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ABSTRACT
We propose an ensemble learning algorithm based on AdaBoost 
and employing heterogeneous algorithms with a stochastic 
process for algorithm selection. Diversity is an important factor in 
ensemble learning and AdaBoost creates diversity by 
manipulating training data sets. However, we observe that 
AdaBoost generates training data sets of low diversity in later 
iterations. Some researchers suggest the employment of 
heterogeneous algorithms in ensemble learning to achieve better 
diversity. Following the idea, we extend AdaBoost and propose an 
algorithm that employs different base learning algorithms in 
different iterations. The most distinguishing feature of our 
algorithm is that it selects algorithms using a stochastic process 
where their earlier performance is considered. The results from 
experiments on several data sets show the utility of our algorithm: 
It could outperform AdaBoost on 22 to 33, depending on settings,
out of 40 data sets considered in experiments.
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1. INTRODUCTION
Ensemble learning is to create multiple models and combine 
results from models, and it has attracted much research attention 
[4, 22, 26-29, 38]. If the center of attention is classification, 
ensemble learning could be understood as follows: It constitutes a 
group of classifiers first and then aggregates classification results 
or predictions from these member classifiers. For an unseen 
sample, it inputs the sample to member classifiers, collects 
predictions from member classifiers, and outputs the final 
prediction based on some fusion methods. Examples of fusion 

methods include unweighted or weighted majority voting.

The intuition behind ensemble learning is analogous to the 
process where we consider opinions from all possible sources and 
accordingly make a final decision. From this point of view, 
ensemble learning works like a committee where members 
provide opinions from their own perspectives. We expect that 
these opinions are different from and independent of each other. 
Therefore, classifier quality and diversity are among factors that 
contribute to the successful results of ensemble learning. The 
rationale behind the first factor (i.e. quality) is that a classifier 
with better prediction performance contributes more to the group. 
The ground for the second factor (diversity) is simply that one 
hundred identical classifiers are functionally equivalent to one.

Researchers have studied classification for decades and they have 
proposed various off-the-shelf classification algorithms, so 
classifier quality is less important than diversity in ensemble 
learning. Diversity, including diversity among classifiers in an 
ensemble and diversity creation for an ensemble, has gained 
considerable attention. Examples of methods to create diversity 
include those manipulating training sets, such as bagging [1],
boosting [8, 37], and ideas presented in papers [23-24]. An 
example for feature set manipulation is random forests [2].

AdaBoost (Adaptive Boosting) is one of the most popular 
ensemble learning algorithms [8, 37]. It has been applied to 
various applications such as natural language processing [5-6],
network security [12], healthcare [32], computer vision [7, 14, 19, 
21], wearable computing [30], and intelligent transportation 
systems [31]. Ensemble learning requires diversity. AdaBoost
creates diversity by manipulating training sets, and it operates on 
training sets composed of hard-to-classify samples as the process 
proceeds. However, we observe that diversity of training sets in 
later iterations is low, and this could potentially impair the 
prediction performance of AdaBoost. Below is the problem 
statement of this paper:

How to improve the prediction performance of AdaBoost?

If we are given a limited set of training samples, we need to run 
AdaBoost with a large number of iterations. Nevertheless, we are 
given limited time for most tasks in practice. Therefore, we put 
our focus on situations where training samples and our time are 
limited. In contrast, if the given training set is sufficiently large, 
we do not need to run AdaBoost with a larger number of iterations. 
Nevertheless, this is not always the case especially in situations 
where having more training samples are costly.

Usually a shrinkage coefficient is used to make AdaBoost run the 
exponential weight updating procedure, which is adopted to 
generate training sets, in a more gentle way. This is one of 
regularization techniques widely used in statistics. The impact 
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could be seen when we perform a limited number of iterations for 
AdaBoost, which is generally the case. It could also be seen when 
there is a limited set of training samples.

We could employ heterogeneous algorithms in ensemble learning 
to achieve better diversity, as suggested in papers [10-11]. We 
extend AdaBoost and propose an algorithm that harnesses 
heterogeneity for encouraging diversity. We employ different 
algorithms and adopt a stochastic process for algorithm selection.

The rest of this paper is organized as follows. We will review 
diversity and AdaBoost in Section 2, and we will describe our 
algorithm in Section 3. There will be experiment results presented 
in Section 4. Finally, conclusion will be given in Section 5.

2. DIVERSITY AND ADABOOST
Diversity measures are proposed to assist in the selection of 
algorithms for member classifiers and/or the evaluation of fusion 
methodologies (or combination strategies) in ensemble learning 
[15, 18]. The study of diversity in ensemble learning has gained 
increasing attention, and examples of papers include [3, 15-17, 25,
29, 33-34]. Nevertheless, most papers studying diversity do not 
take heterogeneity into account. Here, heterogeneity is from using 
different or heterogeneous algorithms. Papers [10-11] investigate 
the relationship between heterogeneity and diversity. Experiment
results in papers [10-11] have shown the impact of heterogeneity 
on diversity. Using two different algorithms in ensemble learning 
would achieve better diversity.

AdaBoost works as follows: Initially it assigns equal weights to 
samples and then draws samples with replacement to generate the 
first training set. Afterward, it employs the training set to create 
the first classifier. Next, it evaluates the performance of the 
classifier and weights of samples misclassified by the classifier 
will be increased exponentially. Then, it draws samples based on 
probabilities proportional to their weights in order to generate the 
second training set that will be used to create the second classifier.
Next, it repeats doing weighted sampling, creating classifiers, 
evaluating classifiers, and updating weights of samples until it has 
reached a certain number of iterations. In other words, AdaBoost 
iteratively creates a group of classifiers and manipulates training 
sets by performing weighted sampling where the probability of a 
sample being drawn is exponentially proportional to the 
probability that it was misclassified.

From the process, we could see that AdaBoost assigns more 
weights to samples for which most classifiers (created so far) 
made incorrect predictions. AdaBoost utilizes oversampling to 
force the base learning algorithm to create classifiers focusing on 
those hard-to-classify samples. This feature distinguishes 
AdaBoost from other methods manipulating training sets. It has 
the potential to achieve better prediction performance because it
considers all samples based on their difficulties. However, this 
feature brings the risk of being overfitting. Nevertheless, if the 
number of iterations is large enough or if the number of training 
samples is large enough, AdaBoost does not tend to be overfitting. 
However, the number of iterations is usually limited in practice.

Let us consider the following example, where we apply AdaBoost 
with C4.5 decision tree [28, 37] on a small data set (which is 
named labor coming with 57 samples and 17 features). We do 50-
50 random split: One half of data is used as training samples, 
while the other half is used to test the created classification model
(an ensemble, for example) built upon those training samples. 
These two are disjoint subsets of the data set. Examples of 
training sets are in Figure 1.

(a)

(b)

Figure 1. Example: Training samples in the initial iteration (a) 
and later one (b)

Results reported here are averaged over 50 runs, while training 
and test samples are generated randomly in every run. In Figure 1, 
there are data matrices, in each of which a row represents a 
sample and a column represents a feature. Figure 1 (a) and (b) 
present training samples used in the initial iteration and a later one, 
respectively. It is clear from Figure 1 that variety of training sets 
in the initial iteration is higher than that in a later iteration. 
Samples in a later iteration are duplicates of hard-to-classify ones.

Figure 1 visualizes data matrices of training sets while Figure 2 
provides a numerical measure of their complexity. Figure 2 
presents the number of iterations versus the average number of 
principal components in training sets. At first, there are about 13 
principal components in the initial training set. This means that 
we need a 13-dimensional space to cover 95% variance among 
training samples that originally exist in a 17-dimensional space. 
Later, there are about 4 principal components in a training set. 
This means that we only need a 4-dimensional space to cover 95% 
variance among training samples used in a later iteration.

Figure 2. Number of principal components vs. iterations
Figure 2 presents complexity of training sets while Figure 3 
presents complexity of created classification models. Figure 3 
shows the number of iterations versus the average number of 
nodes in created decision trees. As a training set becomes 
monotonic in variety, the classification model (a decision tree in 
this example) also becomes monotonic.
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Figure 3. Tree size vs. iterations
Figure 4 presents the average training and test error rates versus 
the number of iterations. Here the training error rate is a 
cumulative one and is aggregated with respect to all classifiers 
created so far. The test error rate is with respect to an isolated test 
set and it is the one given by the combination of classifiers created 
so far. AdaBoost significantly lowers both training and test error 
rates in less than 50 iterations. This demonstrates an advantage of 
AdaBoost and ensemble learning as well.

Figure 4. Training and test error rates vs. iterations
AdaBoost generates training sets composed of hard-to-classify 
samples as it iterates, such that the data distribution of a training 
set in a later iteration could be fairly different from the one in the 
original data set. This feature contributes to the generalization 
capability of AdaBoost because it motivates AdaBoost to examine 
different aspects of the underlying distribution. Nevertheless, this 
happens when the number of iterations is large enough, and 
usually it is not practical to perform a large number of iterations.

The introduction of a shrinkage coefficient, , is a widely-used 
technique that allows AdaBoost to generate training sets in a more 
gentle way. Using is to postpone the decline of variety of 
training sets (e.g., the sharp drops in Figures 2 and 3) such that 
diversity from difference among training sets could be preserved. 
It helps AdaBoost avoid overfitting because discourages 
AdaBoost to over-emphasize hard-to-classify samples (especially 
in a limited number of iterations). Usually it is a small positive 
constant (0 < < 1). When weights of samples are updated in 
smaller steps (or changes of weights are smaller) and when the 
number of updates is limited, the weighted sampling procedure 
works as an unweighted sampling procedure. In other words, 
allows AdaBoost to gently generate training sets and accordingly 
maintains diversity from training sets.

We introduce the use of different or heterogeneous algorithms in 
AdaBoost. Our algorithm establishes another source of diversity, 
diversity from heterogeneity between algorithms. The purpose of 
using heterogeneous algorithms is two-fold: First, it adds another 
source of diversity when diversity from difference among training 
sets is still sufficient to make a major contribution (in earlier 

iterations). Second, it serves as the primary source of diversity 
when variety of training sets declines and they could only make a 
minor contribution to diversity (in later iterations).

3. THE PROPOSED ALGORITHM
Our algorithm follows the basic procedure of AdaBoost: Sampling 
with weights, training, evaluating classifiers, updating weights 
according to earlier prediction performance, and adopting 
weighted majority voting to reach final predictions. Our algorithm
is different from AdaBoost in that, it creates classifiers with 
heterogeneous algorithms in a stochastic way. In some iteration, 
our algorithm might not only focus on samples that are predicted 
incorrectly in the last iteration but it might also use an algorithm 
different from the one used in the last iteration. It uses a stochastic 
process to select algorithms from a bag of algorithms, or BA.

The process behaves in a non-deterministic way and the algorithm 
selected for the next iteration is determined by both the earlier 
prediction performance of the algorithm and a random number. 
The design of the random element in this stochastic process is 
presented below. Figure 5 illustrates an example, where there are 
two base learning algorithms, A1 and A2, and P1 represents the
transition probability for A1. A1 is the one used in the last iteration, 
and P1 determines which will be used in the current iteration. The 
transition probability is the probability that the process transits 
from A1 to A2. It is the probability that the process does not select 
A1 but the A2. In other words, 1-P1 is the probability that the 
process selects A1 again. In our algorithm, 1-P1 is proportional to 
the weight of A1. Therefore, there is not only a set of weights of 
samples but also a set of weights of algorithms in our algorithm.

Figure 5. Stochastic algorithm selection for two algorithms
Our algorithm is presented in Figure 6 and described as follows.
One of its input parameters is a data set S of size n. Another input 
parameter is BA, a set of algorithms that will be considered as 
base learning algorithms. The size of BA (denoted by |BA|) is m. In 
our experiments, BA contains decision stump algorithm (which is 
stable but less powerful) and decision tree algorithm generating 
unpruned trees (which is more powerful but unstable). Such a 
combination of algorithms is interesting because decision stump 
algorithm tends to be underfitting while the decision tree 
algorithm (generating unpruned trees) tends to be overfitting. 
Furthermore, the other input parameter of our algorithm is the 
total number of iterations, T. The first two steps are to initialize 
variables. The third step is basically a loop. In the t-th iteration, it 
does the following: It uses weighted sampling to have a training 
set, St. It uses weighted sampling to have an algorithm, At. It uses 
At and St to create a classifier Ct. Then, it evaluates the prediction
performance of Ct. It updates weights of samples and weights of 
algorithms according to the prediction performance of Ct.. In 
Figure 6, is the indicator function. In the end, the algorithm will 
create a set of T classifiers and use a weighted majority voting to 
generate final predictions. The fourth step is to use the prediction 
performance of each classifier in the ensemble as a weight and 
calculate the probability that a sample belongs to a class, and it is 
to select one among all classes with the largest probability.
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1 Initialize weights of samples, wsi = 1/n, WS = {wsi}, 
where n is the number of samples (n = |S| = |WS|)

2 Initialize weights of algorithms, waj = 1/m, WA =
{waj}, where m is the number of algorithms (m =
|WA| = |BA|)

3 For iteration t = 1 to T, do
3.1 Create a training set of size n:

St = ResampleWithWeights(S, WS, n)
3.2 Select an algorithm:

At = ResampleWithWeights(BA, WA, 1)
3.3 Create a classifier, Ct = (At, St), based on the = (A((C

selected algorithm At and St, where could be e coC
a function call to create an instance of classifier

3.4 Calculate the training error:
n

i
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C
iiit

ttt yyyws
n 1

),(ˆˆ1

3.5 Calculate t (presenting quality of Ct):

t

t
t

1log
2
1

3.6 Update weights of samples:
tC

iit yyv
i

new
i ewsws ˆ

3.7 Normalize weights of samples and set the 
updated weights for the next iteration:
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3.8 Update weights of algorithms:
tv

j
n e w
j ew aw a 2 , if At equals to the j-th 
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3.9 Normalize weights of algorithms and set the 
updated weights for the next iteration:
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4 Create an ensemble for prediction:
T

t

C
it

y
i

tyyy
1

ˆmaxargˆ

Figure 6. AdaBoost with stochastic algorithm selection
We design a function to perform weighted sampling with 
replacement for samples and algorithms. The function, 
ResampleWithWeights(X, W, k), takes three input parameters. The 
first one, X, is a set of objects (such as samples or algorithms). 
The second one, W, is a set of numbers, each of which exclusively 
corresponds to an object in X, and also |X| = |W|. The third one, k,
is used to control the size of the output set. When it terminates 
normally, this function returns a new set Xnew such that Xnew X =
X and also |Xnew| = k X|. Moreover, the probability that an object 
in X would be selected in Xnew (or the expected number of times 
that an object in X would be duplicated in Xnew) is propositional to 
the value of its corresponding element in W, as given in (1).

xnewr WXxXxP ofindex | (1)
Similar to the case that AdaBoost updates weights of samples 
according to weighted training errors, our algorithm updates the 
weight of a base learning algorithm by considering the quality of 
corresponding classifiers. From one iteration to another, the 

weight of a base learning algorithm is increased as the quality of 
the classifier based on it increases or as the weighted error rate 
given by the corresponding classifier decreases. Following the 
concept of AdaBoost in which an exponential function is 
employed to update weights of samples, we use the same 
exponential function to update weights of algorithms. different 
functions for this purpose are certainly worth further investigation.

Following the idea of regularization, there is a shrinkage 
coefficient 2 used to work with the aforementioned stochastic 
process and to update weights of algorithms in a more gentle way. 
Its function is similar to that of the shrinkage coefficient 
described earlier. It is used to smooth the stochastic process and 
further the selection process or the sampling process for 
algorithms. If we do not introduce 2 in our algorithm, after a 
relatively small number of iterations, the (normalized) weight of 
some algorithm would be 1 (or very close to but still smaller than 
1). If this happens, the transition probability of the algorithm 
would converge to 0 (or very close to but still larger than 0) and 
the selection process would be trapped in some algorithm. This 
means that the algorithm would always be selected afterward.
Obviously, such a convergence happens with or without the use of 
the shrinkage coefficient 2. However, we would like to slow 
down the convergence because we perform a relatively small 
number of iterations. This is also part of the reason that is used.
Usually, 2 is much smaller than because the number of 
algorithms is much smaller than the number of samples.

This paper is different from the paper [14] in three ways: First, we 
describe the intuition of the design of our algorithm in a way more 
detailed than the way taken by the authors of the paper [14].
Second, our algorithm selects base learning algorithms, while that 
proposed in the paper [14] selects classifiers. Third, this paper 
presents results from experiments on data sets from various 
application domains, while the paper [14] presents results only for 
a computer vision application.

4. EXPERIMENTS AND RESULTS
In experiments we consider synthetic data sets and also 
benchmark data sets obtained from references [20, 35]. There are 
40 binary data sets considered here: 30 are real data sets and 10 
are synthetic ones. These data sets are from different application 
domains and with a variety of characteristics. We use one-versus-
the-rest to transform non-binary data sets into binary ones.

Table 1 presents characteristics of data sets used in experiments. 
Columns are the name, the number of samples, the number of 
features, and the number of principal components of a data set.
The last column is the number of principal components suggested 
by the PCA [13] built in WEKA [9]. If the number of principal 
components is larger than the number of features, there would 
probably be hidden features and/or interactions among features.

We implement our algorithm using WEKA. Three algorithms are 
used as base algorithms in the classic AdaBoost. Decision stump 
algorithm (DS) generates a tree with a single decision node, while 
decision tree algorithm is employed to generate pruned decision 
trees (DT) and unpruned ones (UDT). DS and UDT are used as 
base learning algorithms in our algorithm (DS+UDT). This 
combination is interesting because these two base learning 
algorithms are different. DS is a high-variance and low-bias 
learning algorithm, and the generated classification models tend to 
be underfitting; UDT is a low-variance and high-bias learning 
algorithm, and it has a tendency to generate overfitting models.



For a classification model, its generalization capability is the 
capability to use samples it has seen to predict unseen samples. If 
its prediction performance for the training set is as good as that for
the test set, a model demonstrates good generalization capability.
In order to evaluate the prediction performance of our algorithm, 
we adopt the following procedure in experiments. Initially, we 
perform 10-90 random split for a data set. In other words, we 
randomly select 10% of samples without replacement to generate 
a training set. Then we use the rest 90% of samples to generate an 
independent test set. Such a pair of training and test sets is 
employed for a trial. We repeat these two steps 10 times and
accordingly obtain 10 such pairs for 10 trails in an experiment.
Afterward, we run experiments with 100 and 1000 iterations.

Table 1. Characteristics of data sets

Name Size Dim PCs
German Credit Data 1000 20 42

Pima Indians Diabetes 768 8 8
Ionosphere 351 34 23

Chess End-Game 3196 36 31
Connectionist Bench 208 60 30

Heart Disease 303 13 16
Heart 294 13 15

Hypothyroid Negative 3772 29 25

Image 
Segmentation

brickface 2310 19 10
cement 2310 19 10
foliage 2310 19 10
grass 2310 19 10
path 2310 19 10
sky 2310 19 10

window 2310 19 10
Splice-junction Gene Sequences 3190 60 170

Vehicle 
Silhouettes

bus 846 18 7
opel 846 18 7
saab 846 18 7
van 846 18 7

Zoo

amphibian 101 16 10
bird 101 16 10
fish 101 16 10

insect 101 16 10
invertebrate 101 16 10

mammal 101 16 10
reptile 101 16 10

Spambase 4601 57 48
Runshoes 60 10 9

Schizophrenic Eye-Tracking 340 13 12
Synthetic A 1000 20 299
Synthetic B 1000 20 62
Synthetic C 1000 20 90
Synthetic D 1000 20 59
Synthetic E 1000 16 490
Synthetic F 1000 5 5
Synthetic G 1000 11 10
Synthetic H 1000 6 20
Synthetic I 1000 6 365

Synthetic J* 1000 55 N/A

On one hand, for the classic AdaBoost, variables changing 
throughout trials in an experiment include the base algorithm (DS, 
DT, or UDT) and the shrinkage coefficient (1 or 10-1). 
Accordingly, 6 combinations are for the classic AdaBoost. For 
example, we use AdaBoost(DS, =1) to denote Adaboost with DS 
and set to 1. On the other hand, for our algorithm that adopts DS 
and UDT as base learning algorithms, variables include the 
shrinkage coefficients (1 or 10-1) and 2 (1, 10-3, or 10-6). 
Therefore, 6 combinations are for our algorithm. Likewise, 
DS+UDT( =1, 2=1) is used to denote our algorithm with set 
to1 and 2 set to 1.

We average training and test error rates for every data set 
considered in experiments, and the means and standard deviations 
are calculated over 40 data sets. Training errors with 100 and 
1000 iterations, are reported in Tables 2 and 3, respectively.
Similarly, test errors are reported in Tables 4 and 5.

Table 2. Means and standard deviations (in parentheses) for 
training errors for 100 iterations

2
AdaBoost with DS+UDTDS DT UDT

1
1 0.11 

(0.099)
0.053 

(0.055)
0.049 

(0.048)

0.069 (0.064)
10-3 0.069 (0.064)
10-6 0.068 (0.068)

10-1
1 0.108 

(0.101)
0.058 

(0.056)
0.055 

(0.055)

0.078 (0.068)
10-3 0.063 (0.066)
10-6 0.064 (0.064)

Table 3. Means and standard deviations (in parentheses) for
training errors for 1000 iterations

2
AdaBoost wtih DS+UDTDS DT UDT

1
1 0.113 

(0.1)
0.057 

(0.056)
0.051 

(0.056)

0.076 (0.07)
10-3 0.054 (0.053)
10-6 0.072 (0.063)

10-1
1 0.111 

(0.104)
0.057 
(0.06)

0.056 
(0.055)

0.074 (0.062)
10-3 0.054 (0.05)
10-6 0.062 (0.064)

Table 4. Means and standard deviations (in parentheses) for
test errors for 100 iterations

2
AdaBoost with DS+UDTDS DT UDT

1
1 0.174 

(0.141)
0.14 

(0.138)
0.143 

(0.136)

0.121 (0.114)
10-3 0.119 (0.119)
10-6 0.12 (0.123)

10-1
1 0.17 

(0.136)
0.148 

(0.145)
0.147 

(0.139)

0.122 (0.119)
10-3 0.117 (0.119)
10-6 0.118 (0.119)

Table 5. Means and standard deviations (in parentheses) for
test errors for 1000 iterations

2
AdaBoost with DS+UDTDS DT UDT

1
1 0.173 

(0.137)
0.143 

(0.138)
0.148 

(0.138)

0.12 (0.112)
10-3 0.118 (0.122)
10-6 0.122 (0.12)

10-1
1 0.171 

(0.142)
0.143 

(0.143)
0.153 

(0.144)

0.121 (0.113)
10-3 0.116 (0.121)
10-6 0.117 (0.121)



The best results for algorithms in Tables 2-5 are illustrated in 
Figures 7-10.

Figure 7. Training errors for 100 iterations

Figure 8. Training errors for 1000 iterations

Figure 9. Test errors for 100 iterations

Figure 10. Test errors for 1000 iterations
For 100-iteration experiments, the lowest training error is given 
by AdaBoost(UDT, =1), and error rates given by DS+UDT are 
only lower than those given by AdaBoost with DS. However, the 
lowest test error rate is given by DS+UDT( =10-1, 2=10-3). In 
fact, all combinations for DS+UDT give lower test error rates if 
we compare them to all combinations for the classic AdaBoost. 
Similar observations could be made for 1000-iteration 

experiments. Additionally, both DS+UDT( =1, 2=10-3) and 
DS+UDT( =10-1, 2=10-3) give lower error rates in training and 
test if we compare them to all combinations for DS+UDT. If we 
compare them to all combinations for AdaBoost, only 
AdaBoost(UDT, =1) gives a lower error in training. Test error 
rates given by DS+UDT are all lower than those given by 
AdaBoost with DS, DT, and UDT.

It is clear from above observations that DS+UDT outperforms 
AdaBoost with DS, DT, and UDT. First of all, DS+UDT 
outperforms AdaBoost with DS and UDT because they are two 
extremes: Models created by DS are too simple while those 
created by UDT are too complicated. Simple models often give 
high error rates, and we observe this from results given by 
AdaBoost with DS; complicated models tend to overfit training 
samples but perform poorly on unseen samples in a test set, and 
we observe this from results given by Adaboost with UDT. Not 
considering these two extremes but AdaBoost with DT, which is a 
popular setting in practice, we still obverse that DS+UDT 
provides better performance in terms of test error rates. Moreover, 
above observations also demonstrate that our algorithm provides 
better generalization capability. Our algorithm has a smaller 
performance gap between performance associated with seen 
samples and that associated with unseen samples.

As for the effect of the number of iterations, AdaBoost(DT, =10-1)
decreases its training and test error rates as the number of 
iterations increases from 100 to 1000, while AdaBoost(DS, =1) 
decreases its test error rate as we perform more iterations. Given 
small training sets (and given the fact that 10-90 random split 
makes them even smaller), we need to perform more iterations to 
avoid overfitting. However, DS+UDT shows more positive effects. 
Both DS+UDT( =1, 2=10-3) and DS+UDT( =10-1, 2=10-3)
decrease training error rates as we perform more iterations, while 
all except DS+UDT( =1, 2=10-6) do so. These observations, 
again, suggest that DS+UDT has a lower risk of being overfitting.

Tables 6 and 7 present comparisons in test error rates. The 
comparison between AdaBoost with DS and DS+UDT in 
presented in Table 6, and that between AdaBoost with UDT and 
DS+UDT is presented in Table 7. Here we consider the difference 
between the test error rates (with respect to a data set and trails on 
it). We use the one-tailed two-sample t-test. DS-(DS+UDT), as an 
example, is related to the difference between the test error rate 
from AdaBoost with DS and that from DS+UDT. In both tables, a 
number in an entry represents the number of data sets 
corresponding to significant or insignificant results from applying 
the test to the differences. The statistical significance test is 
conducted under 95% confidence level. For both DS-(DS+UDT) 
and UDT-(DS+UDT), we consider 4 cases for the differences: 1) 
Positive and significant. 2) Positive but insignificant. 3) 
Nonpositive but insignificant. 4) Nonpositive and insignificant.
Here significant means that the corresponding p-value is less than 
0.05. The first case implies the effectiveness of DS+UDT; the 
second and third cases tell us nothing but that DS+UDT performs 
as well as the classic AdaBoost with DS or UDT; the fourth case, 
however, presents a situation where DS+UDT does not 
demonstrate comparable prediction performance. As we can see 
from the Tables 6 and 7, DS+UDT outperforms AdaBoost with 
DS or UDT on most data sets, even though it is not always the 
winner: Depending on combinations of parameters, DS+UDT 
achieves significantly lower test error rates on 22 to 33 data sets, 
provides comparable performance on 2 to 13 data sets, and gives 
significantly higher test error rates on at most 4 data sets (and on 0
data sets for most of the time).
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Setting 2 to 1 actually destroys the nature of the stochastic 
process because some algorithm will (almost) always be selected. 
If the algorithm is a good fit for the data set then we would have a 
good classification model; otherwise, we miss an opportunity to 
use another heterogeneous algorithm to compensate for the 
weakness of the algorithm. If we set 2 to a very small value 
(close to 0), the process becomes (almost) fully random and we 
miss an opportunity to utilize the strength of the algorithm that is 
potentially a good fit for the data set.

Table 6. Statistical test results for 100 iterations

2

Positive diff.;
DS+UDT is better

Nonpositive diff.;
it is not better

sig. insig. insig. sig.

DS-
(DS+U

DT)

1
1 29 9 2 0

10-3 33 5 2 0
10-6 30 6 4 0

10-1
1 30 6 4 0

10-3 30 7 3 0
10-6 27 9 4 0

UDT-
(DS+U

DT)

1
1 26 6 5 3

10-3 22 8 8 2
10-6 22 11 3 4

10-1
1 24 8 5 3

10-3 23 9 6 2
10-6 24 6 9 1

Table 7.Statistical test results for 1000 iterations

2

Positive diff.;
DS+UDT is better

Nonpositive diff.;
it is not better

sig. insig. insig. sig.

DS-
(DS+U

DT)

1
1 31 4 4 1

10-3 29 7 3 1
10-6 31 4 5 0

10-1
1 27 10 3 0

10-3 26 11 3 0
10-6 28 9 2 1

UDT-
(DS+U

DT)

1
1 23 8 7 2

10-3 26 8 3 3
10-6 23 8 6 3

10-1
1 23 10 3 4

10-3 30 3 6 1
10-6 22 13 5 0

5. CONCLUSION
AdaBoost creates diversity by manipulating training sets, and it 
demonstrates superior performance when the number of data 
samples is sufficiently large or the number of iterations is 
sufficiently large. Nevertheless, we observe that it over-
emphasizes hard-to-classify samples and generates training sets of 
low variety if we perform a limited number of iterations. 
Moreover, we could achieve better diversity by employing 
heterogeneous algorithms. Following the idea of employing 
heterogeneous algorithms in ensemble learning, we propose a 
variant of AdaBoost and our algorithm adopts different base
learning algorithms (such as decision stump algorithm and 
decision tree algorithm generating unpruned trees) in different 
iterations. The other feature that distinguishes our algorithm from 
other variants of AdaBoost is that it selects the base learning
algorithms using a stochastic process where their earlier 
performance is considered. Experiment results show that, our 
algorithm does not necessarily lower average training error rates 
but it achieves lower average test error rates, which means that 
our algorithm is less prone to overfitting. Our algorithm 

employing two different base learning algorithms performs better
than does the classic AdaBoost with either of these two algorithms.
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