sbrt

2 D
sbrtAllCSs

do

5: sbrtT itle := key(E
sbrt

);

6: L
methodsSeq

:= value(E
sbrt

);

7: for L
methods

2 L
methodsSeq

do

8: L
path

= ;

9: for method 2 L
methods

do

10: add(L
path

,method)

11: addV ertex(G,method)

12: end for

13: for method
i

2 L
path

do

14: if i = 0 then

15: M
head

[v
raw

] = m
i

;

16: else if i = |M| � 1 then

17: M
tail

[v
raw

] = m
i

;

18: end if

19: if i > 0 then

20: addEdge(G,m
i�1� > m

i

);

21: end if

22: end for

23: end for

24: end for

25: for e
fcg

2 edges(G
fcg

) do

26: N
head

:= findHeadNodes(inV ertex(e
fcg

),M
head

,);

27: N
tail

:= findTailNodes(outV ertex(e
fcg

),M
tail

,);

28: for n
tail

2 N
tail

do

29: for n
head

2 N
head

do

30: addEdge(G,n
tail

� > n
head

);

31: end for

32: end for

33: end for

34: return G;

FCG(function call graph) with our checking pattern.

First in algorithm8, we pair up all sink nodes(no incoming edge) and terminal nodes(no

outgoing edge) in graph. Then, we take each pair as a path initial node and terminal node.

Then, find out all the possible directed paths for each pair within current path length

limit. Second we compute the AllCS(all common subsequence) between all the possible

paths from the graph and our pattern sequence, and the list of all common subsequence

will be the result we are checking for.

Algorithm 5 findHeadNodes(vraw, Mhead, Vvisited)
Require: v

raw

: The control flow graph(.graphml) of a subroutine within an iOS app. M
head

:
Ensure:

1: if v
raw

2 V
visited

then

2: return;

3: end if

4: add(V
visited

, v
raw

);

5: if v
raw

2 M
head

then

6: returnM
head

[v
raw

];

7: end if

8: result := ;

9: for v
in

2 inV ertices(v
raw

) do

10: result := result [findHeadNodes(v
in

,M
head

, V
visited

);

11: end for

12: return result;

19

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Algorithm 6 findTailNodes(vraw, Mtail, Vvisited)
Require: v

raw

: The control flow graph(.graphml) of a subroutine within an iOS app. M
tail

:
Ensure:

1: if v
raw

2 V
visited

then

2: return{};
3: end if

4: add(V
visited

, v
raw

);

5: if v
raw

2 M
tail

then

6: returnM
tail

[v
raw

];

7: end if

8: result := {};
9: for v

in

2 inV ertices(v
raw

) do

10: result := result [findHeadNodes(v
in

,M
tail

, V
visited

);

11: end for

12: return result;

In algorithm7 we will try to find all the avaliable paths in graph and compare them

with our checking pattern sequence. We will start with a initial number(number of graph

vertexes) as our path length limit, and increase the number and reapply in the comparison

until there has no more results show up.

Algorithm 7 AllCSofGraphComparePattern(G, Lpattern)
Require: G: A reconstructured subroutine CFGs graph or a reconstructured function call graph. L

pattern

: A checking methods list compose
a specific behavior or property.

Ensure:

1: limit := numOfV ertex(G);

2: preResultSize = 0; . The result size for previous match result

3: result := {};
4: while true do

5: L
path

:= getAllDistinctPaths(limit, G);

6: for P 2 L
path

do . P is collection of method sequence list

7: L
allCS

:= findAllCS(L
pattern

, P);

8: result := result [L
allCS

;

9: end for

10: if preResultSize = size(result) then

11: break;

12: else if

13: thenpreResultSize := size(result);

14: limit := limit + 1;

15: end if

16: end while

17: return result;

3.4 Checking deprecated APIs

To preserve simplicity and usability in the long term, sometimes it is necessary to make

changes to the API that will require changes to the applications using the guest application

APIs. When this happens, the Apple Inc. will notify developers by publishing breaking

changes in their release notes[3], and they will minimize disruptions by supporting the

deprecated functionality for one major release.

Therefore, during the iOS SDK version updating, Apple Inc. will mark some methods

as deprecated and these methods will be eventually suspended in the future. Although

20

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Figure 4: Two stages All common subsequence checking processing.

21

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Algorithm 8 getAllDistinctPaths(limit, G)
Require: G: A reconstructured subroutine CFGs graph or a reconstructured function call graph. limit: The limit path length of getting all

distinct paths within graph
Ensure:

1: S
sinkNodes

:= {};
2: S

terminalNodes

:= {};
3: for v 2 getAllV ertices(G) do

4: if incomingEdgesOf(v) = 0 then

5: add(v, S
sinkNodes

);

6: end if

7: if outgoingEdgesOf(v) = 0 then

8: add(v, S
terminalNodes

);

9: end if

10:
11: end for

12: if size(S
sinkNodes

) = 0 then

13: add(getAllV ertices(G)[0], S
sinkNodes

);

14: end if

15: if size(S
sinkNodes

) = 0 then

16: add(getAllV ertices(G)[1], S
terminalNodes

);

17: end if

18: result := {};
19: for n

sink

2 S
sinkNodes

do

20: for n
terminal

2 S
terminalNodes

do

21: L
allPath

= getAllPaths(n
sink

, n
terminal

, limit);

22: result := result [L
allPath

;

23: end for

24: end for

25: return result;

the deprecated methods still supported by SDK now, Apple Inc. suggests developers

should not use these deprecated methods for developing products and use the alternative

solutions. When a method was marked as deprecated, it usually means that there was a

replacement for a better solution, and the deprecated method should avoid to use.

Mostly the new methods will provide a better performance in the new operating system

or some language features. We have collected all deprecated methods in our system and

we will use the deprecated method list to check the deprecated API usages in the apps we

download from AppStore. Besides, because the o�cial document in iOS developer API

reference[2] doesn’t maintain a fully list for all the deprecated APIs, they only keep the

change logs in each version release notes[3], we also maintain a list for all the deprecated

APIs in iOS SDK.

When developers use iOS SDK to develop their programs, it is very important to

follow the release notes and update their programs. Because the lack of updating may

lead to programs will not support to client device, even crush the application executing.

All of these issues, may cause the low user experience of the application, and even some

security issue will happen.

To check these deprecated api usage in applications, we first generate the deprecated

22

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

api method list in iOS SDK by our web crawler. Then, by using the application property

existence checking, we can find out the usage of deprecated APIs within application.

3.5 Checking golden rules

In the iOS developer API reference[2], the Apple Inc. has provided some suggestions,

example code or demonstrations for some scenario. For example, in iOS the biometric

functions are mostly related to the Touch ID functionalities, when a developer wants to

implement some biometric function in their applications, they have to implement some

specific methods to get the authorization. We also collected these samples and suggestions,

then translate them to a sequential method calls as a behavior property for checking. To

check these golden rules, we have to use the sequential checking with LCS, and we will

use these golden rules as our checking patterns. Then execute our sequential checking to

compare these patterns with every application.

Recommend uses case

For the detail show as below:

1. Core Location: The framework let developers determine the current location or

heading associated with a device, it also can define geographic regions and monitor

when the user crosses the boundaries of those regions. When we start to access user’s

device location, we have to ask for user authorization through CLLocationManager

class, the method calls show below:

(a) CLLocationManager alloc

(b) CLLocationManager init

(c) CLLocationManager requestWhenInUseAuthorization

2. JavaScriptCore: The framework help developer evaluate JavaScript programs within

apps, and support executing javascript in applications. When we need to evaluate

a javascript programs, we have to perform these method calls in JSContext class:

23

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

(a) JSContext init

(b) JSContext evaluateScript

3. WebKit: The webkit framework implemented the browser features, and provide

developer to display web content in windows, and the WKWebView object displays

interactive web content, let developer can use the WKWebView class to embed web

content in app. To do so, we have to create a WKWebView object, set it as the

view and send it a request to load web content, the following show method calls:

(a) WKWebView alloc

(b) WKWebView init

(c) WKWebView load

4. LocalAuthentication: The framework provide developer for requesting authentica-

tion from users through passphrases or biometrics. To do so, by using LAContext

class.

(a) LAContext alloc

(b) LAContext init

(c) LAContext canEvaluatePolicy

(d) WKWebView evaluatePolicy

4 AppScan System

4.1 System Structure

To build up our experiment, a automatic system is necessary, therefore, we develop this

system for application sequence call analysis (abbrv. on AppScan), as shown in figure

5. We make each step in our system are more flexible and extendable, and AppScan are

designed like a production line, it can auto fetch new data, process our experiment tasks,

collect the results and store then present. The whole system can be divided into three

24

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Figure 5: This structure show the whole system data flow and used tools and tech.

Figure 6: This flow show the whole system logic flow and processing sequence.

layers to interpret, data access layer, business logic layer and presentation. These arrows

represent the data flow between di↵erent task in this system, and in the figure6 represent

the system logic and processing flow. We first download apps form Apple App Store. The

binary data are sent into IDA pro for converting into assembly files, and the metadata of

an app will be store in our database. Then, in one side we will use a web crawler to fetch

our method list in iOS Developer API Reference site. The list and the input property

pattern subsequence will be conduct the syntax check with hadoop map-reduce structure.

By running syntax sequence matching with the list, we can infer that an app has the

property or not. All these results will be stored in our database. Then we will construct a

API service for accessing these results, and preform these results in web application form

with front-end library react, flux, and visualization library d3js.

25

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

4.2 Research and system process

4.2.1 Data collection and processing

Sandbox of iOS and binaries on App Store

When an iOS app finished, the developers have to compile and submit it to App Store for

publishing. We can easily download these binaries with our iDevice or iTunes application

in our computer then synchronize the binaries with our iDevice. However, Apple. Inc.

set a sandbox policy of iOS. It means that, one application is restricted in an container,

and granted limited resources under its own directory, and many important features of

an operation system are forbidden in iOS. For building an stable and robust system

environment to users is a good policy, but it also restricted users’ right to access this

system file in common way. In order to make our experiment workable, we have to get

the highest permission of iOS system, generally speaking we call this jailbreak.

Auto download apps from App Store

At beginning of this system, the apps’ binaries must be well prepared. So, we develop

a auto download process by using Selenium[28], a browser driver, and Sikuli[9], a GUI

control library using image recognition to identify any component on screen. With Sele-

nium, we can drive the web browse to the application download link page on Apple app

store, and automation click download button to redirect and active the iTunes on our

iMac. Then, jump out the browser environment, we will use Sikuli to control our iTunes

application on macOS and download the app and synchronize into our connected iPhone.

Decrypt and extract application from iPhone

When we have binaries in iPhone, we have to dump them into our computer for decrypt

and analysis. Because the binaries of apps represent in digital(0 or 1), that is hard to

comprehend for people. We have to resolve these binaries into assembly files further.

Here is a quick overview for whole process of application binaries, and I will go through

the details below. Because all available apps on App Store are singed and encrypted by

26

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Apple Inc., until these binaries execute on iDevice. When we got these binaries, we have

to decrypt first then we could analysis them. In this step, we have jail broken our iPhone

to have the highest permission. The current active jail break tool can help us to get this

permission under the version 9.0.2 of iOS operation system. After we got an jail broken

device, we got su�cient right to access the device’ file system and use sftp (SSH File

Transfer Protocol) with scp command to dump these apps to our computer. To achieve

the goal, we have find the entry point within this binary then execute it under debugger

and dump the decrypted part and patch the origin encrypted binary. After doing these

steps, we will get an decrypted binary. Next, we use disassembler tool IDA pro[29], to

help us convert these binaries to assembly files. Once we got these assembly files, we can

start our analysis on the context later.

Decrypting Apps

Installed mobile application on iOS device is accompanied with its executable, databases,

media data files, and they would be placed within a specific file directory (so-called sand-

box). At normal situation, users can’t get permission to access these file directories. To

extract the binary file of applications for our research, we break the sandboxes and act

as root administrators with the highest privileges. Then, we could access application file

directory to retrieve data. Nowadays, there are lots of jailbreak tool for di↵erent iOS

versions on the Internet. We use the jailbreaking tool for an iOS device is PanGu9, which

can jailbreak iOS version from 9.0 to 9.0.2 [4]. After finishing the jailbreak process, we

could find an icon of Cydia, a third party iOS application repository, on the iDevices desk-

top. We download OpenSSH and MobileTerminal packages, which enable us to connect

to the iDevice as root administrator by using ssh tunnels from Cydia. All of the installed

applications from AppStore in iDevice are stored under a director, /var/mobile/Contain-

ers/Bundle/Application, where we use ssh command to access them after the jailbroken.

The apps downloaded from Apple App store are partially encrypted to prevent o�cial

apps from third-party disassembling and reverse engineering. To overcome these obstacles,

27

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

we leverage the property of debugging technique, i.e. and dumping decrypted machine

instructions during the runtime, since it’s always decrypted before execution, and swap-

ping the encrypted part with the decrypted one and the decrypted version is obtained.

We use third-party library o↵ered by Stefan Esser and adjust library to apply to iOS 9

[5]. With the library, we could dump out decrypted files from encrypted applications. We

write a python script with his library so Mach-O application files on an iDevice could be

decrypted and transfer files to an external storage.

Disassembling App

After retrieving application files, we disassemble applications to generate assembly lan-

guage source code and related information from machine-executable code in this section.

We could do static binary analyzing on assembly code in following sections. In this

procedure, we rely on Interactive Disassembler, aka IDA, a powerful multi-processor dis-

assembler, and debugger to extract related information from compiled executable. IDA

has two di↵erent versions, the starter and the pro. The former only supports process

32-bits executable, while the latter is capable of processing 32bits and 64-bits executable.

We also install IDAPython, an extension plugin for IDA, allowing python script to run

in IDA environment. We use IDA pro version and write a python script to unveil all the

hidden process, and then generated an ASM file, which is written in assembly language,

control flow graph of all subroutines, and function call dependency graph.

4.2.2 Application methods property list and iOS API reference web crawler

In our system, we want to check whether given property appear in an application or not,

so we have to prepare a list of all possible methods in iOS SDK to compose that property.

Because most of developers develop iOS application with objective-C language, and there

are also many SDKs (Software Development Kit) for objective-C provided by no matter

o�cially Apple Inc. To get all these methods data, we directly develop a web crawler for

the iOS API Reference site hosted by Apple Inc. After fetching all the information we

28

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

need, we can generate the whole framework class and method list. Therefore, we can index

these methods, classed and frameworks for easier processing and storing in our database.

At the same time, we can also generate property pattern from these methods we fetched

for specific application behavior. For example, we may interest in an application asking

for the authority of private data access function. Then we can use the these methods

to generate the property. As we mentioned early, we use these methods to generate the

deprecated API list, and the golden rule properties.

4.2.3 Property syntax sequence processing

Now, we have well-prepared all the data we need to process. We can use hadoop to

execute the analysis for existence checking and single subroutine sequential checking,

and use CFGs, FCG with two stage AllCS method for acrossing subroutines sequential

checking. First, we will compile many jar files for di↵erent purpose and analysis as we

mentioned before. Substantially, for one purpose of analysis will have a corresponding

jar. For example, we have a jar for checking deprecated API, and a jar for check LCS

sequence with Location property ..., etc. Therefore, we can chain all our analysis processes

together, and log each step in our database. Basically, for every task in our system, it will

need a target application, a analysis property pattern, and a correspond jar file as inputs.

By di↵erent analysis task and purpose, we will maintain di↵erent job queue to monitor

all the process. Here, we will initial a executor to dispatch new task in to our jobs queue,

and monitor our pending jobs and completed jobs in database, and change the analysis

status for each job target.

4.2.4 Web service

Back-end API Service - Restful architecture

To automate the system process when we have any new data input, we make our system

can record the whole experiment work flow and record the status. Building it up with Java

Spring framework with postgresSQL and HDFS. However, directly manipulate these file

29

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

in HDFS or data in database is very tedious and error prone. So we mapping the database

schema into program objects, by manipulate these objects, we can relatively easy to use

these data. Next, we wrapped our results into data endpoints and export APIs in RESTful

style to make them more clearly, comprehensive, and easy to communicate with front-end

application.

ORM, ODM and HDFS

Our database are designed for many sequential jobs for di↵erent input data, and we adopt

di↵erent features in di↵erent database types, and further make a hybrid database sys-

tem with relational database, and HDFS(Hadoop File System). We use RDB(Relational

Database) with ORM mapping tool to record our jobs status and work-flow, and store

results as JSON blob type. The others raw data such .asm files or image files ... , we will

keep these blob data in HDFS and record the URI in our RDB, that will help us easy to

find and access these data.

Front-end presentation and data visualization

Because most of our experiment results are not easy to realize in short time. Making

our result more easy to read, we use many charts and tables with visualization tool to

present our result. On the other side, to solve the presentation of complicate data form

di↵erent experiment results, we use ReactJS library with data flow architecture redux to

make whole web application more maintainable.

ReactJS, Redux

ReactJS is an open source project for building web application provided by Facebook.Inc .

In our implementation, we use this library to present our whole system. ReactJS provide

many convenient feature to make front-end application more flexible, for example, we

make each type of our experiment result into a basic present unit and wrap it into an

component in React, by reusing and assembling these components we can quickly finish

30

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

our web page. In the same time, we adopt Redux, an application architecture, to make

our front-end web application more organized and maintainable. Redux provide an single

way data flow with a state control center idea, that is, we will maintain all data in a data

store with many di↵erent defined states, and by dispatching di↵erent actions to change

data state. When data state changed, it will trigger the render component to update

the view if necessary. By this way, we will make our data in a single way data flow

cycle that can make data more easy to handle its state and trace logic bugs. Besides,

to make our experiment results more comprehensive, we use many visualization tool for

data presentation and make them more readable and meaningful.

5 Experiment Analysis

5.1 Intro

In this research, we have downloaded around 13000 apps and successfully disassembled

around 2200 apps shown in Figure8 available on AppStore, and still downloading currently.

The following statistic results and founds are based on these apps that we successfully

processed. We major analysis is on the deprecated usage analysis and golden rules pattern

checking, and the data will be present and downloadable on the website AppScan shown

in Figure 7 we hosted.

5.2 Usage of Deprecated APIs Result

We use our system to analysis the apps that were successfully disassembled in total, and

we successfully analysis 1505 apps shown in Figure 9. In our results, we found that there

are 1366 apps have used the deprecated APIs and available for downloading on AppStore.

Further, our analysis results show most of usage of deprecated APIs are distributed

in the UIKit, and the Foundation framework, as shown in the Figure 10. The UIKit and

Foundation frameworks are very important frameworks in iOS SDK. The UIKit are the

abbreviation of User Interface Kit, so the methods under this framework provided are

31

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y
Figure 7: Landing page of website AppScan.

Figure 8: Apps we downloaded and disassembled from AppStroe.

32

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

related to user interface. It provided to construct and manage an app’s user interface

for iOS. Respond to user interactions and system events, access various device features,

enable accessibility, and work with animations, text, and images. The Foundation is the

base layer of Objective-C classes. In o�cial documentations, says that this framework is

designed with several goals :

1. Provide a small set of basic utility classes.

2. Make software development easier by introducing consistent conventions for things

such as deallocation.

3. Support Unicode strings, object persistence, and object distribution.

4. Provide a level of OS independence, to enhance portability.

Because the methods provided by these two frameworks are very generally and funda-

mentally, we need to go further to find what are the purpose of deprecated methods are

using in applications. Then we dig into the classes and that used in theses frameworks

as shown in Figure11 and Figure13, besides, we also sort the all the deprecated methods

calls in applications, and list the top ten in Figure12. From these distribution charts,

we can easily found that the most of uses methods in UIKit are related to the classes of

UIAlertView and UIApplication, and we pick some of applications from it, and show the

more detail usage in Figure 1415, and 16 for comparing.

The UIAlertView is using to display an alert message to the users, and all this class

and the related protocol (such as the UIAlertViewDelegate) were deprecated in iOS 8. To

create and manage alerts in iOS 8 and later, instead use UIAlertController with a pre-

ferredStyle of alert. The UIApplicatoin class is not a deprecated class like UIAlertView.

It is design to provides a centralized point of control and coordination for apps running

in iOS. Almost every app has one instance of UIApplicatoin. When an app is launched,

the system will call the UIApplicationMain function and create a singleton UIApplica-

tion object and provide mothods for developer can access the object by the class method

33

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Figure 9: The job progressing of deprecated API usage checking.

”sharedApplication”. However, it also has several outdate methods were marked as dep-

recated. From the Figure12, the ”openURL:” and ”setStatusBarHidden:withAnimation:”

are the most uses in this class.

The ”openURL:” is use on open the resource at the specified URL, after deprecated,

using the ”openURL:options:completionHandler:” method instead, and the ”setStatus-

BarHidden:withAnimation:” can hides or show the status bar, optionally animating the

transition, after deprecated in iOS 9, and it can use a property to control the status bar

”prefersStatusBarHidden”, YES if the status bar should be hidden or NO if it should be

shown. Although, these user interface related problems can be customized and bypass the

problem, for example, we may create a custom view to replace the alert view provided by

iOS SDK. However, from this result, most of applications still have the UIAlertView in

their application, when it wants to display an alert message to the users, and the situation

will face the problem when Apple stop support and remove the method form the iOS SDK

in the future.

5.3 Syntax pattern check Result

We have four patterns defined in golden rules including ”evalJS”, ”getUserLocation”,

”getUserLAPermission” and ”loadByWKWebKit”, and we check 1322 applicatinos that

were disassembled successfully, as shown in Figure 17.

In the results of single subroutine checking, we can find out the applications that adopt

the golden rules by checking the matching result counts, and we also collect the top 4

34

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y
Figure 10: Deprecated APIs distrubution of iOS SDK frameworks.

Figure 11: Deprecated APIs distribution of iOS SDK classes.

35

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y

Figure 12: Top 10 usage deprecated APIs of iOS SDK methods.

Figure 13: Deprecated APIs distrubution of iOS SDK methods.

36

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i Univ

ers
i t

y
Figure 14: The distribution of deprecated APIs of Gmail.

Figure 15: The distribution of deprecated APIs of Youtube.

37

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y
Figure 16: The distribution of deprecated APIs of GoogleDrive.

similar application in our results. For example, the result of top 4 in evalJS pattern check

shown in Figure 18, and for the detail, we will show the checking result by LCS count,

and the pattern methods matched in the application like Figure 19. Therefore, we can

judge an application is following the pattern to executing or not.

However, the sequential checking with each single subroutine and may cause many

missing. By using acrossing subroutines checking with two stage two stage all common

sequence (AllCS). We have a rapid progress and judge application behavior more accu-

rately. The results of compare two checking methods as show in the following figures 21

2224 ?? 20

In the research, we create an automatic system, AppScan. By tracing these graph, we

can trace whole application function calls across di↵erent subroutines, and adopt the two

stage all common sequence (AllCS) as our algorithm for checking application behavior.

AppScan can analysis method sequence pattern in within an application. Therefore,

we can define any pattern we want to check with applications. It greatly improves the

38

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

Figure 17: The job progressing of pattern checking.

sequence analysis method we used before. Curreltly we have checked the defined pattern

”getUserLocation”, and we have checked 1322 applicatinos that were checked successfully,

as show in ??. The second and third column is application name and pattern name. The

checking result is represented in a JSON array form with method names in the last column.

This result can reveal that is an application use the right method to access user location

authorization, and is the method is used in a proper way as Apple’s suggestion.

For currently result, we can find out an application that adopt some feature functions

but not follow the pattern or o�cial guideline. When these situations occur, it means

that the application should be improve or checking the risk of the unexpected method

call sequence.

5.4 Conclusion and evaluation

In the research, we create an automatic system, AppScan. Developing three di↵erent

checking methods for checking methods existence, single subroutine sequential checking

with LCS, and across subroutines sequential checking with two stage AllCS. By using these

methods we can checking application behavior by using our defined checking patterns.

When checking methods existence within an app, we using each single subroutine as

our input unit. By filtering and compare the class name with the checking pattern, we

39

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

yFigure 18: The top 4 of evalJS checking result.

Figure 19: The evalJS LCS count result of an application.

40

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

Figure 20: All patterns compare results between single subroutine and across subroutines
checking methods.

Figure 21: Javascript core pattern compare results between single subroutine and across
subroutines checking methods.

41

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

Figure 22: LAPermit pattern compare results between single subroutine and across
subroutines checking methods.

Figure 23: Get user location pattern compare results between single subroutine and
across subroutines checking methods.

42

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

Figure 24: Load by Webkit pattern compare results between single subroutine and across
subroutines checking methods.

can finially figure out all the checking method usage distribution infomation.

In sequential checking scenario, we adopt the distributed longest common sequence

(LCS) as our algorithm at first. Using each single subroutine as our input unit. Because of

the reasons, AppScan can analysis multiple method sequences pattern in each subroutine

within an application. Therefore, we can define any pattern we want to check with

applications. Next, we use two stage AllCS methods to improve the results, and we can

check the pattern across multiple subroutines. It greatly improves the sequence analysis

method we used before.

However, these solutions still has some limitations, for example, the system have to

update at all times with Apple iOS SDK, and I hope that these limitations will be figure

out in next progress.

43

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

References

[1] Apache hadoop. http://hadoop.apache.org/.

[2] ios developer api reference. https://developer.apple.com/reference/.

[3] ios release notes. https://developer.apple.com/library/content/

releasenotes/General/WhatsNewIniOS/.

[4] Pangu ios 9. Available online at urlhttp://www.pangu.io.

[5] stefanesser umpdecrypted. Available online at url-

https://github.com/stefanesser/dumpdecrypted.

[6] ios developer program license agreement.

https://developer.apple.com/programs/terms/ios/standard/

ios program standard agreement 20140909.pdf, jan 2016.

[7] Yuvraj Agarwal and Malcolm Hall. Protectmyprivacy: detecting and mitigating

privacy leaks on ios devices using crowdsourcing. In Proceeding of the 11th annual

international conference on Mobile systems, applications, and services, pages 97–110.

ACM, 2013.

[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:

Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for an-

droid apps. Acm Sigplan Notices, 49(6):259–269, 2014.

[9] User Interface Design Group at MIT. Sikuli. http://www.sikuli.org/.

[10] Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. Do developers

deprecate apis with replacement messages? a large-scale analysis on java systems. In

Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd Inter-

national Conference on, volume 1, pages 360–369. IEEE, 2016.

44

http://hadoop.apache.org/
https://developer.apple.com/reference/
https://developer.apple.com/library/content/releasenotes/General/WhatsNewIniOS/
https://developer.apple.com/library/content/releasenotes/General/WhatsNewIniOS/
http://www.sikuli.org/

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

[11] Je↵rey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large

clusters. Commun. ACM, 51(1):107–113, January 2008.

[12] Je↵rey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large

clusters. Communications of the ACM, 51(1):107–113, 2008.

[13] Zhui Deng, Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. iris: Vetting

private API abuse in ios applications. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, Denver, CO, USA, October

12-6, 2015, pages 44–56, 2015.

[14] Adam Shook Donald Miner. MapReduce Design Patterns. O’Reilly Media, May 2012.

[15] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. Pios: De-

tecting privacy leaks in ios applications. In NDSS, 2011.

[16] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun,

Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid:

an information-flow tracking system for realtime privacy monitoring on smartphones.

ACM Transactions on Computer Systems (TOCS), 32(2):5, 2014.

[17] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David Wag-

ner. A survey of mobile malware in the wild. In Proceedings of the 1st ACM workshop

on Security and privacy in smartphones and mobile devices, pages 3–14. ACM, 2011.

[18] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy: Semantics-based

detection of android malware through static analysis. In Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software Engineering,

pages 576–587. ACM, 2014.

[19] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. Checking app

behavior against app descriptions. In Proceedings of the 36th International Confer-

ence on Software Engineering, pages 1025–1035. ACM, 2014.

45

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

[20] Jin Han, Qiang Yan, Debin Gao, Jianying Zhou, and Huijie Robert DENG. Android

or ios for better privacy protection? 2014.

[21] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. Asdroid:

Detecting stealthy behaviors in android applications by user interface and program

behavior contradiction. In Proceedings of the 36th International Conference on Soft-

ware Engineering, pages 1036–1046. ACM, 2014.

[22] Apple Inc. Apple worldwide developers conference 2015. https://developer.

apple.com/videos/wwdc2015/, 2015.

[23] Mariantonietta La Polla, Fabio Martinelli, and Daniele Sgandurra. A survey on

security for mobile devices. IEEE communications surveys & tutorials, 15(1):446–

471, 2013.

[24] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,

Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-

Daniel. Iccta: Detecting inter-component privacy leaks in android apps. In Proceed-

ings of the 37th International Conference on Software Engineering-Volume 1, pages

280–291. IEEE Press, 2015.

[25] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. Droidra: Taming

reflection to support whole-program analysis of android apps. In Proceedings of the

25th International Symposium on Software Testing and Analysis, pages 318–329.

ACM, 2016.

[26] Benjamin Livshits and Jaeyeon Jung. Automatic mediation of privacy-sensitive re-

source access in smartphone applications. In Proceedings of the 22th USENIX Secu-

rity Symposium, Washington, DC, USA, August 14-16, 2013, pages 113–130.

[27] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An empirical study of api

stability and adoption in the android ecosystem. In Software Maintenance (ICSM),

2013 29th IEEE International Conference on, pages 70–79. IEEE, 2013.

46

https://developer.apple.com/videos/wwdc2015/
https://developer.apple.com/videos/wwdc2015/

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

[28] Shinya Kasatani Patrick Lightbody Julian Harty Jennifer Bevan Haw-Bin Chai

Philippe Hanrigou, Jason Huggins et al. selenium. http://www.seleniumhq.

org/, 2008. [Online; accessed 19-July-2008].

[29] Hex-Rays SA. Ida pro. https://www.hex-rays.com/products/ida/

index.shtml.

[30] N. Seriot. ios-runtime-headers. url = https://github.com/nst/iOS-Runtime-Headers.

(Visited on 10/31/2015).

[31] Paulo de Barros SILVA FILHO. Static analysis of implicit control flow: resolving

java reflection and android intents. 2016.

[32] Tielei Wang, Kangjie Lu, Long Lu, Simon Chung, and Wenke Lee. Jekyll on ios:

When benign apps become evil. In Presented as part of the 22nd USENIX Secu-

rity Symposium (USENIX Security 13), pages 559–572, Washington, D.C., 2013.

USENIX.

[33] Tim Werthmann, Ralf Hund, Lucas Davi, Ahmad-Reza Sadeghi, and Thorsten Holz.

Psios: bring your own privacy & security to ios devices. In Proceedings of the 8th

ACM SIGSAC symposium on Information, computer and communications security,

pages 13–24. ACM, 2013.

[34] Tom White. Hadoop: The Definitive Guide, 3rd Edition. O’Reilly Media / Yahoo

Press, May 2012.

[35] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X Sean Wang.

Appintent: Analyzing sensitive data transmission in android for privacy leakage de-

tection. In Proceedings of the 2013 ACM SIGSAC conference on Computer & com-

munications security, pages 1043–1054. ACM, 2013.

[36] Fang Yu, Yuan-Chieh Lee, Steven Tai, and Wei-Shao Tang. Appbeach: Characteriz-

ing app behaviors via static binary analysis. In Proceedings of the 2013 IEEE Second

International Conference on Mobile Services, page 86. IEEE Computer Society, 2013.

47

http://www.seleniumhq.org/
http://www.seleniumhq.org/
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml

‧
國

立
政 治

大

學
‧

N
a

t io
na l Chengch i U

niv

ers
i t

y

[37] Jing Zhou and Robert J Walker. Api deprecation: a retrospective analysis and

detection method for code examples on the web. In Proceedings of the 2016 24th

ACM SIGSOFT International Symposium on Foundations of Software Engineering,

pages 266–277. ACM, 2016.

[38] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get o↵ of my mar-

ket: detecting malicious apps in o�cial and alternative android markets. In NDSS,

volume 25, pages 50–52, 2012.

48

	Abstract
	Introduction
	Strategy of sandbox policy and iOS program standard agreement
	Public, private frameworks and private APIs on iOS
	Deprecated APIs
	Hadoop
	MapReduce

	Literature review
	Application properties and checking
	iOS developer api reference web crawler
	Definition of an application property
	Behaviors in iOS applications
	iOS API reference best practice
	Application property subsequence
	Producing a property checking pattern

	Behavior pattern syntax checking
	Automatically generated asm file, functions call dependency and subroutine function call dependency by IDA pro
	Annotation generated by IDA pro
	Application property existence checking
	Application property sequential checking with LCS in single subroutine
	Application property sequential checking in function call dependency graph and subroutine method dependency graph

	Checking deprecated APIs
	Checking golden rules

	AppScan System
	System Structure
	Research and system process
	Data collection and processing
	Application methods property list and iOS API reference web crawler
	Property syntax sequence processing
	Web service

	Experiment Analysis
	Intro
	Usage of Deprecated APIs Result
	Syntax pattern check Result
	Conclusion and evaluation

