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Abstract

Millions of mobile apps have been published in Apple’s AppStore with more than

15 billion downloads by iOS devices. In order to protect iOS users from malicious

apps, Apple has strict policies which are used to eliminate apps before they can

be published in the AppStore. In this paper we present a string analysis technique

for iOS executables for statically checking policies that are related to dynamically

loaded classes. In order to check that an app conforms to such a policy, it is necessary

to determine the possible string values for the class name parameters of the functions

that dynamically load classes. The first step of our approach is to construct the

assembly for iOS executables using existing tools. We then extract flow information

from the assembly code and construct control flow graphs (CFGs) of functions.

We identify functions that dynamically load classes, and, for each parameter that

corresponds to a dynamically loaded class, we construct a dependency graph that

shows the set of values that flow to that parameter. Finally, we conduct string

analysis on these dependency graphs to determine all potential string values that

these parameters can take, which identifies the set of dynamically loaded classes.

Taking the intersection of these values with patterns that characterize Apple’s app

policies (such as private/sensitive APIs), we are able to detect potential policy

violations. We analyzed more than 1300 popular apps from Apple’s AppStore and

checked them against Apple’s policy about the use of private APIs and the identifier

for Advertising (IDFA). Our tool extracted more than 37000 string dependency

graphs from these applications and our analysis reported 208 apps that compose the

corresponding API with strings and have potential IDFA violations. Our analysis

also found 372 apps that could have compose the private class name with string and

236 apps that could have load the private framework with path string; and could

violate the private API usage policy.
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1 Introduction

Mobile applications on iOS and Android platforms have been increasing remarkably in the

past decade and have become the dominant software applications in history. According

to the latest investigations statistics [1], android users are able to choose over 1.6 million

apps on Google play, the official android applications market and iOS users can select over

1.5 million apps on Apple’s App Store. In the last year annual Apple conference, WWDC

2015, Tim Cook announced that the App Store has crossed 100 billion app downloads.

Due to the explosive growth of smart mobile devices and applications, the number of

malicious software on mobile platforms has kept increasing in recent years. The mobile

software analysis report from Germany [2] showed that from January 2015 to September

2015, the number of the found mobile malware has crossed the number of malware in the

whole 2014 year. The report from McAfee [3] also indicated a rapid growth rate in mobile

malware.

One common malware behavior is to access users’ private information improperly

such as address book, calendar, and photos. Since these behaviors are legal and necessary

under certain conditions, it is needed flow analysis to determine whether these sensitive

data are properly used by applications. One famous malicious iOS application is named

PATH [4, 5] that records users’ locations and paths and uploads their address books to a

third party remote server without authorization from users. Another example is the app

called YourName that is used to edit photos with fancy transformations. It was caught

uploading all the photos in the library upon installation. Note that both PATH and

YourName were public available from Apple app store and were quite popular and widely

recommended by many users before their malicious behaviors were revealed.

There are also other sensitive behaviors that may raise users concerns. Mobile applica-

tions with the third party SDKs can access user data from their official web services, e.g.,

Facebook offers iOS SDK to developers to design access functionalities around Facebook.

Using such SDK implies the access of user’s Facebook account and information. Hence,

it is needed to trace the usage flow of the third party SDK of mobile applications. On the

1
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other hand, mobile ads play an important role in creating revenue for developers. In 2013,

mobile revenue had reached over 17 billions [6], and analysts reported that revenue from

mobile advertisements would have surpassed television advertising in 2017 [7]. However,

those ads may also cause negative effects to users [8]. While Apple has a strict policy on

the advertisement framework usage, there are example apps [9] that can bypass the App

review checking. If an app contains no advertisement but accessing IDFA, the app should

be rejected by Apple before publishing to the public. Last but not the least, private

APIs are designed for internal usage of Apple developers, e.g., directly access sensitive

data without authentications. These APIs are strictly forbidden to be used by external

developers. Recent researches have shown that there were apps using private APIs but

published in Apple app store [9].

The above behaviors may not show out in app descriptions or user interface. They

could be triggered under certain conditions and could not be observed by users. In order

to protect iOS users from malicious apps, Apple has strict policies which are used to

eliminate apps before they can be published in the Apple app store. Many of them shall

be prevented by the enforcement of the security development policy in the reviewing

process of Apple. App review is the censoring process to all submitted apps that Apple

conducts to determine whether they are reliable, perform as expected, and are free of

offensive materials. Still, there are quite a few examples showing that malicious apps

may bypass the check and are able to be published to public users. For these cases,

users who rely on Apple blackbox check would be unaware of malicious behaviors until

(serious) damages are observed. One main reason that app developers may bypass apple

review process is using the dynamic loaded classes. In iOS programming, Objective-

C allows programmers to load the class at runtime instead of static compilation. This

pattern provides performance benefits such as delay loading the code until it is needed

and increase the code modularity.

Listing 1: Load a Class Dynamically

1 NSBundle ∗b = [ NSBundle bundleWithPath :@”/System/ Library /Frameworks/

AdSupport . framework” ] ;

2
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2 [ b load ] ;

3 Class c = NSClassFromString (@” ASIdent i f i erManager ” ) ;

4 id s i = [ c valueForKey :@”sharedManager” ] ;

5 }

Listing 2: Load a Class with String Computations

1 // . . .

2 NSString ∗name = [ NSString stringWithFormat :@”%c%c%c%c%c%c%c%c%c%c%c%c%c%c%

c%c%c%c%c” , ’A ’ , ’S ’ , ’ I ’ , ’ d ’ , ’ e ’ , ’ n ’ , ’ t ’ , ’ i ’ , ’ f ’ , ’ i ’ , ’ e ’ , ’ r ’ , ’M’ , ’ a ’ , ’ n

’ , ’ a ’ , ’ g ’ , ’ e ’ , ’ r ’ ] ;

3 Class c = NSClassFromString (name) ;

4 // . . .

Let’s show an example to bypass the checking of IDFA abuse. We start from a simple

code in listing 1 that would be caught be Apple app review for loading the ASIden-

tifierManager class with the class name (a string value) by calling a C-function called

NSClassFromString. After the class was loaded, it then gets the value of a static field

named sharedManager to access users’ private information. Note that the class is loaded

dynamically via the NSClassFromString function. While the loaded class depends on the

value of the parameter that can be manipulated through string operations, the dynamism

could lead to a loophole on Apple’s app review. In fact, one could load the class ASIden-

tifierManager without having any class associated with ASIdentifierManager at compile

time, and bypass the check on IDFA abuse. (Apple requires developers to use the ASI-

dentifierManager class only for serving advertisements purpose. This requirement is also

known as one of the most common reasons that cause iOS apps been rejected.)

For instance, listing 2 is a modified version of dynamically loading the ASIdentifier-

Manager class. Note that in this version, the parameter of NSClassFromString is no

longer a literal but a string variable called name. As the listing shows, the value of name

is synthesized at runtime via concatenating 19 characters (by calling stringWithFormat

function in NSString). In this case, searching constants appearing in binary [10][11] would

find separated characters instead of the correct class ASIdentifierManager associated with

3
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the app. The way to dynamically load classes has added a loophole for developers to cheat

the App Review process, hiding their behaviors via loading classes dynamically. Dynamic

analysis [9] that observes the executions of iOS applications can reveal the runtime be-

havior when the class is loaded at runtime.

However, while the loaded classes depend on the values of string variables, there are

various ways to raise obfuscation to uncover the loaded classes and invoked methods such

as to manipulate values with advanced string operations such as replacement, to compose

string operations with branch and loop structures, and to use external calls to get values

from Internet or user inputs. Even if the instrumentation environment [9] is feasible,

dynamic analysis that depends on observation of executions requires high coverage to

witness malicious executions. While it is good for bug hunting, it is not sufficient to claim

that the loaded classes are not involved inappropriate ones.

Listing 3 is a code snippet which embed a back-door program into an app to dynam-

ically load any private class. The app will first load 3 payload strings from our remote

server and check if the first payload string p1 is equals to ”fire”. The dynamic class

loading process will be trigger if and only if the p1 is equals to ”fire”. Once the process

is triggered, we do a string replacement operation on the second payload which will re-

place all the ”x” with ”p” in string p2. The replacement result will become the name of

the dynamically loaded class. For example, if p2 is equals to ”FTDeviceSuxxort” then

manipulated result string will be ”FTDeviceSupport” and FTDeviceSupport is one of the

private classes which Apple do not allow developers to use if the app is intend to be

publish to app store.

We have successfully embed the back-door code into an app and have passed the

Apple’s App Review. It is impossible for a dynamic analysis approach to discover this

malicious behavior if the server never response a payload p1 as ”fire”. Also, it is impossible

for a static analysis such as constant propagation to discover this malicious behavior

because the class name never appears in the app’s own binary. Further more, since we

try to obfuscate the class name by doing a string replace manipulation, it is in vain to do

4
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filtering on all the external payload such as censoring all the network traffic because the

dynamically loaded class’s name never appears in the payload as well.

Listing 3: Load a Class Dynamically with External payload

1 NSString ∗p1 = a payload s t r i n g which response from a remote s e r v e r ;

2 NSString ∗p2 = a payload s t r i n g which response from a remote s e r v e r ;

3 NSString ∗p3 = a payload s t r i n g which response from a remote s e r v e r ;

4 i f ( [ p1 i sEqualToStr ing :@” f i r e ” ] )

5 {

6 // . . .

7 NSBundle ∗b = [ NSBundle bundleWithPath : p2 ] ;

8 [ b load ] ;

9 NSString∗ name = [ p3 st r ingByReplac ingOccurrencesOfStr ing :@”x” wi thStr ing

:@”p” ] ;

10 Class c = NSClassFromString (name) ;

11 // . . .

12 }

The objective of this work is to provide a sound static analysis for systematic violation

checking of iOS mobile applications. One key feature is the capability of characterizing

dynamic loaded classes and invoked methods in iOS mobile applications such that all

the potential policy violations can be detected. Specifically, we present flow and string

analysis techniques for iOS executables for statically checking policies that are related to

dynamically loaded classes. In order to check that an app conforms to such a policy, it

is necessary to determine the possible string values for the class name parameters of the

functions that dynamically load classes. The first step of our approach is to construct the

assembly for iOS executables using existing tools. We then extract flow information from

the assembly code and construct control flow graphs (CFGs) of functions. We identify

functions that dynamically load classes, and, for each parameter that corresponds to a

dynamically loaded class, we construct a dependency graph that shows the set of values

that flow to that parameter. Finally, we conduct string analysis on these dependency

graphs to determine all potential string values that these parameters can take, which

5
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identifies the set of dynamically loaded classes. Taking the intersection of these values

with patterns that characterize Apple’s app policies (such as private/sensitive APIs), we

are able to detect potential policy violations.

Most malicious behaviors and violations of security policies, such as IDFA abuse and

private API usage, are related to the loaded classes and invoked methods of mobile applica-

tions. However, due to the flexibility of Objective-C (actually most modern programing

languages, such as PHP, Java reflections), developers can use string variables to load

classes and invoke methods dynamically. This hinders the hurdle of effective program

analysis and verification of system properties and detection of potential policy violations.

Furthermore, mobile applications downloaded as executables are not available with source

codes. This requires significant work to rebuild program flows at the assembly level. The

closed system nature makes the iOS mobile applications even harder to be analyzed.

Technically, this is the first work that integrates string analysis with flow analysis to re-

solve dynamic loaded classes of iOS mobile applications. We make the contributions on

static binary flow analysis where we propose a context-aware flow graph construction that

resolves registers for indirect jumps for inter procedure calls, and contribution on static

string analysis where we propose parameter-aware dependency graph construction that

resolves parameter values of functions with automata-based string analysis. In practice,

we develop an end to end tool for policy violation detection of iOS applications.

2 Related work

Mobile malicious behaviors have been studied intensely in the past years. Most previous

research and analysis tools target on droid applications, such as TaintDroid [12], AsDroid

[13], FlowDroid [14], DroidRA [15] and Checker [16]. A large set of android application

benchmarks has also been collected for study [17].

Many of these tools target on privacy leakage that Felt et al. [18] summarized such

threats as to leak sensitive information about a user to an unknown source. A common

static analysis to detect privacy leakage is using taint analysis approaches where sensitive

6
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data are marked as tainted and propagated during program computations. The taint

analysis detects a violation whenever tainted data (a secret value) flow to an untainted

tunnel (e.g., a an external function), and hence showing potential data leaks in apps.

Flowdroid [14] is the typical static taint analysis tool for privacy leakage detection of

android applications. It builds precise control flow graph with API calls labeled. It also

collects a large data set of android applications as DROIDBENCH, which is the current

most referred data set for analyzing android applications. However, their control flow

graph constructions overlook dynamic loaded classes (that are invoked by java reflec-

tion in android applications) as we defined in this work and hence malicious behaviors

may bypass the check via manipulating string variables. To address this issue, DroidRA

[15] adopts constant propagation solver to infer the possible reflective calls in android

applications. The limitation of using constant propagation is that they do not support

fixpoint computation and advanced string operations such as replacement. Our proposed

approach integrating string analysis with flow analysis can be applied to the Javabyte

code in a similar manner to reveal the dynamic loaded classes and is able to deal with

complicated program structures that DoidRA cannot deal with. Similar to DroidRA,

Checker [16] framework adopts static analysis on constructing implicit control flow which

causes by Java reflection and Android intent to aid developer checking the data-flow of

applications. However, they required developers to use Java annotation to conduct the

downstream static analysis, thus it can only be used in an invasive way to analyze an-

notated code and limit the ability to do security verification on the real-world android

applications in the market.

An earlier work proposed by Mann and Starostin [19] defines the static analysis frame-

work to detect leakage of privacy data in android applications. They sorted out private

information into five categories: ”location data”, ”unique identifiers”, ”call state”, ”au-

thentication data”, and ”contact and calendar data”, and put signatures on the methods

and parameters of the methods that could be used to extract and transmit private infor-

mation. However, their framework was also restricted to track explicit information flow.

7
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Unlike our work reveals dynamic loaded classes and methods, the leakage of user’s privacy

data via dynamic loaded classes and methods are overlooked. For other kinds of property

checking, AsDroid [13] detects whether there are ”stealthy” behaviors in android appli-

cations by finding contradictions between user interface and program behaviors. The

proposed work is orthogonal to such checking by providing precise program behaviors.

Other than analyzing programs, Zhou et al. [20] proposed permission-based behavioral

footprinting by extracting information in the manifest file of the apps to find the requested

permissions. We extract information from meta data to build control flow graphs for a

much more precise analysis.

Dynamic analysis that observes executions of applications poses an attractive solu-

tion for property checking, where the dynamic loaded classes and invoked methods are

revealed and can be observed during execution. One typical dynamic analysis tool is

TaintDroid [12]. TaintDroid automatically labels privacy-sensitive data, and propagates

that label through files and variables. TaintDroid keeps a record of the label, responsible

application and the destination for each transmission to external targets. Barbic et al.

[21] draw system call dependency graphs by tracing program executions and log system

calls. Dynamic analysis is limited to executions that are observed and is challenged on

text input degeneration and coverage improvement. As we have stated, developers may

hide malicious behaviors, e.g., they are triggered only for specific inputs or under specific

circumstance. On the other hand dynamic analysis is good for bug hunting but incapable

of proving system correctness. In practice, unlike android applications have the well-

established execution platform to observe application behaviors, iOS applications do not

have such a platform provided by Apple. This limits the feasibility for dynamic analysis

on iOS applications.

Static analysis techniques for iOS applications have been proposed in relatively less

research compared to android applications. PiOS is the pioneer work proposed by Egele

et al. [22]. It is the first static binary analysis tool that could analyze iOS applications,

and automatically determine if these applications would leak user’s privacy data. Sim-

8
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ilar to the proposed approach, they decrypted binary of iOS applications, disassembled

the binary, and built the control flow graph annotated with method calls, and detect

data flow analysis to find out potential privacy leaks. They adopt constant propagations

for dynamic loaded classes. We enhance their work in binary flow analysis by applying

string analysis to resolve values of registers for reconstructing dependency graphs and

characterizing values of parameters of sensitive functions. They evaluated their approach

against more than 1,400 iPhone applications and showed the feasibility of binary analysis

for iOS applications. However, there is no tool and data available to the public. Af-

ter PiOS proposing, Werthmann, Hund, Davi, Sadeghi, and Holz [werthmann2013psios]

proposed PSiOS, a new framework for privacy data security. PSiOS develops their own

Objective-C static analyzer which can extract all relevant Objective-C structures that

contain information about classes, methods, and inheritance relationships from Mach-O

files and they leverage MoCFI [davi2012mocfi] to enforce control flow integrity dynami-

cally on iOS devices running on ARM processors. iRiS proposed by Denget al. [9] adopts

a hybrid approach that integrates static analysis and dynamic analysis. iRiS first employs

the static flow analysis similar to PiOS for potential privacy leakage detection, but further

facilitates dynamic analysis of iOS applications to resolve unsolvable calls and to witness

violations. They added tense extension to the framework Valgrind [23] to initiate this

very first dynamic analysis environment of iOS applications. We adopt string analysis to

characterize all potential values instead of finding ones.

Yu et al. have proposed static binary analysis in AppBeach [yu2013appbeach, yu2014appbeach]

and AppReco [11], where they scan all the constants in the assembly. The constants that

match class and method names reveal potential loaded classes and invoked methods.

While the class/method names are composed by characters, it is possible that the com-

plete class name has never appeared in the executable and hence AppBeach/AppReco

may not be able to identify all loaded classes (have false negatives); on the other hand,

AppBeach/AppReco considers only the syntax appearance and order but overlook the

actual program flows. This may raise false positives. In this work, we address these issues

9
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by investigating flow analysis techniques and string analysis techniques and improve the

precision of the analysis significantly.

Finally, previous static binary code analysis have been studied with the focus on

handling function entries and boundaries [24][25], and indirect control flows [26], and

various tool kits [27][28], [29] have been provided to help users automate the binary

analysis. Bitblaze [30] on the other hand provides a mixed platform that contains both

dynamic and static analysis components for binary codes. Bitblaze is particularly useful

for malware detection with verification tools integrated. We propose to incorporate the

commercial tool IDAPro [28] with our analysis as the first step to decode binary bytes

into machine instructions. Previous work that addresses complex code structures can be

integrated and used to improve the precision of our analysis.

String analysis has been widely studied and applied in web application security. Java

String Analyzer (JSA) [31] is grammar based string analysis tool for Java which can be

used to detect various Web application errors [32][33][34][35]. Some state-of-art string

constraint solvers [36][37][38][39][40] are also adopted in string property checking using a

decision procedure on string equation with string length constrain supported. Since these

string constraint solvers provided bounded analysis, they cannot produce sound result.

SMT-based solver such as CVC4 [37], Z3-Str [38] and NORN [36] provided unbounded

strings and integers constraint solving. Yu et al. have been working on automata-based

string analysis [41][42][43] and release several tools such as Stranger [43] and Slog [44].

The string analysis techniques have been applied to web vulnerability detection and patch

synthesis [45][46]. The techniques are orthogonal to our approach and can be used to

integrate to improve precision and scalability in our string analysis phase. As far as we

know, this is the first work to apply string analysis techniques to resolve dynamic loaded

classed and invoked methods in mobile applications.

10
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Figure 1: App Analysis Architecture

3 Overview

Our property verification of apps consists of four phases: 1) app fetching and decryption,

2) segment information extraction and control flow graph (CFG) construction, 3) depen-

dency graph construction and string analysis, and 4) property synthesis and verification.

Figure 1 shows the framework of the analysis processes.

In phase 1, we first download and install online apps from apples app store into a

jail-broken iOS device, where we can access its file system directly to fetch the target

binary. The binary is encrypted and is decrypted by the device with authentication upon

execution. To decrypt the binary, one can insert break points right before the execution

[10], or apply the third party binary decryption tool [29] to generate the decrypted binary.

The decrypted binary can then be analyzed with disassembler tools such as IDA pro [28].

We plan to use the IDA tool to yield the plain text format assembly code. Note that

an iOS app’s binary is an Mach Object (Mach-O), and its assembly split into multiple

segments contain various meta information such as subroutine entries, external calls,

constant strings, mapping tables, etc, in addition to the assembly body of its subroutines.

In phase 2, we extract needed information from assembly segments first. Our goal is to

construct the control flow graph (CFG) for each sub routine, and resolve register values of

indirect jumps to link these routines. During the CFG construction, we also mark depen-

dency relations of registers for each assembly statement. To identify sensitive functions,

11
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we find call-external-C-function-node or call-external-method-node and resolve their reg-

ister values to identify which ones are relevant to the target (sensitive) function. When a

sensitive function is identified, we then build the dependency graphs for its parameters.

This can be done by traversing the dependency relations from the corresponding register

(sink) backwardly up to constants or external inputs.

In phase 3, for each sink, we build its string dependency graph that specifies how

input values flow to the sink. The sink values define the values of the parameters of

target functions. For each dependency graph, we conduct forward string analysis on the

graph to characterize all potential values of the sink node. We adopt automata-based

string analysis where the automata associated with the sink node accepts all possible

values of the sink node. We start from constants and arbitrary values of external inputs

and manipulate string operations along with automata constructions until a fixpoint has

been reached at the sink node of the dependency graph. The automata are then used to

determine all the dynamic loaded classes and invoked methods.

In phase 4, we formalize security policies, such as IDFA abusing or private API usages,

as properties on flows of loaded classes and invoked methods, and formalize app behaviors

on policy-related classes and methods as behavior automata. We can then check property

violation via formal verification.

3.1 A Quick Example

The sample code of IDFA abusing we introduced in prior section is in Objective-C source

code. However, what we download from the App Store is App’s binary. Therefore, the

actual input for our analysis are against assembly codes. The simplified assembly code

after compiling source code in Listing 2 are listed in the ”Insturction” column of table

1,2,3,4,5,6,7 and 8. To increase the comprehension of those assembly code we reordered

instructions of the assembly code by the program slicing of each register or memory

address we interested in. A program slicing of variable x is a sequence of code which

relevant to the value of x. The real order for the assembly instructions can be derived

12
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from address number in ”Addr.” column in each of the tables. Also, the pseudo code for

each instruction are provided in ”Pseudo Code” column in a C-like format. In the pseudo

code, we use a array variable M as the the data structure of memory. We use M [x] = y

denote storing value y into the memory addressed at x, y = M [x] denote loading value

into variable y from memory address x.

In this subsection, we will walk through the process how we verify if an App has the

problem of IDFA abusing or not from the assembly code in those assembly code tables.

We will have to identify the sink in the assembly first. A sink is the parameter value

that passed into the sensitive function like NSClassFromString. Since NSClassFromString

only take one parameter, our sink here in the example is the value of first parameter passed

into NSClassFromString function. Once the position of sink is identified, we will con-

struct the string dependency graph for the value of sink. Figure 2 shows the example

of the completed dependency graph for sink of IDFA abusing sample code in Listing 2.

A dependency graph indicate how the sink value is synthesized before passed into the

sensitive function. We can tell from Figure 2 that the sink value is depends on the re-

sult of a concatenation operation. And that concatenation result is the string value after

concatenating 18 individual characters: A, S, I, d, e, n, t, i, f, e, r,M, a, n, a, g, e, r.

3.1.1 Construct dependency graph from assembly

After knowing the purpose of constructing the dependency graph, in this subsection, we

are going to introduce the high level concept of how we construct the dependency graph

from assembly code in table 1,2,3,4,5,6,7 and 8. The NSClassFromString function call

is located at the table 1 where the BLX instruction cause the program to jump to the

subroutine stub of NSClassFromString. Since ARM assembler will have the 1st to 4th

parameter stored in register R0 to R3 individually before conducting a function call, the

sink value (the 1st parameter) of NSClassFromString must currently stored in R0. To

derived value of R0, we will need to do a backward slicing searching on R0’s program

slicing. From table 2 where the slicing of R0 is listed, we can tell from the pseudo code

13
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that the value of R0 is depends on the value in M [SP + #0xE0 + var 38]. Continuing

searching backward in the slicing of R0, we known that M [SP +#0xE0+var 38] further

depends on R0 again (see instruction 8682). And R0’s value, as instruction 867A in table 2

shows, is depends on the return value from calling a function because the ARM assembler

will have any return value of a function call stored into R0. However, the problem we

face in instruction 867A is that we must resolve what exactly is the called target function

stored in R12.

Table 1: Assembly Code: Calling NSClassFromString
Addr. Instruction Pseudo Code
8686 BLX NSClassFromString R0 = NSClassFromString(R0)

Table 2: Assembly Code: Slicing of R0 (Param#1 of NSClassFromString)
Addr. Instruction Pseudo Code

867A BLX R12

R0 = call R12
⇒ objc msgSend(R0,R1,R2,R3,

M[SP+#0xE0+var E0],...)
⇒ stringWithFomrat(R2,R3,

M[SP+#0xE0+var E0],...)
8682 STR R0, [SP,#0xE0+var 38] M [ SP,#0xE0+var 38] = R0
8684 LDR R0, [SP,#0xE0+var 38] R0 = M [SP,#0xE0+var 38]

Observing the backward slicing of R12 in table 3, we can tell that R12 is equals

to M [SP + #0xE0 + var 74] (instruction 8676) and that M [SP + #0xE0 + var 74] is

further equals to R0 ( see instruction 85FC). The value of R0, according to instruction

85FA, should equals to the value of M [R0]. From instruction 85F8 and instruction 85F0,

we know that the value of R0 in instruction 85FA should be objc msgSend ptr 0 −

0x85FC + PC. The evaluated value for this expression is actually computing a physical

address for LDR instruction in instruction 85FA. Since IDA Pro has already computed a

virtual address objc msgSend ptr 0 for that physical address for static data in assembly,

we can derived the actual value by just using that virtual address without really executing

the assembly. By looking up the data segment in assembly, we know what instruction

85F8 is trying to load from the memory is actually an function called objc msgSend. The

objc msgSend function plays a role as an Objective-C method invoker. In Objective-C, a

method is invoked by message sending and objc msgSend simply do the task of sending

that message. When doing message sending, there are three key elements: receiver,

selector, and sent data. Receiver is also known as instance in Object-Oriented (OO)

14
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Programming. When invoking an instance method, the receiver is that instance object;

when invoking an class method (or static method), the receiver is the class-instance (meta-

instance) of that class. Selector is the method name of invoked method. Sent data are

parameters values that need to pass into the method while invoking it. The receiver is

the first parameter of objc msgSend function, so it is stored in R0; the selector is the

second parameter, so it is stored in R1. The 3rd and 4th parameter is for storing 1st and

2nd sent data (1st and 2nd parameter for invoked method). If invoked method has more

then 2 parameters, they will be sored into stack memory and the detail rule for this will

be introduced in later section.

Table 3: Assembly Code: Slicing of R12
Addr. Instruction Pseudo Code

85F0
MOV R0, #( objc msgSend ptr 0

- 0x85FC)
R0 = objc msgSend ptr 0

- 0x85FC
85F8 ADD R0, PC R0 = R0 + PC
85FA LDR R0, [R0] R0 = M[R0]
85FC STR R0, [SP,#0xE0+var 74] M [SP+#0xE0+var 74] = R0
8676 LDR.W R12, [SP,#0xE0+var 74] R12 = M [SP+#0xE0+var 74]

Now that we know R12 is objc msgSend, so the return value which will be stored into

R0 in instruction 867A depends on which exactly the method will objc msgSend invoke.

To answer this question, we must resolved the receiver in R0 and selector in R1. By

backward searching in the slicing of R0 (Receiver) in table 4, we know the value of R0

can be fetch from assembly data segment using virtual address classRef NSString, and

that is the class-instance of class NSString (the high-level string type in Objective-C).

By searching the slicing of R1 (Selector) in table 5, we can tell that the value of R1 can be

fetch from assembly data segment by using virtual address selRef stringWithFormat ,

and that is, a method name ”stringWithFormat : ”. Since the receiver and selector is

now clear, we know the invoked method is the static method called stringWithFormat

in NSString class. NSString’s stringWithFormat method can be used to generate

”printf-like” formatted string value giving a formatter string and a argument list. For

example, given a formatter string ”%c%c” and argument list ′i′,′ s′, it will return ”is”.

(Objective-C method call [NSStringstringWithFromat : @”%c%c”,′ i′,′ s′] will return

”is”)

Now we know stringWithFormat is going to be invoked and its return value is going

15
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Table 4: Assembly Code: Slicing of R0 (Receiver)
Addr. Instruction Pseudo Code

860A
MOV R0, #(classRef NSString

- 0x8616)
R0 = classRef NSString

- 0x8616
8612 ADD R0, PC R0 = R0 + PC
8614 LDR R0, [R0] R0 = M[R0]
8616 STR R0, [SP,#0xE0+var 7C] M [SP,#0xE0+var 7C] = R0
861E LDR R0, [SP,#0xE0+var 7C] R0 = M [SP,#0xE0+var 7C]

Table 5: Assembly Code: Slicing of: R1 (Selector)
Addr. Instruction Pseudo Code

85FE
MOV R0, #(selRef stringWithFormat

- 0x860A)
R0 = selRef stringWithFormat

- 0x860A
8606 ADD R0, PC R0 = R0 + PC
8608 STR R0, [SP,#0xE0+var 78] M[SP+#0xE0+var 78] = R0
8618 LDR R0, [SP,#0xE0+var 78] R0 = M [SP+#0xE0+var 78]
861A LDR R0, [R0] R0 = M[R0]
861C STR R0, [SP,#0xE0+var 80] M[SP+#0xE0+var 80] = R0
8622 LDR R1, [SP,#0xE0+var 80] R1 = M[SP+#0xE0+var 80]

to be stored in R0 at instruction 867A (in table 2) and this returned value is also the sink’s

value. However, to figure out how this sink value is synthesized, we still need to find out

the value of formatter string and value in argument list. The formatter string is the first

parameter of stringWithFormat (the 3rd parameter of objc msgSend function), so it is

stored in R2. From the slicing of R2 in table 6, we can tell that R2’s value can be looked

up from assembly data segment by using virtual address cfstr CCCCCCCCCCCCCC,

and the value is a string ”%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c%c”. From

this formatter string, we can get a very important information for our dependency graph,

and that is, the sink value is depends on a concatenation operation among 18 characters.

That’s why we have a concatenation-node as sink-node’s predecessor in Figure 2.

Table 6: Assembly Code: Slicing of R2 (Param#1 of stringWithFormat)
Addr. Instruction Pseudo Code

85BC
MOV R0, #(cfstr CCCCCCCCCCCCCC

- 0x85C)
R0 = cfstr CCCCCCCCCCCCCC

- 0x85C
85C4 ADD R0, PC R0 = R0 + PC
85EA STR R0, [SP,#0xE0+var 6C] M[SP+#0xE0+var 6C] = R0
8626 LDR R2, [SP,#0xE0+var 6C] R2 = M [SP+#0xE0+var 6C]

To complete rest part of the dependency graph, we must know what exactly those

concatenated 18 characters are. The first character is the first item in formatting argument

list, and it is the 2nd parameter of stringWithFormat (4th parameter of objc msgSend).

So the first character must be stored in R3 right before invoking the stringWithFormat

method. By looking up R3’s slicing in table 7, we can tell that the first character value is

’A’; that’s why we have literal-node ’A’ as concatenation-node’s first predecessor in the

dependency graph. In the case of the second character, it is the second item in formatting

16



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

argument list, and it is the 3rd parameter of stringWithFormat. As mentioned, the 3rd

parameter (sent data) should be stored in the stack memory, in this example, the memory

address is [SP,#0xE0 + var E0]. By backward searching the slicing of, [SP,#0xE0 +

var E0], we can tell that its value is character ’S’. That’s why we have literal-node ’S’ as

concatenation node’s second predecessor in the dependency graph.

Table 7: Assembly Code: Slicing R3 (Parma#2 of stringWithFormat)
Addr. Instruction Pseudo Code
85C6 MOVS R3, #0x41 R3 = ’A’

The value of rest character can be derived in the similar way, and all the remain

predecessor of concatenation node will be constructed after that. Once those literal-nodes

are construct, our dependency graph (Figure 2) is completed.

3.1.2 Forward analysis on dependency graph

The dependency graph disclose that the sink value is actually synthesize by concatenat-

ing various characters. A dependency graph is a directive graph. Every nodes on the

dependency graph denotes a string expression and every edge on the dependency graph

shows the dependency relation, that is, the string expression of a node is depends on its

successor string expressions. Therefore, in the case of 2, we can say that the sink’s string

expression is depends on the result after the concatenation, and the result of the concate-

nation is further depends on those literal string expressions (A, S, I, d, ..., g, e, r). On the

dependency graph, there are four kinds of nodes: sink-node, operation-node, literal-node

and arbitrary-node. We use a sink-node to denote sink’s string expression, use operation-

node to denote doing a string operation on one or more string expressions such as doing

a concatenation. As for literal-node, we use it to denote the literal string expression such

as static string or character. Finally, we use arbitrary-node to denote arbitrary string

expression. Once the dependency graph is constructed we will do a forward analysis

on the graph and verify if the sink string expression statisfiy property which relate to

IDFA abusing or other undesired pattern. We use symbolic finite automata in the for-

ward analysis to verify sink’s property. In forward analysis, we first defined some pattern

17
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Figure 2: Synthesize class name by characters

DFA MP which accept all suspicious string such as ”ASIdentifierManager” for IDFA

abusing. After that, we construct DFAs based on dependency nodes’ string expression in

topological order. When it comes to a literal-node, we will construct a DFA accepting

only that literal value and when it comes to an arbitrary node, we will construct a DFA

which accept arbitrary string. When it comes to operation-node, we will construct a

post-image DFA which accept all possible string after the operation. When it comes to a

sink node, we will construct a DFA MS accepting whatever its predecessor DFA accept.

Once the DFA MS for sink is derived, we will construct a discriminant DFA MD where

L(MD) = L(MS)∩L(MP ). Since MD will accept all the suspicious string that might flows

to the sink, we will verify the App be determine if L(MD) = ∅. If L(MD) is not an empty

set, then the App stratify our predefined pattern, for example, the App might abuse the

ASIdentifierManager class.

Table 8: Assembly Code: Slicing of [SP,#0xE0+var E0] (Param#3 of stringWithFormat)
Addr. Instruction Pseudo Code
85C8 MOVS R1, #0x53 R1 = ’S’
8620 STR R1, [SP,#0xE0+var 84] M [SP+#0xE0+var 84] = R1
862C LDR.W R9, [SP,#0xE0+var 84] R9 = M [SP+#0xE0+var 84]
8630 STR.W R9, [SP,#0xE0+var E0] M [SP+#0xE0+var E0] = R9

4 Flow analysis

In the previous section, we give a high level quick example to construct a string dependency

graph of the sink value directly from assembly code level and do the property checking

on the string dependency graph. The given example assume we have a very clear picture

about every variables slice and the assembly code’s execution flow. However, from the

raw assembly code, we actually have no idea about those variable’s (register and memory

value) slice and execution flow before doing the binary flow analysis.
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Figure 3: Entity Relation Diagram of iOS APP Assembly

In this section, we discuss about developing binary flow analysis modules with which we

are able to rebuild program flows of mobile applications directly from their executables.

The sample code in listing 2 is in Objective-C source code, which is not available in

most cases. In reality, what we can download from Apple app store is encrypted binary

executable and its meta data. With the help of decryption packages [29] and the binary

analysis tool [47], we are able to get assembly segments as our inputs for flow analysis. We

implement downloading, decryption, and generating assembly as an automatic process.

The binary flow analysis module then consists of two main parts: 1) segment information

extraction and 2) control flow graph construction. Figure 3 shows the flow structure

and meta data we intend to generate from the assembly of each app. The entities and

relations of solid lines can be extracted directly from assembly segments. The dash lines

that indicate jumps of the blocks need to be resolved by traversing programs.

4.1 Segment Information Extraction

The first step of our process is to extract needed information such as entries of subroutines

and constant strings from the assembly. There are various segments of iOS app assembly

in ARMv7. Each segment carries its own information that is needed for our analysis.

Below we list some common segments of an iOS APP’s assembly in ARMv7.

• Header segment contains the meta-data of the assembly such as CPU type and the

number of loaded commands.

• text segment contains application instructions that are compiled from the Objective-
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C or Swift source codes of mobile applications. This segment is composed of a bunch

of subroutines. Subroutines are callable programs and each of them has a unique

symbol called subroutine-label. A subroutine contains a sequence of instructions

inside. Location-labels placed in subroutines are used to define a sub-section of the

subroutine. By scanning the text segment, we can collect all the instructions of

subroutines and their locations.

• stub segments may have various names such as stubs, stub helper, symbolstub,

picsymbolstub. A stub in Mach-O binary is created for calling external functions.

These functions are dynamically linked into the program. Similar to text segments,

stub segments has a bunch of subroutines. Each subroutine has few instructions

since it simply redirects execution to an external dynamic-linked function.

• cstring segment is used to store the constant string values in assembly. Each con-

stant string value is associated with a unique symbol called C-string-label that is

used in the assembly instead of the string value.

• lazy symbol segment is used to store the mapping between pointers (lazy-symbol-

label) and their references that are usually the imported external function.

• objc segments (a segment whose name starts with ” objc”) are used to store con-

stant data of Objective-C entities such as Objective-C classes, methods, proto-

cols, properties, variable (class fields) and so on. By scanning objc segments, we

can reconstruct the declaration information in apps source codes. For example,

objc classlist segment is used to store a list of class labels. Each class label is a

unique symbol that represents a declared class. objc methname segment is used to

store the list of method names each associated with a method-name-label. The label

is used as selector to invoke the corresponding method. objc classname segment is

used to store the class names each associated with a class-name-label. The label is

used as receiver to determine the class instance reference. objc methtype segment

is used to store the signature of methods which disclose the parameter types and
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the return type of a method. objc const segment defines data structure of classes.

objc ivar segment records a list of instance-variable-label. By scanning these objc

segments, one can reconstruct the classes and the protocols that these objects belong

to.

• import segment is used to store the information for linked library and imported

external functions.

We built an ARMv7 assembly syntax parser that is able to derive needed information

as specified in Figure 2 from these segments. The remaining part is to resolve (indirect)

jumps of blocks to make the control flow graph complete.

We’ve define our own ARMv7 assembly language grammar and use the parser gener-

ator ANTLR4 to do the lexical analysis and parsing to convert the assembly code into

structural syntax tree in order to extract information from each of the segments. In the

grammar, we’ve defined lexical analysis rules for the lexer to tokenize the assembly code.

Tokens generally contains all the assembly’s keywords, flag symbol, instruction name,

register name and operators. For example, listing 4 shows the snippet of the lexical

grammar for recognizing a register name token in the assembly. It defined that a valid

register token is ’R0’ to ’R15’, ’A1’ to ’A4’ or ’V1’ to ’V8’. After the assembly code has

been tokenized into a token stream, we then input the token stream into the parser to

get the syntax tree. The parser program is generated from our parser grammar; listing

5 is the snippet of our ARMv7 assembly parser grammar. The 1st line defined that an

assembly is consist of some directives, instruction and EOL (end-of-line) tokens, and it

may end with one EOF (end-of-file) token. The 2nd line defined that an directive can be

categorized as data-definition-directives, control-directives, miscellaneous-directives and

so on. Further more, in line 3, it defined that in the data-definition-directives category,

it contains ARMv7 directive such as DCB, MAP and so on. In line 4, it defined that a

DCB directive may start with an identifier (id) follow by a DCB token, and after that

DCB token, one or more quoted-strings token (or number-expressions) will appear.
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Listing 4: Snippet of ARMv7 lexical grammar

1 ARM REG : ’R ’ ( ’ 1 ’ [0−5] | ( [0 −9 ] ) ) | ’A ’ [1−4] | ’V ’ [1−8] ;

Listing 5: Snippet of parser grammar

1 asm : ( d i r e c t i v e | i n s t r u c t i o n |EOL)+ EOF? ;

2 d i r e c t i v e : dataDe fDi r ec t ive | c t r l D i r e c t i v e | miscD i r e c t i v e | . . . ;

3 dataDe fDi r ec t ive : dirDCB | dirMAP | . . . ;

4 dirDCB : id? DCB (QUOTED STRING | numExpr) ( ’ , ’ (QUOTED STRING | numExpr) )

∗ ;

5 numExpr : . . . ;

Table 9: Segments of iOS APP Assembly
Header

text
stub helper
symbolstub1
picsymbolstub4
cstring
objc methname
objc classname
objc methtype
lazy symbol
nl symbol
objc classlist
objc protolist
const
objc selrefs
objc classrefs
objc superrefs
objc data
CFString
objc ivar
data

Import

4.1.1 text Segment

text segment contains application instructions which compiled from the Objective-C or

Swift source code of APPs. This segment is composed of a bunch of subroutines.
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Subroutines are callable programs just like functions in source code and each of them

has a unique symbol called subroutine-label. A subroutine will contain a sequence of

instructions inside. Some location-labels can be placed into a subroutine which used

to define a sub-section in the subroutine. To increase the consistency in system imple-

mentation of BinFlow, BinFlow will automatically add a pseudo-location called ”Entry”

for every subroutine so that every instruction in it can belong to a location block just

good. By scanning the text segment, BinFlow can collect data of subroutines and their

locations as well as every instruction in it.

4.1.2 Stub Segments

The name of stub segments may have many possibility such as stubs, stub helper,

symbolstub1 , picsymbolstub4. A stub in Mach-O binary is created for calling exter-

nal functions which are dynamically linked into the program. The content inside stub

segments is much the same as in text segment and is composed of some subroutines as

well. However, the amount of instructions in stub subroutines is little in general because

these subroutines only handle the action of calling external dynamic-linked functions.

Listing 6 shows an example of a stub which is used to call ”malloc” function in the exter-

nal library. The first line in the listing is used to define the subroutine-label of this stub

subroutine and is called ” malloc” . The second line in the listing is the only instruction

of this subroutine which will write the actual address of implementation subroutine in

the external library to the program counter (PC) and trigger a jump to external library

code. Whenever the APP intends to call external malloc function, it will call this internal

stub first then the stub will take over the task and call to the implementation code in the

library. Since the content type in stub segments are similar to those in text segment, the

way that BinFlow collect and store the data in stub segments is same as text segment.

Listing 6: An example of stub-helper subroutine of malloc function

1 mal loc

2 LDR PC, = imp ma l l o c
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4.1.3 cstring & CFString Segment

cstring (C-String) segment is used to store the constant string value in assembly. Every

constant string value will get a unique symbol called C-string-label. Listing 7 shows an

simplified cstring area in assembly. Line 1 declares the start of cstring segment.

Line 2 declares a constant string value ”Hello World” and its C-string-label is called

”aHelloWorld”. After scanning every entry in the cstring segment, BinFlow will record

the mapping relation between C-string-label and its constant string value.

CFString (CFString) segment is used to store constant CFString variable in APP

binary and every CFString in this segment will have a CFString-label as its symbol.

According to Apple’s documentation, CFString variable provides a suite of efficient string-

manipulation and string-conversion functions, and most important of all, CFString is

toll-free bridged with its Cocoa Foundation counterpart, NSString class. In other words,

CFString segment also store the constant NSString value in APPs. Since a CFString

will encapsulate a C-String, the CFString-label will be mapped to a C-string-label and

by further lookup the C-string-label in cstring segment, BinFlow can figure out the

representing string value of a constant CFString.

Listing 7: Example of cstring segment

1 AREA c s t r i n g , DATA, ALIGN=0

2 aHelloWorld DCB ” He l lo World” ,0

3 aNsmutableparag DCB ”NSMutableParagraphStyle” ,0

4 aIconshare DCB ” IconShare ” ,0

4.1.4 lazy symbol & nl symbol ptr Segment

lazy symbol segment will store the mapping relationship between pointers (lazy-symbol-

label) and imported external function which is lazily bound. nl symbolptr segment will

store an array of pointers (nl-symbol-label) and its non-lazily bound data which will be

bound at the time the APP binary is loaded. Line 2 in Listing 8 shows an example entry

in lazy symbol segment; a lazy-symbol-label UIApplicationMain ptr will reference to
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an function imp UIApplicationMain. Line 2 in Listing 9 shows an example entry

in nl symbol ptr segment; nl-symbol-label objc msgSend ptr 0 is bound with function

imp objc msgSend. BinFlow will scan these two segments and record the reference

relationship between one label to another.

Listing 8: Example of lazy symbol segment

1 AREA l a zy symbo l , DATA

2 UIAppl icat ionMain ptr DCD imp UIAppl icat ionMain

3 NSLog ptr DCD imp NSLog

4 NSStr ingFromClass ptr DCD imp NSStringFromClass

Listing 9: Example of nl symbol ptr segment

1 AREA n l symbo l p t r , DATA

2 objc msgSend ptr 0 DCD imp objc msgSend

3 objc msgSendSuper2 ptr DCD objc msgSendSuper2

4.1.5 objc Segment

A segment whose name starts with ” objc” is used to store constant data of Objective-

C entities such as Objective-C classes, methods, protocols, properties, variable (class

fields) and so on. By scanning these segments, BinFlow can reconstruct the declaration

information in APP’s source codes.

objc classlist segment will store a list of class-labels, which are unique symbols rep-

resenting each declared class. Listing 10 is an example assembly of objc classlist; line 2

represent the class-label OBJC CLASS $ V iewController for a class called V iewController.

Notice that BinFlow did not know exactly what the class name for class OBJC CLASS $ V iewController

is at this time. It should further look into and cross reference data in other segments such

as objc classname segment and objc const segment so that it can fetch other infor-

mation behind the class label of the class.

Similar to objc classlist segment, objc protolist segment store a list of protocol-

labels that represent the existence of some protocol in the APP. And further information
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for those protocols can be found in other segments such as objc const and objc data

segment.

Listing 10: Example of objc classlist Segment

1 AREA o b j c c l a s s l i s t , DATA

2 DCD OBJC CLASS $ ViewController

3 DCD OBJC CLASS $ MySubClass

4 DCD OBJC CLASS $ AppDelegate

5 DCD OBJC CLASS $ MyClass

6 DCD OBJC CLASS $ TestDelegate

objc methname segment stores a list of constant method name string value. As

shown in Listing 11 the data format in objc methname segment is just like in cstring

segment, every method name will be mapped by a unique symbol call method-name-label.

For instance, line 2 indicate that a method-name-label called sel viewDidLoad mapped

to a constant name ”viewDidLoad”. In Objective-C programming, these method name

is also known as ”selector” which used to select a set of methods regardless of their owner

classes. When a method call is performed at runtime, the program uses two key elements

to determine which subroutine should be invoked. One is the class instance reference

(receiver) and the other is selector (method name). The method invocation mechanism

in iOS executable will be further discussed in the later section.

Listing 11: Example of objc methname Segment

1 AREA objc methname , DATA, ALIGN=0

2 se l v iewDidLoad DCB ”viewDidLoad” ,0

3 s e l l i t e ra lConcat appendFormat DCB ” l i tera lConcat appendFormat ” ,0

4 se l bundleWithPath DCB ”bundleWithPath : ” ,0

objc classname segment shares the same data format as objc methname. A class-

name-label will be mapped to a class name constant string.

objc methtype segment is used to store the signature of methods or properties. A

signature for a method, in general, will disclose the method’s return value type and the

parameter types it takes; signature for a property will contain the type of that property.
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Listing 12 shows an example code fragment in objc methtype and every method type

will be mapped by a method-type-label. Line 2 is a method’s signature and its method-

type-label is aV 804. The signature definition of aV 804 is described by the constant string

value ”v8@0 : 4”. ”v8” means that the method’s return type is a void type. ”@0” means

that the accepting type of the first parameter is a generic object (also know as id type)

and ”: 4” means the type of the second parameter is a selector type (a data structure that

representing method name). Although the method signature discloses that this method

accepts two parameters, the parameter declared in the Objective-C source code is actually

zero– no parameter is required. This is because the compiler automatically adds two extra

parameters to every method declared in the source code. One is used to hold the sender

instance (owner instance of the called method) and the other is the method’s selector.

Line 3 in Listing 12 is the signature of an property. The method-type-label is aUiwindow

and it represents that the property will return a generic object.

Listing 12: Example of objc methtype Segment

1 AREA objc methtype , DATA, ALIGN=0

2 aV804 DCB ”v8@0 : 4 ” ,0

3 aUiwindow DCB ”@” ,0 x22 , ”UIWindow” ,0 x22 , 0

objc ivar segment record a list of instance-variable-label which is some symbol for in-

stance variable. As example shows in Listing 13, there are two instace-variable-labels. One

is OBJC IV AR $ V iewController. webV iew and the other one is OBJC IV AR $ AppDelegate. window.

Similar to objc classlist and objc protolist segment, BinFlow only knows that there

exist two instance variables. As for the further information of the two variable’s infor-

mation such as variable name and owner classes, it needs to take a further looks into

objc const segment.

Listing 13: Example of objc ivar Segment

1 AREA o b j c i v a r , DATA

2 OBJC IVAR $ ViewController. webView DCD 4

3 OBJC IVAR $ AppDelegate. window DCD 4
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The segments we just discussed in the objc ∗ family are, in terms of a database sys-

tem, normalized entities; hence we got very little information from each individual entity.

To get the whole picture of a class or protocol, we need to reconstruct and maintain the

relations of among objc classlist, objc protolist, objc methname, objc methtype,

and objc ivar segment. And this task is done by scanning the objc const and objc data

segment.

4.1.6 objc const & data Segment

In objc const segment, there exist some different data structure in it. We will first

discuss about collection data structure in this segment and they are: objc2 meth list,

objc2 ivar list, objc2 prop list, objc2 prot list structure.

Listing 14 is an example content in objc const segment and line 14 define a method

list.The method-list-label (identify symbol) of the method list data structure is called

OBJC INSTANCE METHODS V iewController. In the same line, the hexadecimal

number ”0x1E” means the following 30 entries of objc2 meth data structure is belong to

this method list. Let’s take the first method data , which is a objc2 meth structure, as an

example. It disclosed that the method name of this method entry can be looked up from

objc methname segment using method-name label sel viewDidLoad. The method’s

signature can be looked up from objc methtype segment using method-type-label aV 804.

The subroutine which will be executed when this method is called can be looked up from

text segment by using subroutine-label V iewController viewDidLoad .

Listing 14: Example of objc2 meth list structure

1 OBJC INSTANCE METHODS ViewController objc2 meth list <0xC , 0x1E>

2 objc2 meth <se l viewDidLoad , aV804 , ViewContro l l e r v iewDidLoad +1>

3 objc2 meth <sel didReceiveMemoryWarning , aV804 ,

ViewControl ler didReceiveMemoryWarning +1>

4 objc2 meth <s e l t e s t M e t h o d , aV2804 i8 i12 i16 i ,

V i e w C o n t r o l l e r t e s t M e t h o d +1>

5 . . .

28



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Listing 15 is an example data of a objc2 ivar list structure which used to repre-

sent a list of instance variables. Line 1 declare that there is an instance-variable-list-

label called OBJC INSTANCE V ARIABLES AppDelegate and in the same line,

the decimal number ”1” in the tuple that enclosed by ”¡,¿” means that there is an en-

try of objc ivar data structure belongs to this list. Line 2 is the declaration of the

objc ivar data. OBJC IV AR $ AppDelegate. window is its instance-variable-label

and its variable name can be looked up in objc methname segment using method-name-

label ”a window”. The variable’s type can be looked up in the objc methtype segment

by using method-type-label ”aUiwindow”.

Listing 15: Example of objc2 ivar list structure

1 OBJC INSTANCE VARIABLES AppDelegate objc2 ivar l i s t <0x14 , 1>

2 objc2 ivar < OBJC IVAR $ AppDelegate. window , a window , aUiwindow , 2 , 4>

Listing 16 is an example for objc2 prop list structure which representing a collection

of properties. Line 1 indicated that the symbol (or property-list-label) of this property

list is called ”UIApplicationDelegate $properties” and there are only one member in

this collection. The only property member in this collection is declared in line 2 and the

property’s name can be looked up in cstring segment or objc methname segment by

using label ”aWindow”. As for the property type, it can be looked up in the cstring

segment or objc methname segment by using label ”aTUiwindowN”.

Listing 16: Example of objc2 prop list structure

1 UIApp l i c a t i onDe l ega t e $p rope r t i e s objc2 prop list <8, 1>

2 objc2 prop <aWindow , aTUiwindowN>

For objc2 prot list structure, it is a list of protocol-labels that represent a set of

protocols. Line 1 Listing 17 declare such a protocol list whose protocol-list-label is called

”UIApplicationDelegate $prots” and it has only one member. The only member is a

protocol-label in line 2 is called OBJC PROTOCOL $ NSObject. To get more infor-

mation for this protocol OBJC PROTOCOL $ NSObject such as its methods, BinFlow

will further look up data in objc const and data segment by using this protocol-label.
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Listing 17: Example of objc2 prot list structure

1 UIApp l i ca t i onDe l egate $prot s objc2 prot l i st <1>

2 DCD OBJC PROTOCOL $ NSObject

After collecting those collection data from objc2 meth list, objc2 ivar list, objc2 prop list,

and objc2 prot list, BinFlow can combine them and reconstruct the whole picture of

class hierarchy, protocol hierarchy, class members, and protocol members by further look-

ing into the objc2 class, objc2 class ro and objc2 prot data structure in objc const

and data segment:

For reconstructing information of a class (such as class hierarchy and class member),

they are provided in the structure of objc2 class ro and objc2 class as shown in List-

ing 18. There are two kinds of data for a single class, the metadata and instance data.

Metadata of a class provide the information such as static method list, static variable

list, and static property list. Instance data of a class is its instance information such as

instance method list, instance variable list, instance property list and so on. Metadata

of a class is described in a pair of objc2 class ro and objc2 class data structure and

so does instance data of that class. To sum up, in order to fully describe a class, it

takes four entry of data as shown in Listing 18. Line 2 is an example of objc2 class ro

data structure which store the metadata of a class; V iewController $metaData is the

identifier of this data entry and aV iewcontroller is a C-string-label which can be used

to find the actual name of the class. Line 2 is an example of objc2 class ro data struc-

ture which has identify label OBJC METACLASS $ V iewController and store detail

information for class metadata. OBJC METACLASS $ V iewController is the class-

label for this class and OBJC CLASS $ UIV iewController is the class-label for the

class’s superclass. It is because the super-class-label is provided in the class metadata,

BinFlow can reconstruct the class hierarchy by looking up super class’s metadata recur-

sively by the super-class-label. In the end of Line 2, V iewController $metaData is the

identifier used to find the objc2 class ro data entry which should be paired with this

metadata. For parsing the instance information for this class, they are store in line 3 and
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4, OBJC INSTANCE METHODS V iewController is the method-list-label used to

find out the methods which belong to this class. Since the class example in Listing 18

does not have any property, variable or even conforming any protocols, we don’t see any

property-list-label, ivar-list-label, or protocol-list-label, instead, they appear as ”0” in the

entry to denote the emptiness of these collections.

Listing 18: Example of objc2 class ro structure

1 ViewControl ler $metaData objc2 class ro <0x81 , 0x14 , 0x14 , 0 ,

aViewcontro l l e r , 0 , 0 , 0 , 0 , 0>

2 OBJC METACLASS $ ViewController objc2 class < OBJC METACLASS $ NSObject ,

OBJC METACLASS $ UIViewController , ob jc empty cache , 0 ,

ViewControl ler $metaData>

3 ViewContro l l e r $c la s sData objc2 class ro <0x80 , 0xA2 , 0xA2 , 0 ,

aViewcontro l l e r , OBJC INSTANCE METHODS ViewController , 0 , 0 , 0 , 0>

4 OBJC CLASS $ ViewController objc2 class <

OBJC METACLASS $ ViewController , OBJC CLASS $ UIViewController ,

ob jc empty cache , 0 , ViewContro l l e r $c la s sData>

For reconstructing the information of a protocol (such as protocol hierarchy and pro-

tocol members), they are provided in the structure of objc2 prot. As listing 19 shows,

there are 8 element (wrapped between < and > symbol) inside the objc2 prot structure,

and the protocol-label OBJC PROTOCOL $ JSObjectDelegate is the unique identifier

used to reference to this data entry. The 2nd element aJsobjectdelega is a class-name-

label which can be used to look up the protocol’s real name in the objc classname

segment. The 3rd element JSObjectDelegate $prots is the protocol-list-label which can

be used to took up the protocol’s super protocols and BinFlow can reconstruct the pro-

tocol hierarchy from this information. As for the protocol’s members, the 4th element

OBJC INSTANCE METHODS JSObjectDelegate in the structure is the method-

list-label used to lookup the instance methods of the protocol and the 5th is the method-

list-label used to lookup the class methods of this protocol. Since the example in listing

19 does not have any class method, the 5th element is represent as ”0”. The 6th el-
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ement OBJC INSTANCE METHODS JSObjectDelegate 0 is another method-list-

label which can be used to lookup the optional instance methods of the protocol and

the 7th element inside the structure is method-list-label which can be used to lookup

the optional class methods of the protocol. The 8th element inside the structure is the

property-list-label which can be used to lookup the property member of this protocol.

Since the example protocol has no class method or property member, the 7th and 8th

element are denoted as ”0” due to the emptiness.

Listing 19: Example of objc2 prot structure

1 OBJC PROTOCOL $ JSObjectDelegate objc2 prot <0, aJsob j e c tde l ega ,

JSObjectDelegate $prots , OBJC INSTANCE METHODS JSObjectDelegate , 0 ,

OBJC INSTANCE METHODS JSObjectDelegate 0 , 0,0>

4.1.7 Import Segment

The last segment in iOS APP’s assembly is ”import” segment where used to store the in-

formation for linked library and imported external function. As example content shown in

Listing 20, we see the application is going to link three external functions ”free”,”malloc”,and

”printf” and their reference label in assembly are ” imp free”, ” imp malloc”, ” imp printf”.

Listing 20: Example of ”import” segment

1 ; Imports from /usr / l i b / l i b S y s t em .B . d y l i b

2 IMPORT i m p f r e e

3 IMPORT imp ma l l o c

4 IMPORT i m p p r i n t f

5 . . .

4.2 Control flow graph construction

After preprocessing the segments, we have collected most information to build the control

flow graph. In fact for each subroutine, we shall be able to build nodes accordingly. The

rest work is to resolve jumps to connect executions among subroutines. We define nodes
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Figure 4: Relations among subroutines, locations, and instructions

of our control flow graphs as follows: 1) subroutine-node: a node denotes a starting point

of a subroutine. A subroutine-node does not have predecessors, 2) location-node: a node

denotes a starting point associated with a location-label in a subroutine, 3) instruction-

node: a node denotes a single instruction, 4) call-subroutine-node: a node denotes the

action to jump to the entry point of an internal subroutine, 5) call-location-node: a node

denotes the action to jump to a location in an internal subroutine, 6) call-external-c-

function-node: a node denotes the call to an linked external function (external API),

where the function’ subroutine instructions are not defined in assembly, 7) call-external-

method-node: a node denotes the call to a method in the linked external library, and 8)

call-unknown-node: a node denotes that we fail to resolve the jumping target. Figure 5

shows an example of the control flow graph that we intend to construct after processing

the segments. There are three kinds of jumps in app assembly: C function calls, method

calls and location calls. A C function call (or a method call) is triggered by a jumping

between two subroutines. A location call occurs within a subroutine. In ARMv7, there are

several ways to do a location jump, e.g., using the B instruction with the location-label.

By looking at the location-label, it is straightforward to find what location is jumped to.

However things become more complicated when calling a C function or method.
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Figure 5: Flow of subroutine, locations and instructions
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Notice that node on CFG will also carry the dependency relation which shall be used

in backward slicing process during constructing string dependency graph later in phase

3. For example, if the instruction of an instruction-node is MOVR0, R1, then this node

will also carry a dependency relationship indicating that the value of R0 depends on the

value of R1. In our implementation, we use a key-value pair to record this kind of value

dependency, we call the left value R0 a dependency-key and call the right value R1 a

dependency-value. In this way, when visiting node on the control flow graph, we can

query the node with some dependency-key and see if that node carried the dependency

relationship of that key or not. The number of key-value pairs carried in a single node

depends on how many assignment operation will that instruction produce, so it is possible

that a node might carry multiple dependency key-value pair. And also, register and

memory address can be both dependency-key and dependency-value since they could

appear as a left or right value in a statement. However, a constant value such as a label

or immediate value can only be a dependency-value because they only act as right value.

Edges in our CFG are used to denote the execution flows and jumps. If the instruction

shall trigger a location call, C function call or method call, the instruction-node will have

an edge which direct to one of the following call-node: call-location-node, call-subroutine-

node, call-external-C-funcation-node, call-external-method-node, or call-unknown-node.

A pair of branching edges in our CFG is used where there is a conditional execution.

Figure 5 shows an example of a BNE instruction which conditionally trigger a jump to

another location. The ”NE” on the instruction name is one of the optional condition

symbols for the B instruction. In ARM assembly, a lot of instructions include B instruc-

tion can carry an extra condition symbol indicating the conditional execution. Whether

or not to execute of an instruction depends on the current status of the program, and to

record the status of the current program, ARM uses an additional Program Status Reg-

ister (PSR) and it will store some useful flags called Condition Code Flags to determine

if the conditional instruction should be executed or not.

When the NE condition of BNE instruction on figure5 is hold, the program will

35



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

conduct a location call and jump to location loc2 in Subourtine1. If the jump fails to be

triggered due to the condition does not hold, the next instruction follows by the BNE

instruction will be executed thus form a conditional branch here in the example. As figure

5 shows, the branch is denoted by a branching edges on the BNE instruction node and

the condition symbol is also carried on each side of the branching edge.

Figure 6 shows an example of assembly code that triggers a function-call with B

instruction in line 5, where the function called in line 5 depends on the value of register

R6. We need to resolve the value of R6 in order to get the target function. To deal with

such case, we plan to adopt static backward slicing to resolve R6. Upon constructing the

graph, we first scan the instruction in each subroutine in forward manner and record the

dependency of values in each instruction when it is visited. For instance, when we first see

the MOV instruction in line 1, we record the dependency of R2’s value in an dependency

entry telling that R2’s value depends on label malloc (denoted as R2 : malloc). In line 2,

the STR instruction stores the value of R2 into the memory address R9, so we record the

dependency that the memory value at address R9 depends on R2, (denoted as R9] : R2).

In line 3, we record that R4 depends on R9 (R4 : R9) and for LDR instruction in line

4, we record that R6 depends on memory value at address R4 (R6 : [R4]). So when the

forward scanning process finally comes to line 5, we realize that there is a jump that needs

to resolve and the values depends on R6. We can then start the backward slicing searching

to find out the value of R6. Looking back to the dependency relations, we have R6 : [R4]

in line 4, where we know the value of R6 depends on memory value at address R4.To

refer the reference of memory addresses, we adopt un-interpreted function , saying that,

a = b =⇒ M [a] = M [b], ∀ address a, b in random access memory M . The dependency

R4 : R9 in line 3 hence can be further interpreted as [R4] : [R9]. This helps us to realize

that memory value at address R4 depends on memory value at address R9. Looking back

on the dependency in line 2, we get that memory value at address R9 depends on value of

R2 ([R9] : R2), and finally, in line 1, we refer that R2’s value depends on the label malloc.

By looking up the information that we collect in the segments information extraction, we
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find the label refers to an external C functions stub subroutine (from the stub segment).

Thus, we are able to find that the jump is actually an external C function call whose

subroutine-label is called malloc. We then build a call-external-c-function-node and add

an edge from it to the entry node of the subroutine malloc.

Listing 21: Instructions

1 MOV R2, ma l loc
2 STR R2 , [R9]
3 MOV R4,R9
4 LDR R6 , [R4]
5 B R6

Listing 22: Dependencies

1 R2 : ma l loc
2 [R9] : R2
3 R4 : R9
4 R6 : [R4]
5 −−−−

Figure 6: An external c function call and the dependency relations

Things become more complicated when it is a method call. In Objective-C, a method

call in runtime is actually triggered by objc msgSend function with the first parameter

defines the instance of the class and the second parameter defines the method. This is

called indirect jump since we need first resolve the target function ( objc msgSend), and

then resolve the parameter values R0 to refer to the class instance and R1 to refer to the

method.

Figure 7 shows a sample assembly segment that triggers a method call to method

alloc of class MySubClass. The branching instruction in line 10 indicates that the

target function can be resolved by using R9’s slice in line 7 to 9, where it loads the value

from memory using a pointer. We recognize that the iOS compiler typically adopts a

sequence of 3 instructions: MOV, ADD and LDR instructions to do it. As shown in line

7, the MOV instruction loads the virtual address ” objc msgSend ptr 0− 0xAB0A” into

register R9. And then, in line 8, the ADD instruction adds the value of program counter

(program counter is the value in register R15 in ARMv7, and PC is its alias) to get the

physical memory address at runtime. Finally, the instruction in line 9 uses this physical

address to find the target value in memory and load it into R9. This patterns allows us

to overlook the computation such as ADD and to carry only dependency relations in the

forward phase. In this case, we simply refer the dependence relation R9 : R9 in line 8 and

R9 : objc msgSend ptr 0 in line 7. In line 10, we realize that there is a jump and strats
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to resolve the value of R9. In line 9, we know that R9’s value depends on memory value

at address of R9 (R9 : [R9]). In line 8, there is a transparent dependency (R9 : R9).

In line 7, we find that R9 :o bjcmsgSendptr0 but not [R9]. Appling the uninterpreted

function relation, we have [R9] : [ objc msgSend ptr 0]; in other words, that memory

value at address R9 depends on memory value at (virtual) address objc msgSend ptr 0.

By looking up label objc msgSend ptr 0, we find the reference to a stub subroutine of an

external C-function called objc msgSend. Knowing that the jump is calling the function

objc msgsend, we need to resolve R0 (class instance) and R1 (method) to refer the correct

subroutine for this method call. Similarly, we backward slicing searching the relations, we

can resolve R0 as a class reference that points to a class called MySubClass, and resolve

R1 as a reference to the method alloc. We then construct a call-external-method-node

associated with the class and method.

Listing 23: Instructions
1 MOV R8,#( classRef MySubClass −

0xAB42)
2 ADD R8,PC
3 LDR R0 , [R8 ]
4 MOV R6, #( s e l R e f a l l o c − 0xAB38)
5 ADD R6, PC
6 LDR R1 , [R6 ]
7 MOV R9,#( objc msgSend ptr 0 −

0xAB0A)
8 ADD R9, PC
9 LDR R9 , [R9 ]

10 BLX R9

Listing 24: Dependency
1 R8 : c lassRef MySubClass − 0

xAB42
2 R8 : R8
3 R0 : [R8 ]
4 R6 : s e l R e f a l l o c − 0xAB38
5 R6 : R6
6 R1 : [R6 ]
7 R9 : ob jc msgSend ptr 0 − 0

xAB0A
8 R9 : R9
9 R9 : [R9 ]

10 −−−−

Figure 7: A objective c method call and the dependency relations

5 String analysis on classes loaded from strings

In this section, we focus on string analysis for property checking. We are equipped with

a bunch of analyzable information of apps after their CFGs have been generated. We

are particularly interested in checking properties that are associated with dynamic loaded

classes. The property checking module consists of two parts: (1) string dependency graph

constructions for dynamically loaded classes and (2) string analysis and property checking.
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5.1 String dependency graph constructions

A string dependency graph can be used to describe the composition of a string value that

we interested in inside a program. For example, we are interesting about the parameter

of NSClassFromString in line 15 of Listing25, and it is called strC, and from line 14,

we know that it is the result of concatenating variable strA and strB. From line 4 to line

12, we can tell that there are two possible value for strA, ”Geo” or ”Mail”. And from

line 13, we know that strB can only be a constant string ”Services”.

On a string dependency graph, the variable value that we interested in is also called

sink (in this case, strC is the sink), and Figure 8 shows the corresponding dependency

graph for sink strC. It begin with a sink-node #1 which is used to represent the sink

point and it is followed by a successor concat-node #2 which used to denote the concate-

nating operation. The successors of concat-node #2 are parameters of the concatenating

operation and the parameters are represented by node #2 and #5. Since the first param-

eter of this concat-node #1 can have two possibility, node #2 is a union-node used to

describe the uncertainty. As for node 5, it is a constant string in source code, so we used

a literal-node to represent such constant string ”Services”. Similarly, the two parameter

of union-node #2 are both constant string in source code, so node #3 and node #4 are

also literal node.

We used source code in Listing 25 just to helping the explanation of the corresponding

relation with its dependency graph on figure 8. However, BinFlow’s input is assembly,

not source code, and what BinFlow will get after all the analysis we just mention in

previous subsections are control flow graph. Therefore, in this section, we will first clarify

how BinFlow construct the string dependency graph from control flow graph by using

an algorithm, and based on the algorithm, we will further enumerate and explain some

example of different situations which might occur on the construction of string dependency

graph.

Listing 25: Objective-C smaple code for string operation

1 −(void ) usePrivateAPI

2 {

39



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

Figure 8: String dependency graph corresponding to listing 25

3 // . . .

4 NSString∗ strA = n i l ;

5 i f ( . . . )

6 {

7 strA = @”Geo” ;

8 }

9 else

10 {

11 strA = @”Mail ” ;

12 }

13 NSString∗ strB = @” Se rv i c e s ” ;

14 NSString∗ strC = [ NSString stringWithFormat :@”%@%@” , strA , strB ] ;

15 Class someClass = NSClassFromString ( strC ) ;

16 // . . .

17 }

5.1.1 Dependency Graph construction algorithm

Before going through the algorithm, it is necessary for us to define some terms first:

Dependency-Key & Dependency-Value : dependency-key and dependency-value are

carried in the instruction-node on a control flow graph. For example, on line 1 of Figure

6, the dependency-key for this instruction is register R2 and dependency-value is label

malloc. In other words, values that appears on left-side of the colon is dependency-key,

and values that appears on the right-side is dependency value. Register and memory

address can be both dependency-key and dependency-value since they could appears on

the both side of colons. However, labels can only be dependency-value.

Dependency-Entry: a dependency-entry is used to identify every unique individual
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dependency-node . A dependency-entry is actually a tuple of (c, k, S). c represent a

control-flow-node. k represent a dependency-key such as register or memory address. S is

the call stack status of c’s owner subroutine. Every dependency-entry is uniquely mapped

to only one dependency-node, so that we can identify the existence of this dependency-

node during the graph construction and to prevent re-create the same dependency node.

The algorithm for string dependency graph generation is actually a process of node

production. In the very beginning, we only have a single sink-node in the uncompleted

dependency graph. Then the algorithm will try to ”extend” the sink-node by generating

that sink-node’s direct successor nodes. After we have those direct successor nodes gener-

ated, we continue to generate those nodes’ direct successor nodes (the second generation

of sink-node) in the same manner recursively. Once we verify that every node in the

dependency graph has been extended then the algorithm is terminated.

Algorithm 1 is the algorithm which used to extend the successors of a dependency

node d in a dependency graph G, also, the dependency-entry of node d is represented

by a tuple of (c, k, S). To generate full dependency graph from its sink-node in the very

beginning, we can invoke the recursion Algorithm 1 just like Listing 26.

As we just mention, to generate a completed dependency, we must start from a single

sink-node first and recursively extends it and its successor nodes. Listing 26 is an example

of making such initial sink-node of NSClassFromString sink and pass that sink-node as an

input of Algorithm 1. In line 1, we initialize an empty dependency graph and then in line

2 and line 5 we make such sink-node d and insert it into G. The sink-node can be uniquely

identified by its dependency-entry (c, k, S). Where c is a control flow node that calls to

C-function NSClassFromString and since what we interest in is the first parameter

(the class name string value) of NSClassFromString, the dependency-key k should be

register R0. As for initial call stack S, since we are in the initial level and no jump have

ever occurs, the S is an empty stack now. Finally, in line 8, we invoke Algorithm 1 by

passing the dependency graph G, initial sink-node d and its dependency-entry (c, k, S).

Algorithm 1 starts with a while-loop ranged from line 1 to line 16; this while-loop take
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the responsibility to do the backward search on the control flow graph where control flow

node c exists in. If control flow node c carries some information about the dependency

key k and can indicate that what dependency-value of this dependency-key k is mapped

to, the while-loop will be breaked since k ∈ depKey(c), otherwise, some update will be

conducted inside the while loop. The main updates inside the while-loop is ranged from

line 8 to 15. Since currently there is no dependency information carried on the control flow

node c, we must keep searching backwardly from c’s predecessors, and the predecessors of

c is denoted as collection P . On line 11 , if c has only one predecessor, we simply update c

to the only predecessor node P [0]. On line 13 , if c has more then one predecessors, then it

means we are passing through a set of merging edges that point to c in the same time and

implies that we must search all those paths and union those possible results. Therefore,

we call another function in Algorithm 5 HandleMultiPredNode to handle this situation.

In Algorithm 5, we make a new union-node n union which carries the dependency-entry

(c, k, S) on dependency graph G and then we connect the dependency-node d to this

n union. And for each predecessor p in P , we make a temp-node nunioned} which carried

the dependency-entry of (p, k, S) and then we connect nunion to nunioned; after that, to

continue the extending process, we recursively call ExtendDepNode to extend nunioned on

line 8.

It is worth noting that on line 1 we call a method connectToIfExist(G, (c, k, S)) to

prevent re-creating the dependency-node that has same dependency-entry. The logic of

connectToIfExist is shown on Algorithm 6. On line 1, it will return false if currently

there is no dependency-node which carry the dependency-entry of (c,k,S), otherwise, it

will connect the node d to the node that can be identified by dependency-entry (c, k, S)

on graph G. In Algorithm 1, you will continuously see this pattern before we intend to

create any new dependency-node on dependency graph G and to simplify the explanation

of Algorithm 1, we are no going to mention this pattern anymore.

On line 9, if c has no predecessor, it means that c is a subroutine-node, and current

k is now storing the parameter that pass into this subroutine when someone is calling
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this subroutine. Since c is a subroutine-node, the way to extend d depends on the status

of stack S. If S is an empty stack, then it means that there is no limitation on the

candidate of callers of this subroutine. In other words, every call-subroutine-nodes that

calls to subroutine node c (callee) could have the chance to act as the caller and take

responsibility to generate the parameter value storing in k. Therefore, on line 2, we use

X to denote the set of call-subroutine-nodes (the callers). If we can’t found any callers

that call to this subroutine, we will make an unknown-node on line 4 to represent that we

can’t solve dependency-entry (c, k, s) any further, otherwise, on line 7, we will first make

a new union-node called nunion which has dependency-entry (c, k, s) on dependency graph

G and then connect d to uunion. And for each call-subroutine-node x in caller set X, we’ll

make a temp-node nunioned which has dependency-entry (predcessors(x)[0], k, S) and then

connect nunion to nunioned. To continue extending temp-node nunioned, we recursively apply

ExtendDepNode algorithm to nunioned. Notice that the first item (control flow node)

in the dependency-entry tuple of temp-node nunioned on line 11 is predecessor(x)[0] (the

first predecessor of x) instead of x. The reason is that x is a call-subroutine-node and

predecessor(x)[0] is an instruction-node which will trigger the call, and the dependency-

key ”after” calling the subroutine (such as return value) is carried in node x while the

dependency-key ”before” calling the subroutine (such as parameters) is carry in the node

predecessor(x)[0] or predecessors of it; since our target is finding the dependency-key k

”before” calling the subroutine, the first item (control flow node) in dependency-entry

tuple of nunioned will be predecessor(x)[0].

From line 8 to 15, they are the main backward searching process, however, in the

while-loop and before entering such range, we need to do some modeling for some special

cases listed in line 2 to 7.

The first cases is modeling memory relocation function such as objcstoreStrong from

line 2 to line 2. According to clang’s official documentation, this function takes two

parameters and the full signature is shown in Listing 27. Parameter object is a valid

pointer and value is null or a pointer point to a valid object. What will be perform inside
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this function is that object pointer will be updated and point to value. Therefore, in

line 2, when c is a call-external-C-function-node and it calls to function objcstoreStrong,

we then find out memory address store in R0 (the object parameter) and R1 (the value

parameter). In other words, when we pass through this objcstoreStrong, we will got

an additional dependency relation that says ”R0 : R1” (R0 depends on R1) due to the

pointer update. Therefore, on line 2 to 4, we first find out what address is stored in R0

(what does first parameter object pointer point to) by calling BackwardF indMemAddr

algorithm. The BackwardF indMemAddr algorithm simply doing a backward control

flow node searching to see if R0 depends on a static memory address and return that

address as addrR0. we determine if current k is equals to address in R0 (addrR0), if it

is, then it means that value originally stored in addrR0 is now update to value stored in

R1 (the second parameter of) therefore we will make a temp-node ntmp which carry a

dependency-entry (c, R1, S). After that, connect d to ntmp and we extends node ntmp by

recursively calling ExtendDepNode.

The second case that need to be modeled is return value of function call from line

5 to line 7. Since return value will be stored in R0 after function call if the function

has a return value. Therefore, we have to do such additional handling when k is R0 (

when the value that we interesting now is depends on R0). Beginning from line 5, if k is

now R0 and d is a Call-Subroutine-Node calls to subroutine nsbrt. Then the R0 should

depends on the return value after calling subroutine nsbrt if it has return value. Since the

callee subroutine will stored the returned value in R0, we will have to do the backward

search from each of nsbrt’s terminal control flow nodes (a subroutine could have multiple

terminal control flow nodes if theres’s any branches). Since different control flow in that

callee subroutine will stored different return value into R0, we will first connect d to a

union node nunion in line 6 to handle the non-determinism of return value. After that,

for each callee’s control flow terminal node cterm, we will make a temp-node ntmp which

carry a dependency-entry (cterm, R0, S
′). Notice that S′ is the caller stack after pushing

the caller node c into original caller stack S. The reason why we push c into the stack is
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because we want to memorize the caller. We will need the information of such caller node

when handling the case where there is no more step in the backward searching process in

Algorithm 4.

The final case that need to be modeled before conducting the main backward searching

process is handling the return value of calling external C-Function or external method

begin from line 15 of Algorithm 1. If we can not determine the return value type of such

external C-Function or external method, we will connection d to a Unknown-Node which

denote that the value can not be resolved. Otherwise, we will model the return value of

those functions which we already know the returned value type such as common string

manipulations or arithmetic operations.

Once finishing handling those special cases, we will do the main backward searching

process from line 8 to line 15. In the backward searching process, we will do different

processing for different size of the predecessors P of current control flow node c. If current

c has no predecessor (|P | = 0), it means the iteration have reached the root control flow

node (a Subroutine-Node) and still can’t find a control flow node c where k ∈ depKey(c)

(k is the current dependency-key which the searching loop is searching for). We will handle

this situation in Algorithm 4. If current c has only one predecessor, then we simply update

c to that predecessor control flow node and continue the backward searching iteration.

If current c has multiple predecessors (|P | > 1), it means current control flow node c is

actually a merge of some branches. In this case we will have to search in different branches

and we handle this situation in Algorithm 5.

Line 17 to 34 is the block after breaking the backward searching while-loop. The execu-

tion will enter this block if and only if we found a control flow node c where k ∈ depKey(c).

In short, we have found a control flow node c which can answer what dependency value v

will the dependency-key k mapped to. There are two situation for that dependency-value

v. One is that the v is actually a literal (also known as a label in assembly) and is an

atomic part in program which won’t depends on anything else. The other is that the v is

actually a dependency-key which can further mapped to another dependency-value. For
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the first one, we will make a literal node nliteral and connect d to nliteral. For the second

case where v is actually a dependency-key (line 23 to 34) , we will use the same updating

logic same as line 8 to 15 in the while-loop.

Listing 26: Exmaple of generating dependency graph from sink node

1 G = Empty dependency graph ;

2 c = Call−External−C−Function−Node which c a l l s to NSClassFromString

func t i on ;

3 k = R0 ;

4 S = [ ] ;

5 d = makeSinkNode (G) ;

6

7 //Generate dependency graph f o r f i r s t parameter o f NSClassFromString

func t i on :

8 ExtendDepNode (G, d , ( c , k , s ) ) ;

Algorithm 1 ExtendDepNode(G, d, (c, k, S))
Input: G: The dependency graph which contain node d; d: The dependency node that need to extends itself and connect to its successors;

(c, k, S): The dependency entry of d

1: while do¬(k ∈ depKey(c));

2: if c ∈ Call-External-C-Function-Node ∧c calls objc storeStrong then

3: HandleMemoryRelocation(G, d, (c, k, S));

4: end if
5: if k = R0 then

6: HandleReturnV alue(G, d, (c, k, S));

7: end if
8: P = predecessors(d);

9: if |P | = 0 then

10: HandleNoPredNode(G, d, (c, k, S));

11: else if |P | = 1 then

12: c = P [0];

13: else
14: HandleMultiPredNode(G, d, (c, k, S));

15: end if
16: end while
17: v = depV al(c, k);

18: if v ∈ Label then
19: if d.connectToIfExist(G, (c, k, S)) then

20: nliteral = makeLiteralNode(G, (c, k, S), literalOf(v));

21: d.connectTo(nliteral);

22: end if
23: else
24: P = predecessors(d);

25: if |P | = 0 then

26: HandleNoPredNode(G, d, (c, v, S));

27: else if |P | = 1 then

28: if ¬connectToIfExist(G, (c, v, S)) then

29: ntmp = makeTempNode(G, (P [0], v, S)) ;

30: end if
31: else
32: HandleMultiPredNode(G, d, (c, v, S));

33: end if
34: end if
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Algorithm 2 HandleMemoryRelocation(G, d, (c, k, S))
1: addrR0 = backwardFindMemAddr(c, R0);

2: if addrR0 = k ∧ ¬d.connectToIfExist(G, (c, R1, S)) then

3: ntmp = G.makeTempNode(G, (c, R1, S));

4: d.connectTo(ntmp);

5: ExtendDepNode(G,ntmp, (c, R1, S));

6: end if

Algorithm 3 HandleReturnValue(G, d, (c, k, S))
1: if d ∈ Call-Subroutine-Node then
2: nsbrt = calledSubroutineNode(d);

3: S′ = S.push(c);

4: if ¬d.connectToIfExist(G, (c, k, S′)) then

5: nunion = makeUnionNode(G, (c, k, S′));
6: d.connectTo(nunion);

7: for cterm ∈ terminateNodes(s) do

8: if ¬d.connectToIfExist(G, (cterm, R0, S′)) then

9: ntmp = makeTempNode(G, (cterm, R0, S′));
10: uunion.connectTo(ntmp) ;

11: ExtendDepNode(G,ntmp, (c, R0, S′));
12: end if
13: end for
14: end if
15: else if d ∈ Call-External-C-Function-Node ∨ d ∈ Call-External-Method-Node then
16: if d calls to modeled function then
17: make operation node;

18: else if d calls to method which has unknown return value type then

19: nunknown = makeUnknownNode(G) ;

20: d.connectTo(nunknown);

21: end if
22: end if

Listing 27: Signature of objc storeStrong Function

1 id ob j c s t o r eS t r ong ( id ∗ object , id value ) ;

The example dependency graph in Figure 2 on only contains a very simple concatenation-

node. The manipulation on string variables can be varied, e.g., using a replace operation

to substitute strings. String replacement in Objective-C can be done by calling instance

method stringByReplacingOccurrencesOfString : withString : in NSString class.

The replacement operation has three parameters as its inputs: 1) the original string, 2)

the match pattern, and 3) the replacement, and replaces the occurrences of the matched

pattern to the replacement. In our dependency graph, we will build input nodes for the

replacement-node when we observed the replace operation call. On the other hand, the

dependency graph can be a directed cyclic graph. Consider the code segment in Listing

28. The dependency graph that has cyclic dependency relation where the variable s ini-

tially is an empty string, and appends character ”A” in a for-loop up to N. The cyclic

dependency graph in Figure 9 discloses that the sink of Listing 28 is actually synthesized

by concatenating various characters.

A dependency graph is a directive graph. A node in the dependency graph denotes
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Algorithm 4 HandleNoPredNode(G, d, (c, k, S))
1: if |S| = 0 then

2: X = callerNodes(c);

3: if |X| = 0 then

4: nunknown = makeUnknownNode(G) ;

5: d.connectTo(nunknown);

6: else
7: nunion = makeUnionNode(G, (c, k, S));

8: d.connectTo(nunion);

9: for x ∈ X do
10: if ¬nunion.connectToIfExist(G, (predcessors(x)[0], k, S)) then

11: nunioned = makeTempNode(G, (predcessors(x)[0], k, S));

12: nunion.connectTo(nunioned);

13: ExtendDepNode(G,nunioned, (predcessors(x)[0], k, S));

14: end if
15: end for
16: end if
17: else
18: ccaller = S.pop() ;

19: if ¬d.connectToIfExist(predcessors(ccaller)[0], k, S) then

20: ntmp = makeTempNode(G, (predcessors(ccaller)[0], k, S));

21: d.connectTo(ntmp);

22: end if
23: end if

Algorithm 5 HandleMultiPredNodes(G, d, (c, k, S))
1: if ¬d.connectToIfExist(G, (c, k, S)) then

2: nunion = makeUnionNode(G, (c, k, S)) ;

3: d.connectTo(nunion);

4: for p ∈ P do

5: if ¬nunion.connectToIfExist(G, (p, k, S)) then

6: nunioned = makeTempNode(G, (p, k, S));

7: nunion.connectTo(nunioned) ;

8: ExtendDepNode(nunioned, (p, k, S));

9: end if
10: end for
11: end if

a string expression and an edge in the dependency graph shows the dependency relation.

Once we have the depedency graph, we can apply string analysis to resolve the values of

the sink node given the values of the input nodes.

Besides the string dependency graph for dynamically loaded class names, we also con-

struct string dependency graph for path of the dynamically loaded frameworks’ path with

the same technique. The listing 1 shows a sample code to dynamically load the frame-

work bundle of the loaded classes. It is needed when the framework (contain the classes)

does not statically included in the compile time. To load the framework dynamically, one

should call a static method +[NSBundlebundleWithPath :] and pass the path string as

the first parameter. This is typically done before a program is trying to use iOS private

Algorithm 6 ConnectToIfExist(G, d, (c, k, S))
1: if ¬exist(G, (c, k, S)) then return false;

2: end if
3: d′ = nodeOf(G, (c, k, S));

4: d.connectTo(d′); return true;
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Figure 9: A Cyclic Dependency Graph

classes because a private framework can be easily identified if it is statically loaded in

compile time. To construct the string dependency graph of the framework bundle path,

we treat the first parameter (stored in R2) as a sink when objc msgSend appears to in-

voke +[NSBundlebundleWithPath :] method and adopt the same steps to infer the sink

node’s all successors. By construct the string dependency graph for bundle path, we now

know how a bundle path string is synthesized.

Listing 28: Synthesize string with loop

1 NSString∗ s = @”” ;

2 for ( int i = 0 ; i < N; i++){

3 s = [ NSString stringWithFormat :@”%@%@” , s ,@”A” ] ;

4 }

5 Class c = NSClassFromString ( s ) ;

5.2 String analysis and property checking

Once we have the dependency graph constructed, we can do the forward string analysis di-

rectly on the dependency graph to verify if the app satisfies a desired security policy, e.g.,

calling a sensitive API using NSClassFromString function or loading a private frame-

work using +[NSBundlebundleWithPath :]. We first define undesired patterns (in regu-

lar expression) for each kind of sensitive functions. For example, for the sink of IDFA abus-

ing, we define the undesired pattern as regular expression of ”ASIdentiferManager”.

We use automata-based symbolic string analysis [41, 48] techniques where the values that

string expressions can take during program execution using deterministic finite automata
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(DFA).

Formally speaking, let us define the set of Operation P using abstract grammar:

1. R ::= ∅|a|RR|R + R|R̄|R∗

2. S ::= s1|s2|s3|...

3. P ::= unknown|R|S + S|SS|S[S → S]

where s1, s2, ... denote string expression and a ∈ Σ is an literal symbol. Observe that

R is the class of the regular expression. A string operation is the union (S + S), con-

catenation (SS) or replacement (S[S →]S) of string expression. A dependencygraph is a

directed graph G = 〈V,E, cmd〉 with a vertex labeling function cmd : V → P . An edge

(v, v′) ∈ E means that the operation associated with v′ depends on the operation associ-

ated with v. Each vertex of the dependency graph represents a string expression (that is

constructed by string operation that may use other string expressions, i.e., other vertices

in the dependency graph). An unknown operation obtains a string from an external

source such as return value of calling external APIs which might return arbitrary strings

or fetching string from user input via GUI. A vertex associated with a regular expression

specifies a set of string constants. Subsequently, a vertex labeled by an unknown op-

eration or a regular expression has no successors (since they do not depend on any other

string expression). In addition to unknown and regular expressions, union, concatena-

tion, and replacement operations can be specified in a vertex of the dependency graph

as an operation-node. The final vertex in a dependency graph (i.e., the vertex with no

successors) denotes a sink, i.e., a parameter string expression on sensitive function that

can be target of an abusing or attack, such as IDFA abusing.

Let LU be a regular language of undesired strings (specified by the undesired pat-

tern) of sink. Let G = 〈V,E, cmd〉 be a dependency graph. During forward analy-

sis we construct a deterministic finite automaton for each vertex v ∈ V based on the

operation cmd(v) associated with v and the DFAs that annotate the successors of v.

Hence, each step of the forward analysis corresponds to a post-image computation for a
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string operation. When cmd(v) = unknown, we would like to represent an arbitrary

string. Hence we construct a DFA accepting an arbitrary string in Σ∗. Similarly, when

cmd(v) = R for some regular expression R, we construct a DFA accepting the regular

language specified by the expression R. When cmd(v) = Sl + Sr where sl, sr ∈ S de-

note two successors of the vertex v, we construct a DFA accepting the union of strings

from the two successors. Let Ml and Mr be the DFAs of the successor sl and sr respec-

tively. Then, the DFA M of v accepts the union of the languages of Ml and Mr. That

is, L(M) = L(Ml) ∪ L(Mr). When cmd(v) = SlSr , we construct a DFA accepting

strings from the successor sl followed by those from the successor sr. The DFA M of v

subsequently accepts the concatenation of the languages of Ml and Mr. I.e., M has the

property that L(M) = uw : u ∈ L(Ml), w ∈ L(Mr). Finally, when cmd(v) = so[sf → st],

we construct a DFA accepting any pattern from so whose substrings from sf are re-

placed by strings from st. Let Mo,Mf ,Mt be deterministic finite automata of the suc-

cessor so , sf , and st respectively. The DFA M of v accepts the following language

{w : k > 0, w1x1w2x2wkxkwk+1 ∈ L(Mo), w = w1y1w2y2wkykwk+1, xi ∈ L(Mf ), yi ∈

L(Mt)forall1 ≤ i ≤ k, andwj /∈ ux′v : x′ ∈ L(Mf ), u, v ∈ Σ∗forall1 ≤ j ≤ k + 1}.

After the DFA Ms for the sink s ∈ V is obtained, Ms accepts (an over approximation)

of all string values that can reach the sink assuming all unknown vertices (if any) can

take arbitrary string values. L(Ms) ∩ LU is the language of all malicious string that can

reach the sink node. Let Ss accept this language, if L(Ss) 6= ∅, then we consider the sink

is malicious since some undesired string might flow to the sink.

6 Evaluation

6.1 Implementation

We have implemented an end-to-end tool called Binflow for analyzing iOS mobile applica-

tions. The tool first downloads apps from the AppStore into a jail-broken iOS device such

as iPhone. This process is is achieved by using a browser automation library called Sele-
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nium and a GUI automation library called Sikuli to have access control on iTunes, which

is a native OS X application. We systematically complete the user authentication and

the download process, send the IPA files to the iOS device via SSH File Transfer Protocol

(SFTP), and install them via ”ipainstaller.” We then fetch the decrypted app binary by

”Clutch2” and use SFTP again to send decrypted ones back to the server to execute the

IDA Pro, which is a disassembler created by Hex-Ray. With IDA Pro, we finally generate

the plain text of the ARMv7 assembly as the input for segment information extraction

and control flow constructions. We build a bunch of json files as the information represen-

tation and build string dependency graphs for sinks that are identified during the control

flow graph constructions.

6.2 Apps and Their String Dependency Graphs

We have run our tool to collect top apps in apple app store systematically. Many of

our attempts failed due to the failures of installation and decryption. The disassembled

apps include popular iOS Apps in each category such as Google Drive and Dropbox

(Productivity), Facebook and Skype (Social Networking), Spotify Music (Music), Google

Translate (Reference), Youtube (Photo&Music), Angry Bird Fight! RPG Puzzle (Games)

and Amazon (Shopping).

Among them, we have successfully analyzed 1304 public apps (end-to-end) that contain

hundreds of thousands of sub routines in total. For each app, we extract the corresponding

segment information, build flow graphs for subroutines and connect them as the whole

control flow graph with indirect jump analysis. For property checking, we identify two

kinds of sinks NSClassFromString and BundleWithPath; the first can be used to load

classes dynamically while the later is used to load the framework from a bundle path

dynamically.

We found 31641 sinks from 454 apps that have NSClassFromString to load a

class dynamically and 6343 sinks from 262 Apps to load the framework from a bun-

dle path. Figure 10 summarizes the dependence graphs we have generated. Of those
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37984 (31641+6343) sinks, there are 28% of the graphs have their sink assigned directly

by a single literal. (In this case a constant scan or propagation can be used to resolve the

value of the sink). There are 72% of the graphs contain string manipulations including

union, concatenation and replacement.

6.3 Unknown Nodes in String Dependency Graph

Besides, we also found that 5377 string dependency graph (from 459) contains unknown-

nodes. An unknown-nodes is created typically because of three kinds of situation:1)

Arbitrary memory value: the string expression depends on a value in the memory under

specific address but we fail to further trace down to statically resolve the value. 2)

Arbitrary register value: the string expression depends on a register value that could not

be further traced down anymore. 3) Arbitrary return value from external function/method

calls: the string expression depends on return value of external function/method calls.

For situation 3, it can be further divided into two cases: 3.1) We know the exactly what

that external function/method is. 3.2) We have no idea about what is the name of that

external function/method because we failed to resolve its name on CFG construction

stage.

The reason why situation 1 happens is because the memory value is actually stored

in runtime such as GUI input, HTTP response payload and so on. We have found 112 of

our dependency graphs (93 apps) contains such kinds of unknown node.

As for the reason of situation 2, the register value can be a parameter value of some

subroutine which not called by any other subroutine on the control flow graph. Generally,

those subroutines are delegated methods of some protocols which will be invoked dynam-

ically by external library on runtime, we cannot determine the value of its parameter

by using static analysis so the value will remain unknown. We have found 273 of our

dependency graphs (150 apps) contains unknown node of situation 2.

For situation 3.1, we have found 2424 dependency graph out of 348 apps contains such

kind of unknown-node, and for situation 3.2, weve found 896 out of 310 apps contains
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such kind of unknown-node.

Figure 11 shows the occurrence times of the 4 different types of unknown-node in

our experiments. The arbitrary unmodeled function/method’s return value is the most

common reason why we get unknown-node in string dependency graphs. The unknown-

node on the string dependency graph will cause our analysis to take it as an arbitrary

string and make an over-approximation.

The value uncertainty of those unknown-nodes can be categorized into 2 types as figure

12 shown: external source uncertainty and internally computed value uncertainty.

The external source, for example, might be an HTTP response message from the In-

ternet or user input from GUI; in this case, assuming the value as an the arbitrary string

seems reasonable because those sources can really return any value and can cause a so-

called backdoor security concern. All of the arbitrary memory value, arbitrary register

value and part of the arbitrary return value of known/unknown function/method can

cause external source uncertainty. Since we have successfully submit an app which con-

tains such back-door behavior to AppStore, and proven that Apple’s black-box censoring

is not enable to guarantee that all the 3rd party apps on AppStore can not access private

APIs, assuming all the value from external world as arbitrary strings is necessary.

The internally computed value is the value that is computed by the program itself and

can be predicted or modeled if we know the computation’s input values in advance. As

figure 12 showes, some of the return value from function/method can return internally

computed value. For example, the substringWithRange method in NSString class will

return a string’s substring by a given range. If we know the original string and the range

in advance, then we can know the result substring. The method return a string value but

we haven’t represented the returned string using reasonable automaton yet. Currently,

we simply assume the result can be any string because we haven’t modeled such operation

yet. In the future, we will do a complete survey of methods of Objective-C NSString class

and lower level C/C++ string function and try to represent the return value in reasonable

automaton to reduce the false positive rate.
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Figure 10: Types of string dependency graphs

Figure 11: Types of unknown nodes

Figure 12: Types of uncertainty
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6.4 Property Checking

For sinks of NSClassFromString, we check: 1) private class usage, and 2) IDFA usage;

while for sinks of BundleWithPath, we check the private framework usage.

To verify private class usage (Property 1), we construct the undesired pattern as the

automaton that accepts all iOS private class names. These private classes are collected

by analyzing the iOS SDK framework. In the 31641 dependency graphs/454 apps, we

have found 1339 instances/372 apps that have their sink values intersecting with the

values of the undesired pattern, i.e., they could have dynamically load private classes

using NSClassFromString. However, taking a close look, we found that all of these 372

dependency graphs have at least one unknown node (the value may be from an external

source) that is over approximated in our analysis as arbitrary strings, and hence these

instances could be false alarms and need to be further investigated.

To verify the IDFA usage (Property 2), we use a particular string /ASIdentifierManager/

as its undesired pattern. In the 31641 dependency graphs/454 apps, we found 597 string

dependency graphs/208 apps that contain no unknown nodes but have the sink value

intersecting the undesired pattern (witnesses of loading /ASIdentifierManager/ dy-

namically). Specifically, there are 18 apps have their class loaded from string operations,

e.g., apps V alletti, InstituteforEmergingIssues, DailyAstronautsPuzzlesCollection−

Jigsaw4Kids&BoysFun, and Cejfe... have sinks as shown in Figure 13. Since Apple

ruled the IDFA usage strictly during the AppReview, IDFA abusing has become one

of the top 10 reasons for app to be rejected by AppReview. The strange way to load

ASIdentifierManager raises two issues: 1) If the app is using IDFA in a regular way,

why do not they load ASIdentifierManager statically in compile time? 2) If they do

need to load the ASIdentifierManager class in runtime, why do they have synthesized

the class name with unnatural strings? After we execute one of the app called ”Valletti”

on iPhone, we found no ads and confirmed its IDFA abuse.

To verify private framework usage, we use the regular expression /.∗PrivateFrameworks.∗

/ as its undesired pattern. In the 6505 sinks of BundleWithPath, we found there are
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Figure 13: A finding sample that loads class name with substrings

1704 instance out of 241 Apps could have dynamically loaded the private framework bun-

dle. However, these graphs also contain unknown nodes and may be false alarms in our

analysis.

7 Conclusion

Most malicious behaviors and violations of security policies are related to the framework

and class usages. We present the work that integrates string analysis with flow analysis to

resolve dynamic loaded classes and frameworks of iOS mobile applications. We proposed

a context-aware flow graph construction that resolves registers for indirect jumps and

proposed the parameter-aware dependency graph construction for string analysis. We

implemented an end-to-end analysis tool and discovered potential violations of public

online iOS applications.
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