
Heterogeneous AdaBoost with Stochastic Algorithm
Selection
Kuo-Wei Hsu

Department of Computer Science, National Chengchi University
No. 64, Sec. 2, Zhi Nan Rd., Wen Shan District

Taipei City 11605, Taiwan (R.O.C.)
+886-2-29393091 ext. 62297

kwhsu@nccu.edu.tw

ABSTRACT
We propose an ensemble learning algorithm based on AdaBoost
and employing heterogeneous algorithms with a stochastic
process for algorithm selection. Diversity is an important factor in
ensemble learning and AdaBoost creates diversity by
manipulating training data sets. However, we observe that
AdaBoost generates training data sets of low diversity in later
iterations. Some researchers suggest the employment of
heterogeneous algorithms in ensemble learning to achieve better
diversity. Following the idea, we extend AdaBoost and propose an
algorithm that employs different base learning algorithms in
different iterations. The most distinguishing feature of our
algorithm is that it selects algorithms using a stochastic process
where their earlier performance is considered. The results from
experiments on several data sets show the utility of our algorithm:
It could outperform AdaBoost on 22 to 33, depending on settings,
out of 40 data sets considered in experiments.

CCS Concepts
• Computing methodologies Machine learning • Computing
methodologies Artificial intelligence • Information
systems Mobile information processing systems • Information
systems Data mining • Human-centered computing Ubiquitous
and mobile computing

Keywords
Boosting; Classification; Ensemble

1. INTRODUCTION
Ensemble learning is to create multiple models and combine
results from models, and it has attracted much research attention
[4, 22, 26-29, 38]. If the center of attention is classification,
ensemble learning could be understood as follows: It constitutes a
group of classifiers first and then aggregates classification results
or predictions from these member classifiers. For an unseen
sample, it inputs the sample to member classifiers, collects
predictions from member classifiers, and outputs the final
prediction based on some fusion methods. Examples of fusion

methods include unweighted or weighted majority voting.

The intuition behind ensemble learning is analogous to the
process where we consider opinions from all possible sources and
accordingly make a final decision. From this point of view,
ensemble learning works like a committee where members
provide opinions from their own perspectives. We expect that
these opinions are different from and independent of each other.
Therefore, classifier quality and diversity are among factors that
contribute to the successful results of ensemble learning. The
rationale behind the first factor (i.e. quality) is that a classifier
with better prediction performance contributes more to the group.
The ground for the second factor (diversity) is simply that one
hundred identical classifiers are functionally equivalent to one.

Researchers have studied classification for decades and they have
proposed various off-the-shelf classification algorithms, so
classifier quality is less important than diversity in ensemble
learning. Diversity, including diversity among classifiers in an
ensemble and diversity creation for an ensemble, has gained
considerable attention. Examples of methods to create diversity
include those manipulating training sets, such as bagging [1],
boosting [8, 37], and ideas presented in papers [23-24]. An
example for feature set manipulation is random forests [2].

AdaBoost (Adaptive Boosting) is one of the most popular
ensemble learning algorithms [8, 37]. It has been applied to
various applications such as natural language processing [5-6],
network security [12], healthcare [32], computer vision [7, 14, 19,
21], wearable computing [30], and intelligent transportation
systems [31]. Ensemble learning requires diversity. AdaBoost
creates diversity by manipulating training sets, and it operates on
training sets composed of hard-to-classify samples as the process
proceeds. However, we observe that diversity of training sets in
later iterations is low, and this could potentially impair the
prediction performance of AdaBoost. Below is the problem
statement of this paper:

How to improve the prediction performance of AdaBoost?

If we are given a limited set of training samples, we need to run
AdaBoost with a large number of iterations. Nevertheless, we are
given limited time for most tasks in practice. Therefore, we put
our focus on situations where training samples and our time are
limited. In contrast, if the given training set is sufficiently large,
we do not need to run AdaBoost with a larger number of iterations.
Nevertheless, this is not always the case especially in situations
where having more training samples are costly.

Usually a shrinkage coefficient is used to make AdaBoost run the
exponential weight updating procedure, which is adopted to
generate training sets, in a more gentle way. This is one of
regularization techniques widely used in statistics. The impact

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
IMCOM’17, January 05–07, 2017, Beppu, Japan.
© 2017 ACM. ISBN 978-1-4503-4888-1/17/01…$15.00
DOI: http://dx.doi.org/10.1145/3022227.3022266

could be seen when we perform a limited number of iterations for
AdaBoost, which is generally the case. It could also be seen when
there is a limited set of training samples.

We could employ heterogeneous algorithms in ensemble learning
to achieve better diversity, as suggested in papers [10-11]. We
extend AdaBoost and propose an algorithm that harnesses
heterogeneity for encouraging diversity. We employ different
algorithms and adopt a stochastic process for algorithm selection.

The rest of this paper is organized as follows. We will review
diversity and AdaBoost in Section 2, and we will describe our
algorithm in Section 3. There will be experiment results presented
in Section 4. Finally, conclusion will be given in Section 5.

2. DIVERSITY AND ADABOOST
Diversity measures are proposed to assist in the selection of
algorithms for member classifiers and/or the evaluation of fusion
methodologies (or combination strategies) in ensemble learning
[15, 18]. The study of diversity in ensemble learning has gained
increasing attention, and examples of papers include [3, 15-17, 25,
29, 33-34]. Nevertheless, most papers studying diversity do not
take heterogeneity into account. Here, heterogeneity is from using
different or heterogeneous algorithms. Papers [10-11] investigate
the relationship between heterogeneity and diversity. Experiment
results in papers [10-11] have shown the impact of heterogeneity
on diversity. Using two different algorithms in ensemble learning
would achieve better diversity.

AdaBoost works as follows: Initially it assigns equal weights to
samples and then draws samples with replacement to generate the
first training set. Afterward, it employs the training set to create
the first classifier. Next, it evaluates the performance of the
classifier and weights of samples misclassified by the classifier
will be increased exponentially. Then, it draws samples based on
probabilities proportional to their weights in order to generate the
second training set that will be used to create the second classifier.
Next, it repeats doing weighted sampling, creating classifiers,
evaluating classifiers, and updating weights of samples until it has
reached a certain number of iterations. In other words, AdaBoost
iteratively creates a group of classifiers and manipulates training
sets by performing weighted sampling where the probability of a
sample being drawn is exponentially proportional to the
probability that it was misclassified.

From the process, we could see that AdaBoost assigns more
weights to samples for which most classifiers (created so far)
made incorrect predictions. AdaBoost utilizes oversampling to
force the base learning algorithm to create classifiers focusing on
those hard-to-classify samples. This feature distinguishes
AdaBoost from other methods manipulating training sets. It has
the potential to achieve better prediction performance because it
considers all samples based on their difficulties. However, this
feature brings the risk of being overfitting. Nevertheless, if the
number of iterations is large enough or if the number of training
samples is large enough, AdaBoost does not tend to be overfitting.
However, the number of iterations is usually limited in practice.

Let us consider the following example, where we apply AdaBoost
with C4.5 decision tree [28, 37] on a small data set (which is
named labor coming with 57 samples and 17 features). We do 50-
50 random split: One half of data is used as training samples,
while the other half is used to test the created classification model
(an ensemble, for example) built upon those training samples.
These two are disjoint subsets of the data set. Examples of
training sets are in Figure 1.

(a)

(b)

Figure 1. Example: Training samples in the initial iteration (a)
and later one (b)

Results reported here are averaged over 50 runs, while training
and test samples are generated randomly in every run. In Figure 1,
there are data matrices, in each of which a row represents a
sample and a column represents a feature. Figure 1 (a) and (b)
present training samples used in the initial iteration and a later one,
respectively. It is clear from Figure 1 that variety of training sets
in the initial iteration is higher than that in a later iteration.
Samples in a later iteration are duplicates of hard-to-classify ones.

Figure 1 visualizes data matrices of training sets while Figure 2
provides a numerical measure of their complexity. Figure 2
presents the number of iterations versus the average number of
principal components in training sets. At first, there are about 13
principal components in the initial training set. This means that
we need a 13-dimensional space to cover 95% variance among
training samples that originally exist in a 17-dimensional space.
Later, there are about 4 principal components in a training set.
This means that we only need a 4-dimensional space to cover 95%
variance among training samples used in a later iteration.

Figure 2. Number of principal components vs. iterations
Figure 2 presents complexity of training sets while Figure 3
presents complexity of created classification models. Figure 3
shows the number of iterations versus the average number of
nodes in created decision trees. As a training set becomes
monotonic in variety, the classification model (a decision tree in
this example) also becomes monotonic.

0

2

4

6

8

10

12

14

0 100 200 300 400 500

Number of iterations

N
um

be
r o

f p
rin

ci
pa

l c
om

po
ne

nt
s

Figure 3. Tree size vs. iterations
Figure 4 presents the average training and test error rates versus
the number of iterations. Here the training error rate is a
cumulative one and is aggregated with respect to all classifiers
created so far. The test error rate is with respect to an isolated test
set and it is the one given by the combination of classifiers created
so far. AdaBoost significantly lowers both training and test error
rates in less than 50 iterations. This demonstrates an advantage of
AdaBoost and ensemble learning as well.

Figure 4. Training and test error rates vs. iterations
AdaBoost generates training sets composed of hard-to-classify
samples as it iterates, such that the data distribution of a training
set in a later iteration could be fairly different from the one in the
original data set. This feature contributes to the generalization
capability of AdaBoost because it motivates AdaBoost to examine
different aspects of the underlying distribution. Nevertheless, this
happens when the number of iterations is large enough, and
usually it is not practical to perform a large number of iterations.

The introduction of a shrinkage coefficient, , is a widely-used
technique that allows AdaBoost to generate training sets in a more
gentle way. Using is to postpone the decline of variety of
training sets (e.g., the sharp drops in Figures 2 and 3) such that
diversity from difference among training sets could be preserved.
It helps AdaBoost avoid overfitting because discourages
AdaBoost to over-emphasize hard-to-classify samples (especially
in a limited number of iterations). Usually it is a small positive
constant (0 < < 1). When weights of samples are updated in
smaller steps (or changes of weights are smaller) and when the
number of updates is limited, the weighted sampling procedure
works as an unweighted sampling procedure. In other words,
allows AdaBoost to gently generate training sets and accordingly
maintains diversity from training sets.

We introduce the use of different or heterogeneous algorithms in
AdaBoost. Our algorithm establishes another source of diversity,
diversity from heterogeneity between algorithms. The purpose of
using heterogeneous algorithms is two-fold: First, it adds another
source of diversity when diversity from difference among training
sets is still sufficient to make a major contribution (in earlier

iterations). Second, it serves as the primary source of diversity
when variety of training sets declines and they could only make a
minor contribution to diversity (in later iterations).

3. THE PROPOSED ALGORITHM
Our algorithm follows the basic procedure of AdaBoost: Sampling
with weights, training, evaluating classifiers, updating weights
according to earlier prediction performance, and adopting
weighted majority voting to reach final predictions. Our algorithm
is different from AdaBoost in that, it creates classifiers with
heterogeneous algorithms in a stochastic way. In some iteration,
our algorithm might not only focus on samples that are predicted
incorrectly in the last iteration but it might also use an algorithm
different from the one used in the last iteration. It uses a stochastic
process to select algorithms from a bag of algorithms, or BA.

The process behaves in a non-deterministic way and the algorithm
selected for the next iteration is determined by both the earlier
prediction performance of the algorithm and a random number.
The design of the random element in this stochastic process is
presented below. Figure 5 illustrates an example, where there are
two base learning algorithms, A1 and A2, and P1 represents the
transition probability for A1. A1 is the one used in the last iteration,
and P1 determines which will be used in the current iteration. The
transition probability is the probability that the process transits
from A1 to A2. It is the probability that the process does not select
A1 but the A2. In other words, 1-P1 is the probability that the
process selects A1 again. In our algorithm, 1-P1 is proportional to
the weight of A1. Therefore, there is not only a set of weights of
samples but also a set of weights of algorithms in our algorithm.

Figure 5. Stochastic algorithm selection for two algorithms
Our algorithm is presented in Figure 6 and described as follows.
One of its input parameters is a data set S of size n. Another input
parameter is BA, a set of algorithms that will be considered as
base learning algorithms. The size of BA (denoted by |BA|) is m. In
our experiments, BA contains decision stump algorithm (which is
stable but less powerful) and decision tree algorithm generating
unpruned trees (which is more powerful but unstable). Such a
combination of algorithms is interesting because decision stump
algorithm tends to be underfitting while the decision tree
algorithm (generating unpruned trees) tends to be overfitting.
Furthermore, the other input parameter of our algorithm is the
total number of iterations, T. The first two steps are to initialize
variables. The third step is basically a loop. In the t-th iteration, it
does the following: It uses weighted sampling to have a training
set, St. It uses weighted sampling to have an algorithm, At. It uses
At and St to create a classifier Ct. Then, it evaluates the prediction
performance of Ct. It updates weights of samples and weights of
algorithms according to the prediction performance of Ct.. In
Figure 6, is the indicator function. In the end, the algorithm will
create a set of T classifiers and use a weighted majority voting to
generate final predictions. The fourth step is to use the prediction
performance of each classifier in the ensemble as a weight and
calculate the probability that a sample belongs to a class, and it is
to select one among all classes with the largest probability.

0

1

2

3

4

5

6

0 100 200 300 400 500

Number of iterations

Tr
ee

 s
iz

e
(n

um
be

r o
f n

od
es

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500

Number of iterations

Er
ro

r r
at

es

Training Test

1 Initialize weights of samples, wsi = 1/n, WS = {wsi},
where n is the number of samples (n = |S| = |WS|)

2 Initialize weights of algorithms, waj = 1/m, WA =
{waj}, where m is the number of algorithms (m =
|WA| = |BA|)

3 For iteration t = 1 to T, do
3.1 Create a training set of size n:

St = ResampleWithWeights(S, WS, n)
3.2 Select an algorithm:

At = ResampleWithWeights(BA, WA, 1)
3.3 Create a classifier, Ct = (At, St), based on the = (A((C

selected algorithm At and St, where could be e coC
a function call to create an instance of classifier

3.4 Calculate the training error:
n

i

SA
i

C
iiit

ttt yyyws
n 1

),(ˆˆ1

3.5 Calculate t (presenting quality of Ct):

t

t
t

1log
2
1

3.6 Update weights of samples:
tC

iit yyv
i

new
i ewsws ˆ

3.7 Normalize weights of samples and set the
updated weights for the next iteration:

1

1

n

i

new
i

new
ii wswsws

3.8 Update weights of algorithms:
tv

j
n e w
j ew aw a 2 , if At equals to the j-th

element in BA; j
new
j wawa , otherwise.

3.9 Normalize weights of algorithms and set the
updated weights for the next iteration:

1

1

m

j

new
j

new
jj wawawa

4 Create an ensemble for prediction:
T

t

C
it

y
i

tyyy
1

ˆmaxargˆ

Figure 6. AdaBoost with stochastic algorithm selection
We design a function to perform weighted sampling with
replacement for samples and algorithms. The function,
ResampleWithWeights(X, W, k), takes three input parameters. The
first one, X, is a set of objects (such as samples or algorithms).
The second one, W, is a set of numbers, each of which exclusively
corresponds to an object in X, and also |X| = |W|. The third one, k,
is used to control the size of the output set. When it terminates
normally, this function returns a new set Xnew such that Xnew X =
X and also |Xnew| = k X|. Moreover, the probability that an object
in X would be selected in Xnew (or the expected number of times
that an object in X would be duplicated in Xnew) is propositional to
the value of its corresponding element in W, as given in (1).

xnewr WXxXxP ofindex | (1)
Similar to the case that AdaBoost updates weights of samples
according to weighted training errors, our algorithm updates the
weight of a base learning algorithm by considering the quality of
corresponding classifiers. From one iteration to another, the

weight of a base learning algorithm is increased as the quality of
the classifier based on it increases or as the weighted error rate
given by the corresponding classifier decreases. Following the
concept of AdaBoost in which an exponential function is
employed to update weights of samples, we use the same
exponential function to update weights of algorithms. different
functions for this purpose are certainly worth further investigation.

Following the idea of regularization, there is a shrinkage
coefficient 2 used to work with the aforementioned stochastic
process and to update weights of algorithms in a more gentle way.
Its function is similar to that of the shrinkage coefficient
described earlier. It is used to smooth the stochastic process and
further the selection process or the sampling process for
algorithms. If we do not introduce 2 in our algorithm, after a
relatively small number of iterations, the (normalized) weight of
some algorithm would be 1 (or very close to but still smaller than
1). If this happens, the transition probability of the algorithm
would converge to 0 (or very close to but still larger than 0) and
the selection process would be trapped in some algorithm. This
means that the algorithm would always be selected afterward.
Obviously, such a convergence happens with or without the use of
the shrinkage coefficient 2. However, we would like to slow
down the convergence because we perform a relatively small
number of iterations. This is also part of the reason that is used.
Usually, 2 is much smaller than because the number of
algorithms is much smaller than the number of samples.

This paper is different from the paper [14] in three ways: First, we
describe the intuition of the design of our algorithm in a way more
detailed than the way taken by the authors of the paper [14].
Second, our algorithm selects base learning algorithms, while that
proposed in the paper [14] selects classifiers. Third, this paper
presents results from experiments on data sets from various
application domains, while the paper [14] presents results only for
a computer vision application.

4. EXPERIMENTS AND RESULTS
In experiments we consider synthetic data sets and also
benchmark data sets obtained from references [20, 35]. There are
40 binary data sets considered here: 30 are real data sets and 10
are synthetic ones. These data sets are from different application
domains and with a variety of characteristics. We use one-versus-
the-rest to transform non-binary data sets into binary ones.

Table 1 presents characteristics of data sets used in experiments.
Columns are the name, the number of samples, the number of
features, and the number of principal components of a data set.
The last column is the number of principal components suggested
by the PCA [13] built in WEKA [9]. If the number of principal
components is larger than the number of features, there would
probably be hidden features and/or interactions among features.

We implement our algorithm using WEKA. Three algorithms are
used as base algorithms in the classic AdaBoost. Decision stump
algorithm (DS) generates a tree with a single decision node, while
decision tree algorithm is employed to generate pruned decision
trees (DT) and unpruned ones (UDT). DS and UDT are used as
base learning algorithms in our algorithm (DS+UDT). This
combination is interesting because these two base learning
algorithms are different. DS is a high-variance and low-bias
learning algorithm, and the generated classification models tend to
be underfitting; UDT is a low-variance and high-bias learning
algorithm, and it has a tendency to generate overfitting models.

For a classification model, its generalization capability is the
capability to use samples it has seen to predict unseen samples. If
its prediction performance for the training set is as good as that for
the test set, a model demonstrates good generalization capability.
In order to evaluate the prediction performance of our algorithm,
we adopt the following procedure in experiments. Initially, we
perform 10-90 random split for a data set. In other words, we
randomly select 10% of samples without replacement to generate
a training set. Then we use the rest 90% of samples to generate an
independent test set. Such a pair of training and test sets is
employed for a trial. We repeat these two steps 10 times and
accordingly obtain 10 such pairs for 10 trails in an experiment.
Afterward, we run experiments with 100 and 1000 iterations.

Table 1. Characteristics of data sets

Name Size Dim PCs
German Credit Data 1000 20 42

Pima Indians Diabetes 768 8 8
Ionosphere 351 34 23

Chess End-Game 3196 36 31
Connectionist Bench 208 60 30

Heart Disease 303 13 16
Heart 294 13 15

Hypothyroid Negative 3772 29 25

Image
Segmentation

brickface 2310 19 10
cement 2310 19 10
foliage 2310 19 10
grass 2310 19 10
path 2310 19 10
sky 2310 19 10

window 2310 19 10
Splice-junction Gene Sequences 3190 60 170

Vehicle
Silhouettes

bus 846 18 7
opel 846 18 7
saab 846 18 7
van 846 18 7

Zoo

amphibian 101 16 10
bird 101 16 10
fish 101 16 10

insect 101 16 10
invertebrate 101 16 10

mammal 101 16 10
reptile 101 16 10

Spambase 4601 57 48
Runshoes 60 10 9

Schizophrenic Eye-Tracking 340 13 12
Synthetic A 1000 20 299
Synthetic B 1000 20 62
Synthetic C 1000 20 90
Synthetic D 1000 20 59
Synthetic E 1000 16 490
Synthetic F 1000 5 5
Synthetic G 1000 11 10
Synthetic H 1000 6 20
Synthetic I 1000 6 365

Synthetic J* 1000 55 N/A

On one hand, for the classic AdaBoost, variables changing
throughout trials in an experiment include the base algorithm (DS,
DT, or UDT) and the shrinkage coefficient (1 or 10-1).
Accordingly, 6 combinations are for the classic AdaBoost. For
example, we use AdaBoost(DS, =1) to denote Adaboost with DS
and set to 1. On the other hand, for our algorithm that adopts DS
and UDT as base learning algorithms, variables include the
shrinkage coefficients (1 or 10-1) and 2 (1, 10-3, or 10-6).
Therefore, 6 combinations are for our algorithm. Likewise,
DS+UDT(=1, 2=1) is used to denote our algorithm with set
to1 and 2 set to 1.

We average training and test error rates for every data set
considered in experiments, and the means and standard deviations
are calculated over 40 data sets. Training errors with 100 and
1000 iterations, are reported in Tables 2 and 3, respectively.
Similarly, test errors are reported in Tables 4 and 5.

Table 2. Means and standard deviations (in parentheses) for
training errors for 100 iterations

2
AdaBoost with DS+UDTDS DT UDT

1
1 0.11

(0.099)
0.053

(0.055)
0.049

(0.048)

0.069 (0.064)
10-3 0.069 (0.064)
10-6 0.068 (0.068)

10-1
1 0.108

(0.101)
0.058

(0.056)
0.055

(0.055)

0.078 (0.068)
10-3 0.063 (0.066)
10-6 0.064 (0.064)

Table 3. Means and standard deviations (in parentheses) for
training errors for 1000 iterations

2
AdaBoost wtih DS+UDTDS DT UDT

1
1 0.113

(0.1)
0.057

(0.056)
0.051

(0.056)

0.076 (0.07)
10-3 0.054 (0.053)
10-6 0.072 (0.063)

10-1
1 0.111

(0.104)
0.057
(0.06)

0.056
(0.055)

0.074 (0.062)
10-3 0.054 (0.05)
10-6 0.062 (0.064)

Table 4. Means and standard deviations (in parentheses) for
test errors for 100 iterations

2
AdaBoost with DS+UDTDS DT UDT

1
1 0.174

(0.141)
0.14

(0.138)
0.143

(0.136)

0.121 (0.114)
10-3 0.119 (0.119)
10-6 0.12 (0.123)

10-1
1 0.17

(0.136)
0.148

(0.145)
0.147

(0.139)

0.122 (0.119)
10-3 0.117 (0.119)
10-6 0.118 (0.119)

Table 5. Means and standard deviations (in parentheses) for
test errors for 1000 iterations

2
AdaBoost with DS+UDTDS DT UDT

1
1 0.173

(0.137)
0.143

(0.138)
0.148

(0.138)

0.12 (0.112)
10-3 0.118 (0.122)
10-6 0.122 (0.12)

10-1
1 0.171

(0.142)
0.143

(0.143)
0.153

(0.144)

0.121 (0.113)
10-3 0.116 (0.121)
10-6 0.117 (0.121)

The best results for algorithms in Tables 2-5 are illustrated in
Figures 7-10.

Figure 7. Training errors for 100 iterations

Figure 8. Training errors for 1000 iterations

Figure 9. Test errors for 100 iterations

Figure 10. Test errors for 1000 iterations
For 100-iteration experiments, the lowest training error is given
by AdaBoost(UDT, =1), and error rates given by DS+UDT are
only lower than those given by AdaBoost with DS. However, the
lowest test error rate is given by DS+UDT(=10-1, 2=10-3). In
fact, all combinations for DS+UDT give lower test error rates if
we compare them to all combinations for the classic AdaBoost.
Similar observations could be made for 1000-iteration

experiments. Additionally, both DS+UDT(=1, 2=10-3) and
DS+UDT(=10-1, 2=10-3) give lower error rates in training and
test if we compare them to all combinations for DS+UDT. If we
compare them to all combinations for AdaBoost, only
AdaBoost(UDT, =1) gives a lower error in training. Test error
rates given by DS+UDT are all lower than those given by
AdaBoost with DS, DT, and UDT.

It is clear from above observations that DS+UDT outperforms
AdaBoost with DS, DT, and UDT. First of all, DS+UDT
outperforms AdaBoost with DS and UDT because they are two
extremes: Models created by DS are too simple while those
created by UDT are too complicated. Simple models often give
high error rates, and we observe this from results given by
AdaBoost with DS; complicated models tend to overfit training
samples but perform poorly on unseen samples in a test set, and
we observe this from results given by Adaboost with UDT. Not
considering these two extremes but AdaBoost with DT, which is a
popular setting in practice, we still obverse that DS+UDT
provides better performance in terms of test error rates. Moreover,
above observations also demonstrate that our algorithm provides
better generalization capability. Our algorithm has a smaller
performance gap between performance associated with seen
samples and that associated with unseen samples.

As for the effect of the number of iterations, AdaBoost(DT, =10-1)
decreases its training and test error rates as the number of
iterations increases from 100 to 1000, while AdaBoost(DS, =1)
decreases its test error rate as we perform more iterations. Given
small training sets (and given the fact that 10-90 random split
makes them even smaller), we need to perform more iterations to
avoid overfitting. However, DS+UDT shows more positive effects.
Both DS+UDT(=1, 2=10-3) and DS+UDT(=10-1, 2=10-3)
decrease training error rates as we perform more iterations, while
all except DS+UDT(=1, 2=10-6) do so. These observations,
again, suggest that DS+UDT has a lower risk of being overfitting.

Tables 6 and 7 present comparisons in test error rates. The
comparison between AdaBoost with DS and DS+UDT in
presented in Table 6, and that between AdaBoost with UDT and
DS+UDT is presented in Table 7. Here we consider the difference
between the test error rates (with respect to a data set and trails on
it). We use the one-tailed two-sample t-test. DS-(DS+UDT), as an
example, is related to the difference between the test error rate
from AdaBoost with DS and that from DS+UDT. In both tables, a
number in an entry represents the number of data sets
corresponding to significant or insignificant results from applying
the test to the differences. The statistical significance test is
conducted under 95% confidence level. For both DS-(DS+UDT)
and UDT-(DS+UDT), we consider 4 cases for the differences: 1)
Positive and significant. 2) Positive but insignificant. 3)
Nonpositive but insignificant. 4) Nonpositive and insignificant.
Here significant means that the corresponding p-value is less than
0.05. The first case implies the effectiveness of DS+UDT; the
second and third cases tell us nothing but that DS+UDT performs
as well as the classic AdaBoost with DS or UDT; the fourth case,
however, presents a situation where DS+UDT does not
demonstrate comparable prediction performance. As we can see
from the Tables 6 and 7, DS+UDT outperforms AdaBoost with
DS or UDT on most data sets, even though it is not always the
winner: Depending on combinations of parameters, DS+UDT
achieves significantly lower test error rates on 22 to 33 data sets,
provides comparable performance on 2 to 13 data sets, and gives
significantly higher test error rates on at most 4 data sets (and on 0
data sets for most of the time).

0.108

0.053 0.049
0.063

0

0.05

0.1

0.15

AdaBoost
DS

AdaBoost
DT

AdaBoost
UDT

DS+UDT

av
er

ag
e

er
ro

r r
at

e

0.111

0.057 0.051 0.054

0

0.05

0.1

0.15

AdaBoost
DS

AdaBoost
DT

AdaBoost
UDT

DS+UDT

av
er

ag
e

er
ro

r r
at

e

0.17
0.14 0.143

0.117

0

0.05

0.1

0.15

0.2

AdaBoost
DS

AdaBoost
DT

AdaBoost
UDT

DS+UDT

av
er

ag
e

er
ro

r r
at

e

0.171
0.143 0.148

0.116

0

0.05

0.1

0.15

0.2

AdaBoost
DS

AdaBoost
DT

AdaBoost
UDT

DS+UDT

av
er

ag
e

er
ro

r r
at

e

Setting 2 to 1 actually destroys the nature of the stochastic
process because some algorithm will (almost) always be selected.
If the algorithm is a good fit for the data set then we would have a
good classification model; otherwise, we miss an opportunity to
use another heterogeneous algorithm to compensate for the
weakness of the algorithm. If we set 2 to a very small value
(close to 0), the process becomes (almost) fully random and we
miss an opportunity to utilize the strength of the algorithm that is
potentially a good fit for the data set.

Table 6. Statistical test results for 100 iterations

2

Positive diff.;
DS+UDT is better

Nonpositive diff.;
it is not better

sig. insig. insig. sig.

DS-
(DS+U

DT)

1
1 29 9 2 0

10-3 33 5 2 0
10-6 30 6 4 0

10-1
1 30 6 4 0

10-3 30 7 3 0
10-6 27 9 4 0

UDT-
(DS+U

DT)

1
1 26 6 5 3

10-3 22 8 8 2
10-6 22 11 3 4

10-1
1 24 8 5 3

10-3 23 9 6 2
10-6 24 6 9 1

Table 7.Statistical test results for 1000 iterations

2

Positive diff.;
DS+UDT is better

Nonpositive diff.;
it is not better

sig. insig. insig. sig.

DS-
(DS+U

DT)

1
1 31 4 4 1

10-3 29 7 3 1
10-6 31 4 5 0

10-1
1 27 10 3 0

10-3 26 11 3 0
10-6 28 9 2 1

UDT-
(DS+U

DT)

1
1 23 8 7 2

10-3 26 8 3 3
10-6 23 8 6 3

10-1
1 23 10 3 4

10-3 30 3 6 1
10-6 22 13 5 0

5. CONCLUSION
AdaBoost creates diversity by manipulating training sets, and it
demonstrates superior performance when the number of data
samples is sufficiently large or the number of iterations is
sufficiently large. Nevertheless, we observe that it over-
emphasizes hard-to-classify samples and generates training sets of
low variety if we perform a limited number of iterations.
Moreover, we could achieve better diversity by employing
heterogeneous algorithms. Following the idea of employing
heterogeneous algorithms in ensemble learning, we propose a
variant of AdaBoost and our algorithm adopts different base
learning algorithms (such as decision stump algorithm and
decision tree algorithm generating unpruned trees) in different
iterations. The other feature that distinguishes our algorithm from
other variants of AdaBoost is that it selects the base learning
algorithms using a stochastic process where their earlier
performance is considered. Experiment results show that, our
algorithm does not necessarily lower average training error rates
but it achieves lower average test error rates, which means that
our algorithm is less prone to overfitting. Our algorithm

employing two different base learning algorithms performs better
than does the classic AdaBoost with either of these two algorithms.

6. ACKNOWLEDGMENTS
The author would like to thank anonymous reviewers for their
valuable time.

7. REFERENCES
[1] Leo Breiman. 1996. Bagging predictors. Mach. Learn. 24, 2

(August 1996), 123-140.
DOI=http://dx.doi.org/10.1023/A:1018054314350

[2] Leo Breiman. 2001. Random forests. Mach. Learn. 45, 1
(October 2001), 5-32.
DOI=http://dx.doi.org/10.1023/A:1010933404324

[3] Gavin Brown, Jeremy Wyatt, Rachel Harris, and Xin Yao.
2005. Diversity creation methods: a survey and
categorization. Inf. Fusion 6, 1 (March 2005), 5-20.
DOI=http://dx.doi.org/10.1016/j.inffus.2004.04.004

[4] Gavin Brown. 2010. Ensemble Learning. Encyclopedia of
Machine Learning. Springer US, 312-320.
DOI=http://dx.doi.org/10.1007/978-0-387-30164-8_252

[5] Xavier Carreras, Lluís Màrquez, and Lluís Padró. 2002.
Named Entity Extraction using AdaBoost. In Proceedings of
the 6th Conference on Natural Language Learning
(COLING-02). Association for Computational Linguistics, 1-
4. DOI=http://dx.doi.org/10.3115/1118853.1118857

[6] Xavier Carreras, Lluís Màrquez, and Lluís Padró. 2003. A
simple named entity extractor using AdaBoost. In
Proceedings of the 7th Conference on Natural Language
Learning at HLT-NAACL 2003 (CONLL '03). Association
for Computational Linguistics, 152-155.
DOI=http://dx.doi.org/10.3115/1119176.1119197

[7] Jinhui Chen, Yasuo Ariki, and Tetsuya Takiguchi. 2013.
Robust facial expressions recognition using 3D average face
and ameliorated adaboost. In Proceedings of the 21st ACM
International Conference on Multimedia (MM '13). ACM,
661-664. DOI=http://dx.doi.org/10.1145/2502081.2502173

[8] Yoav Freund and Robert E. Schapire. 1996. Experiments
with a new boosting algorithm. In Proceedings of the 13th
International Conference on Machine Learning (ICML '96).
Lorenza Saitta (Ed.). Morgan Kaufmann, 148-156.

[9] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten. 2009. The
WEKA data mining software: an update. SIGKDD Explor.
Newsl. 11, 1 (November 2009), 10-18.
DOI=http://dx.doi.org/10.1145/1656274.1656278

[10] Kuo-Wei Hsu and Jaideep Srivastava. 2009. Diversity in
combinations of heterogeneous classifiers. In Proceedings of
the 13th Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining (PAKDD '09). Springer-Verlag,
923-932. DOI=http://dx.doi.org/10.1007/978-3-642-01307-
2_97

[11] Kuo-Wei Hsu and Jaideep Srivastava. 2009. An empirical
study of applying ensembles of heterogeneous classifiers on
imperfect data. New Frontiers in Applied Data Mining,
Lecture Notes in Computer Science, Vol. 5669/2010, pp. 28-
39. DOI=http://dx.doi.org/10.1007/978-3-642-14640-4_3

[12] Wei Hu and Weiming Hu. 2005. Network-Based Intrusion
Detection Using Adaboost Algorithm. In Proceedings of the
2005 IEEE/WIC/ACM International Conference on Web

Intelligence (WI '05). IEEE Computer Society, 712-717.
DOI=http://dx.doi.org/10.1109/WI.2005.107

[13] Ian Jolliffe. 2005. Principal component analysis.
Encyclopedia of Statistics in Behavioral Science. John Wiley
& Sons, Ltd. DOI=
http://dx.doi.org/10.1002/0470013192.bsa501

[14] , Nicolas Allezard, Thierry Chateau, and
Thierry Chesnais. 2012. Heterogeneous Adaboost with Real
Time Constraints: Application to the Detection of
Pedestrians by Stereovision. In Visapp, International
Conference on Vision Theory and Applications.

[15] Ludmila I. Kuncheva and Christopher J. Whitaker. 2001. Ten
measures of diversity in classifier ensembles: limits for two
classifiers. In A DERA/IEE Workshop on Intelligent Sensor
Processing. IEEE.
DOI=http://dx.doi.org/10.1049/ic:20010105

[16] Ludmila I. Kuncheva, M. Skurichina and R. P. W. Duin.
2002. An experimental study on diversity for bagging and
boosting with linear classifiers. Inf. Fusion 3, 4 (December
2002), 245-258. DOI=http://dx.doi.org/10.1016/S1566-
2535(02)00093-3

[17] Ludmila I. Kuncheva and Christopher J. Whitaker. 2003.
Measures of diversity in classifier ensembles and their
relationship with the ensemble accuracy. Mach. Learn. 51, 2
(May 2003), 181-207.
DOI=http://dx.doi.org/10.1023/A:1022859003006

[18] Ludmila I. Kuncheva. 2003. That elusive diversity in
classifier ensembles. In Proceedings of the 1st Iberian
Conference on Pattern Recognition and Image Analysis
(IbPRIA '03). Springer, 1126-1138.
DOI=http://dx.doi.org/10.1007/978-3-540-44871-6_130

[19] Avisek Lahiri and Prabir Biswas. 2014. Knowledge Sharing
and Cooperation Based Adaptive Boosting for Robust Eye
Detection. In Proceedings of the 2014 Indian Conference on
Computer Vision Graphics and Image Processing (ICVGIP
'14). ACM, Article 13.
DOI=http://dx.doi.org/10.1145/2683483.2683496

[20] M. Lichman. 2013. UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of
California, School of Information and Computer Science.

[21] Jiebo Luo, Jie Yu, Dhiraj Joshi, and Wei Hao. 2008. Event
recognition: viewing the world with a third eye. In
Proceedings of the 16th ACM International Conference on
Multimedia (MM '08). ACM, 1071-1080.
DOI=http://dx.doi.org/10.1145/1459359.1459574

[22] Yunqian Ma. 2012. Ensemble machine learning: Methods
and applications. Springer.

[23] Prem Melville and Raymond J. Mooney. 2003. Constructing
diverse classifier ensembles using artificial training examples.
In Proceedings of the 18th international joint conference on
Artificial intelligence (IJCAI '03). Morgan Kaufmann
Publishers Inc., 505-510.

[24] Prem Melville and Raymond J. Mooney. 2005. Creating
diversity in ensembles using artificial data. Inf. Fusion 6, 1
(March 2005), 99-111. DOI=
http://dx.doi.org/10.1016/j.inffus.2004.04.001

[25] David Opitz and Richard Maclin. 1999. Popular ensemble
methods: An empirical study. Journal of Artificial

Intelligence Research 11 (August 1999), 169-198. DOI=
http://dx.doi.org/10.1613/jair.614

[26] Robi Polikar. 2006. Ensemble based systems in decision
making. IEEE Circuits Syst. Mag. 6, 3 (September 2006), 21-
45. DOI=http://dx/doi.org/10.1109/MCAS.2006.1688199

[27] Robi Polikar. 2007. Bootstrap-inspired techniques in
computational intelligence. IEEE Signal Process. Mag. 24, 4
(August 2007), 56-72.
DOI=http://dx.doi.org/10.1109/MSP.2007.4286565

[28] J. Ross Quinlan. 1993. C4.5: Programs for Machine
Learning. Morgan Kaufmann Publishers, Inc.

[29] Romesh Ranawana and Vasile Palade. 2006. Multi-Classifier
systems: Review and a roadmap for developers. Int. J.
Hybrid Intell. Syst. 3, 1 (January 2006), 35-61.

[30] Attila Reiss, Gustaf Hendeby, and Didier Stricker. 2013.
Confidence-based multiclass AdaBoost for physical activity
monitoring. In Proceedings of the 2013 International
Symposium on Wearable Computers (ISWC '13). ACM, 13-
20. DOI=http://dx.doi.org/10.1145/2493988.2494325

[31] Xiaona Song, Ting Rui, Zhengjun Zha, Xinqing Wang, and
Husheng Fang. 2015. The AdaBoost algorithm for vehicle
detection based on CNN features. In Proceedings of the 7th
International Conference on Internet Multimedia Computing
and Service (ICIMCS '15). ACM, Article 5.
DOI=http://dx.doi.org/10.1145/2808492.2808497

[32] Jaree Thongkam, Guandong Xu, Yanchun Zhang, and
Fuchun Huang. 2008. Breast cancer survivability via
AdaBoost algorithms. In Proceedings of the 2nd
Australasian Workshop on Health Data and Knowledge
Management (HDKM '08). Australian Computer Society,
Inc., 55-64.

[33] R. M. Valdovinos, J. S. Sánchez, and E. Gasca. 2007.
Influence of resampling and weighting on diversity and
accuracy of classifier ensembles. In Proceedings of the 3rd
Iberian conference on Pattern Recognition and Image
Analysis, Part II (IbPRIA '07). Springer-Verlag, 250-257.
DOI=http://dx.doi.org/10.1007/978-3-540-72849-8_32

[34] Giorgio Valentini and Francesco Masulli. 2002. Ensembles
of Learning Machines. In Proceedings of the 13th Italian
Workshop on Neural Nets-Revised Papers (WIRN VIETRI
2002). Springer-Verlag, 3-22.

[35] Pantelis Vlachos. 2005. StatLib datasets archive. URL
http://lib.stat.cmu.edu/datasets.

[36]
A survey of multiple classifier systems as hybrid systems. Inf.
Fusion 16 (March 2014), 3-17. DOI=
http://dx.doi.org/10.1016/j.inffus.2013.04.006

[37] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh,
Qiang Yang, Hiroshi Motoda, Geoffrey J. McLachlan, Angus
Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael
Steinbach, David J. Hand, and Dan Steinberg. 2007. Top 10
algorithms in data mining. Knowl. Inf. Syst. 14, 1 (December
2007), 1-37. DOI=http://dx.doi.org/10.1007/s10115-007-
0114-2

[38] Zhi-Hua Zhou. 2012. Ensemble methods: Foundations and
algorithms. CRC press.

