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ABSTRACT 
Adaptive Boosting, or AdaBoost , is a meta-learning algorithm 
that employs a classification algorithm as a base learner to train 
classification models and uses these models to perform collective 
classification. One of its main features is that iteratively it forces 
the base learner to work more on difficult samples. Usually it can 
achieve better overall classification performance, when compared 
to a single classification model trained by the classification 
algorithm used as the base learner. SVM, short for Support Vector 
Machine, is a learning algorithm that employs a kernel to project 
the original data space to a data space where a hyperplane that can 
linearly separate as many samples of classes as possible can be 
found. Because both are top algorithms, researchers have been 
exploring the use of AdaBoost with SVM. Unlike others simply 
using SVM with a single kernel as the base learner in AdaBoost, 
we propose an approach that uses SVM with multiple kernels as 
the base learners in a variant of AdaBoost. Its main feature is that 
it not only considers difficulties of samples but also classification 
performance of kernels, and accordingly it selects as well as 
switches between kernels in the boosting process. The experiment 
results show that we can obtain better classification performance 
by using the proposed approach. 
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1. INTRODUCTION 
Adaptive Boosting, commonly abbreviated to AdaBoost, is more a 
framework than an algorithm for classification problems because 
it can be used with many other classification algorithms [16]. 
AdaBoost forms a group of classification models generated by a 
classification algorithm, which is used as a base learner, and 
AdaBoost collects from them their classifications for a sample 

that needs to be classified and then combines these classifications 
into one by weighted voting. The weight of a classification model 
depends on its classification performance, and the better 
performance corresponds to the higher weight. Furthermore, 
AdaBoost maintains the distribution of weights of samples. 
Iteratively, AdaBoost updates the distribution by adjusting the 
weight of each sample according to its degree of being 
misclassified, and the more misclassified samples (which are 
made by the group of classification models formed so far) 
correspond to the higher weight. AdaBoost emphasizes more on 
hard-to-classify samples. 

AdaBoost has been applied in various applications. For example, 
character recognition [40], text categorization [15, 41], gender 
recognition [49], bankruptcy prediction [1], and financial distress 
prediction [43]. 

Support Vector Machine, commonly abbreviated to SVM, is a 
learning algorithm that constructs a hyperplane in a high-
dimensional data space to separate samples of classes, and its 
objective is to achieve an optimal separation by having the 
hyperplane with the largest distance to the nearest samples of any 
class [5, 9]. Such a distance is called margin, and SVM achieves 
low generalization error or high accuracy by having a large 
margin on a set of samples used in training. Usually it is difficult 
to draw a line or a hyperplane to separate samples in the original 
data space of a given data set, because usually samples collected 
from real-world applications are not linearly separable. Using an 
appropriate kernel (which in fact is a function), SVM maps or 
projects the samples from the original data space to a higher-
dimensional data space in which possibly it is less difficult to 
linearly separate samples [37, 39]; even so, it is not always the 
case that all samples are linearly separable. Nevertheless, 
selecting an appropriate kernel is the first and most important step 
in applying SVM to real-world data sets. After the projection, 
SVM is looking for a line or a hyperplane that can separate as 
many samples as possible. This means that some misclassified 
samples or errors are allowed. For a given data set, SVM 
constructs the hyperplane with the largest distance to the nearest 
samples of any class by learning the parameters of the hyperplane 
or, more specifically, solving an optimization problem to find the 
best combination of the parameters of the hyperplane. Sequential 
Minimal Optimization, commonly abbreviated to SMO, solves 
such an optimization problem by dividing it into lower-
dimensional sub-problems and solving without greatly depending 
on a numerical optimization technique [19, 22, 36]. 

SVM is finding applications in various domains. For example, 
spam categorization [12], text classification [21], facial expression 
recognition [30], Web taxonomy integration [50], intrusion 
detection system [23], software defect prediction [13], network 
traffic classification [14], clinical entity recognition [45], 
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computer worm activity detection [33], video event detection [17], 
fault diagnosis [31], and customer retention [29]. 

AdaBoost and SVM are top algorithms [48], so researchers have 
been exploring the use of AdaBoost with SVM in the hope that, 
on the basis of high classification performance often achieved by 
SVM, AdaBoost can boost SVM and achieve higher classification 
performance. As others, we surely want to correct as many errors 
as possible and at the same time make no errors on samples that 
are correctly classified in the first place, and therefore we focus on 
errors that are associated with hard-to-classify samples. AdaBoost 
pays more attention to hard-to-classify samples, and accordingly 
we propose an approach to integrate AdaBoost and SVM. Like 
others, we use SVM as the base learner to build classification 
models. However, unlike others, we propose not to simply use 
SVM as a general building block in AdaBoost but to integrate 
SVM into the boosting process. 

We propose an approach that uses SVM with different kernels in 
different iterations of AdaBoost. The intuition behind our design 
is as follows: Once we perform weighted sampling on samples 
according to their degrees of being hard-to-classify, as we do in 
each iteration in the boosting process, we change the distribution 
of samples input into SVM to train a classification model, or in 
other words, we change the original data space even before the 
used kernel projects it into another data space. In this situation, 
the used kernel may not work as well as it did at the beginning in 
the boosting process, and the kernel used earlier may not be 
suitable for being used later. 

The proposed approach varies the use of kernels in SVM 
according to weights of kernels. Similar to how we update 
weights of samples in AdaBoost, we update the weight of each 
kernel by referring to its classification performance, and the better 
performance corresponds to the higher weight, which further 
corresponds to the higher probability that the kernel will be used 
again in the next iteration. This feature distinguishes the proposed 
approach from those proposed by others. Inspired by the 
exponential function used to update weights of samples in 
AdaBoost, we use an exponential function to update weights of 
kernels. These two exponential functions are related to 
classification performance achieved by the classification model 
used in an iteration. 

The reminder of this paper is organized as follows: Section 2 
briefly reviews the work related to the integration of boosting and 
SVM. Section 3 presents the approach proposed to integrate 
AdaBoost and SVM with varying kernels. Section 4 describes the 
experiment settings and reports the experiment results. Section 5 
concludes this paper and discusses the possible directions for 
future work. 

2. RELATED WORK 
Some researchers use SVM as the base learner in AdaBoost (or in 
a variant of AdaBoost), and most of their designs are made for 
particular applications. Examples are as follows: For pedestrian 
detection, Nishida and Kurita propose an algorithm that integrates 
feature selection in AdaBoost and uses SVM as the base learner 
[32]. Liu et al. propose to combine an integrated sampling 
technique with a group of SVM models in order to obtain better 
classification performance on imbalanced data sets, and they 
conclude from their experiments that a group of SVM models 
outperforms individual SVM models [28]. Wang and Japkowicz 
use SVM as the base learner in boosting to form a group of SVM 
models for classification on imbalanced data sets [47]. Cheng et al. 
first use an optimization-based feature selection method and then 

SVM-based AdaBoost to build classification models of ligands of 
a serotonin receptor subtype [7], and Cheng and Zhang use similar 
methods to build classification models of Estrogen Receptor-β 
ligands [8]. In [34], the authors use this combination in facial 
expression recognition. More examples of applications of this 
combination of AdaBoost and SVM include sentiment analysis 
[42] and facial expression recognition [34]. 

Dong and Han empirically compare several types of combinations 
of SVM models for text classification problems and conclude that 
boosting does not provide performance improvement for SVM, 
and they explain it by that SVM is strong learner while boosting is 
often used for weak (or less accurate) base learners [11]. We 
argue that their findings are only for their experiment settings, 
including the data that they use. First of all, there is no theoretical 
evidence indicating that boosting cannot be used with a strong 
base learner but can be used only with weak base learners. Second 
of all, there is empirical evidence showing that boosting can 
improve the classification performance of SVM. 

Some researchers use AdaBoost as a special pre-processing 
method to manipulate the data set that is then input to SVM for 
model training. Examples are as follows: Pavlov and Mao use 
boosting to determine the weights of samples and accordingly 
create subsets of the original data set that are smaller and will be 
used to train SVM models, and they use AdaBoost and SMO [35]. 
Littlewort et al. study AdaBoost, SVM, and an approach using 
both of them for expression recognizer in order to assist in 
human-robot interaction, and in their paper Adaboost is used to 
select features and SVM is used to train models with data sets of 
reduced features [27]. In [2], Bartlett et al. compare various 
approaches designed to recognize facial actions, and they 
conclude from their experiments that “best results were obtained 
by selecting a subset of Gabor filters using AdaBoost and then 
training Support Vector Machines on the outputs of the filters 
selected by AdaBoost.” Bartlett et al. first use AdaBoost to select 
features and then use SVM to build classification models for 
facial expression recognition [3]. Working on eye detection, Tang 
et al. propose an approach that first uses AdaBoost to train a 
model for face location and a model for eye detection and then 
uses SVM to train a model for precise eye position [44]. 

Some researchers propose approaches that manipulate the settings 
of SVM for the case where AdaBoost is used as a pre-processing 
method for SVM or for the case where SVM is used as the base 
learner in AdaBoost. The manipulation includes kernel selection, 
kernel construction, and parameter tuning. Examples are as 
follows: To address the issue of kernel selection for SVM, 
Bennett et al. focus on the regression problem and propose an 
algorithm named Multiple Additive Regression Kernels in which 
a boosting-type procedure is used to select among kernels formed 
by different kernel functions and parameters [4]. Crammer et al. 
use a boosting-type procedure to learn a proper combination of 
weights of base kernels that are less accurate and then construct a 
kernel that is more accurate, and they use the classification error 
to adjust the weight of a base kernel (but not weights of samples) 
[10]. Li et al. propose an algorithm that uses SVM with RBF 
kernel as the base learner in AdaBoost and adaptively adjusts a 
kernel parameter; in [24], they conclude from their experiments 
that their algorithm is advantageous in “easier model selection 
and better generalization performance”, and in [25], they 
conclude that their algorithm “demonstrates better generalization 
performance than SVM on imbalanced classification problems.” 

Considering the situation that only a small number of samples is 
available for training a classification model, Hertz et al. indicate 



that classification performance of SVM can be improved by using 
a kernel learned or computed from the training data, and they 
present a boosting algorithm named KernelBoost that uses 
boosting to combine “weak space partitions” and further to 
compute a kernel that will be used in SVM [20]. 

To detect Alzheimer's disease on brain Magnetic Resonance 
Imaging (MRI), Savio et al. discuss an algorithm named “Diverse 
AdaBoost SVM” that uses SVM as the base learner in AdaBoost 
and adjusts a kernel parameter according to the error rate and the 
diversity value in each iteration of AdaBoost [38]. 

3. APPROACH 
Because AdaBoost and SVM are well-developed and well-known, 
we directly introduce the proposed approach in this section. 

In Figure 1, Algorithm 1 describes the training part for integrating 
AdaBoost and SVM with varying kernels. We use upper-case 
letters to denote a group of items or elements, and we use lower-
case letters to denote an item, an element, or a value. To describe 
the proposed approach in a concise yet complete manner, we use 
APIs (Application Programming Interfaces) to represent 
functional modules, in each of which computing operations are 
programmed for a specific purpose. These APIs are not directly 
related to the logic of the proposed approach. They are listed 
below in alphabetical order: 

 BuildSVM: It is to build an operational SVM model for 
classification using the data set specified by the first input 
parameter as the training data set with the kernel specified 
by the second input parameter. 

 Exp: The exponential function. 

 GetClasses: It is to determine the number of class or 
category labels of the data set specified by the input 
parameter. 

 GetKernel: It is to randomly select an index number of a 
kernel according to weights of kernels specified by the 
input parameter. 

 GetLabel: It is to take a sample specified by the input 
parameter and return its (actual) class label. 

 GetMaxIndex: It is to take a list of numbers specified by the 
input parameter and then determine the index (i.e. the 
position in the list) of the number with the largest value. 

 GetSamples: It is to randomly draw samples with 
replacement from the data set specified by the first input 
parameter according to weights of samples specified by the 
second input parameter. 

 Ind: The indicator function, which returns 1 if the condition 
specified by the input parameter turns out to be true and 0 
otherwise. 

 Log: The Logarithmic function. 

Algorithm 1 takes two input parameters, namely the given data set 
for training and the number of iterations. It returns the resulting 
AdaBoost classification model, which is a group of SVM models 
for classification. We initialize variables at the beginning of the 
algorithm and iteratively update the values for these variables. In 
each iteration, it first randomly selects an index number of a 
kernel according to weights of kernels, and also it randomly draws 
samples with replacement from the data set according to weights 
of samples. These samples are then used with the selected kernel 

to train or build a classification model based on SVM. After the 
model is trained or built, the algorithm evaluates its classification 
performance and accordingly updates weights of samples and 
weights of kernels.  

The goal of the first inner loop in Algorithm 1 is to calculate the 
weighted error rate of a model in an iteration of the outer loop. 
The goal of the second inner loop is to use the exponential 
function used in AdaBoost to update weights of samples. 
AdaBoost is originally designed for binary classification problems. 
There exist methods that allow AdaBoost to work on multi-class 
classification problems. Algorithm 1 designed by referring to an 
intrinsically multi-class AdaBoost algorithm named SAMME, 
short for Stagewise Additive Modeling using a Multi-class 
Exponential loss function, which is different from the original 
AdaBoost in that it considers the number of classes when 
computing the weight of a classification model [51]. This 
difference is reflected in the term Log(GetClasses(D)-1) in 
Algorithm 1. Inspired by the exponential function used to update 
weights of samples in AdaBoost, we use an exponential function 
to update weights of kernels, as we can see in the third inner loop 
in Algorithm 1. Additionally, when updating weights of kernels, 
we consider the number of kernels in order to avoid that the 
algorithm is trapped in a kernel which is not actually the best. If 
there exists a kernel that is not actually suitable for the given data 
set but happens to perform well on some training samples in 
earlier iterations, and if the algorithm increases its weight by a 
large step, then the algorithm will need more iterations to realize 
its actual performance and decrease its weights such that the 
algorithm will have a chance to select other kernels. Because we 
would not like to run many iterations, we make smaller the size of 
a step in updating weights of kernels. The above two exponential 
functions are related to classification performance achieved by the 
classification model used in an iteration, so we say that the 
proposed approach literally integrates AdaBoost and SVM. 

SVM is originally designed for binary classification problems. 
Most implementations of SVM deal with a multi-class 
classification problem by transforming it into multiple binary 
classification problems. In our current implementation of 
Algorithm 1, we use SMO.  

The effectiveness of SVM is dependent on the kernel used, and 
the Gaussian kernel is commonly used. A byproduct of the 
propose approach is an automatic kernel selection approach. 
Considering that we run AdaBoost for t iterations for a kernel and 
there are m kernels from which we want to select as the best one 
for a given data set, we will build t × m SVM models and then 
evaluate classification performance of each kernel, while we will 
build only t SVM models and then know which kernel is the best 
if we use the proposed approach. 

The proposed approach is comparable to or even better than the 
approach simply using SVM with a kernel in AdaBoost without 
integrating them. As for the using or testing part, we can simply 
use or test the trained AdaBoost classification model as a general 
classification model. We give the model a new sample without a 
pre-specified class or category label, and then the model will give 
us an assigned or classified label. In Figure 2, Algorithm 2 
describes the testing part for integrating AdaBoost and SVM with 
varying kernels. We use the same notations as those used in 
Algorithm 1. Given a sample, Algorithm 2 calculates the 
likelihood that the sample belongs to a class, for all classes the 
algorithm finds the one with the largest likelihood, and finally the 
algorithm assigns the label of the found class to the sample. 



Input: D is the given data set for training, and t is the number of iterations 
Output: C is the resulting AdaBoost classification model, i.e. a group of SVM models for classification 
1 Initialize weights of samples, WS ← {wsi | wsi = 1/n, 1 ≤ i ≤ n}, where wsi is the weight of di, the i-th sample in D, and n is the 

number of samples 
2 Initialize weights of kernels, WK ← {wki | wki = 1/m, 1 ≤ i ≤ m}, where wki is the weight of the i-th kernel and m is the number of 

kernels 
3 Initialize A ← {ai | ai = 0, 1 ≤ i ≤ t}, where ai is related to classification performance of ci, the i-th model in C 
4 For i = 1 to t 
5  ki ← GetKernel(WS), where k is the index number of the kernel selected and used in the i-th iteration 
6  T ← GetSamples(D, WS), where T is the sampled data set for training in an iteration 
7  ci ←BuildSVM(T,ki), where ci is the i-th model in C 
8  e ← 0, where e is the weighted error rate of a model in an iteration 
9  For j = 1 to n 
10   e ← e + Ind(ci(dj)  GetLabel(dj))  wsj, where ci takes a sample as an input parameter and returns a class label 

  as the classification result 
11  End For 
12  ai ←1/GetClasses(D) × Log((1-e)/e) + Log(GetClasses(D)-1) 
13  For j = 1 to n 
14   wsj ← wsj × Exp((2 × Ind(ci(dj)) = GetLabel(dj))-1) × ai) 
15  End For 
16  For j = 1 to m 
17   wkj ← wkj × Exp(Ind(e ≤ 1/GetClasses(D))) × ai/m) 
18  End For 
19 End For 
20 Return C 

Figure 1. Algorithm 1: The training part for integrating AdaBoost and SVM with varying kernels 
 

Input: s is the sample that is going to be tested (or labeled) 
Output: l is the class label (or the classification) 
1 Initialize P ← {pi | pi = 0, 1 ≤ i ≤ GetClasses(D)}, where pi is related to the accumulated classification performance that models 

provide with respect to the i-th class label; D is the one input to Algorithm 1 
2 For i =1 to t (the number of iterations in Algorithm 1) 
3  pci(s) ← pci(s) + ai 
4 End For 
5 l ← GetMaxIndex(P) 
6 Return l 

Figure 2. Algorithm 2: The testing part for integrating AdaBoost and SVM with varying kernels 
 

4. EXPERIMENTS 
All the data sets considered in experiments are public data sets, 
and most are derived from the data sets available on the UC Irvine 
Machine Learning Repository [26]. Table 1 summarizes the data 
sets used in experiments and their characteristics. In the table, the 
first and second columns are the number and name of the data set, 
respectively; the third, fourth, and fifth columns are the numbers 
of samples, attributes, and classes, respectively; the sixth column 
is the number of attributes with missing values, and the seventh 
column is the range of percentages of missing values on these 
attributes; the eighth column, the last column, is the percentage of 
samples that belong to the majority class (or classes). As we can 
see from the table that these data sets have different levels of 
quality or difficulty for classification. 

We use AdaBoost and SMO provided by WEKA [18], and we use 
the functions built in WEKA to implement the proposed approach.  

Table 2 summarizes the results in accuracy obtained by using 10-
fold cross-validation. In the table, SVM means a single SVM 
model, AB+SVM means the 10-iteration AdaBoost with SVM (or, 
simply using SVM as the base learner in AdaBoost), ABSVM 
means the proposed approach with 4 kernels and 10 iterations; 
Poly means the polynomial kernel, N.Poly means the normalized 
polynomial kernel, Puk means the Pearson VII function based 
universal kernel [46], and RBF means the Radial Basis Function 
(Gaussian) kernel [6]. In the table, the last column is considering 
the number of kernels in updating weights of kernels, and the 
second last column is not doing so; the former implies a smaller 



step in updating weights and is associated with Line 17 in 
Algorithm 1, while the latter implies a larger step and is 
associated with Line 17 with a minor change. 

AB+SVM performs better, or at least equally well as, SVM in 9 
data sets. AdaBoost can possibly increase the classification 
performance of SVM, but it decreases the classification 
performance in the following cases: 1) in the data set 
analcatdata_authorship, when the normalized polynomial kernel 
is used; 2) in the data set breast-w, when the polynomial kernel is 
used; and, 3) in the data sets ionosphere and vowel, when the RBF 
kernel is used. Moreover, in the data set vehicle, it increases the 
classification performance only when the normalized polynomial 
kernel is used; and, in the data set vote, it shows the same 
classification performance when the RBF kernel is used, while it 

decreases the classification performance when the other 3 kernels 
are used. These two data sets, vehicle and vote, possibly contain 
noisy samples such that noise is overemphasized (and, in some 
sense, amplified) in the boosting process and then misleads SVM 
in the search for the optimal hyperplane. In these two data sets, 
the proposed approach shows the highest accuracy. The results 
prove the concept of selecting and switching between kernels in 
the boosting process. For the proposed approach, when it is with a 
smaller step in updating weights of kernels, it shows the highest 
accuracy in 10 data sets; when it is with a larger step, it shows the 
highest accuracy in 6 data sets. Compared to using a larger step, 
using a smaller step shows higher accuracy in 13 data sets, and it 
shows lower accuracy in only 1 data set. Therefore, it is better to 
consider the number of kernels in updating weights of kernels. 

 

Table 1. Data sets 
No Data set Samples Attributes Classes Attr. w/ missing Missing Majority 
1 analcatdata_authorship 841 70 4 1  37.7% 
2 anneal 898 38 6 0  76.2% 
3 autos 205 25 7 7 1%-20% 32.7% 
4 balance-scale 625 4 3 0  46.1% 
5 breast-w 699 9 2 1 2% 65.5% 
6 car 1728 6 4 0  70% 
7 diabetes 768 8 2 0  65.1% 
8 ecoli 336 7 8 0  42.6% 
9 ionosphere 351 34 2 0  64.1% 

10 irish 500 5 3 2 1%-5% 65% 
11 liver-disorders 345 6 2 0  58% 
12 sonar 208 60 2 0  53.4% 
13 vehicle 846 18 4 0  25.8% 
14 vote 435 16 2 16 2%-24% 61.4% 
15 vowel 990 13 11 0  9.1% 

 

Table 2. Results in accuracy 

 SVM AB+SVM ABSVM 
No Poly N.Poly Puk RBF Poly N.Poly Puk RBF w/o kernel num. w/ kernel num. 
1 99.4 99.8 99.2 98.7 99.4 99.2 99.2 98.9 99.3 99.5 
2 96.5 94.9 96.3 89.9 97.6 94.9 97.2 92 98.1 99.1 
3 68.3 61.5 61 43.9 69.8 65.4 63.9 44.4 68.3 68.8 
4 87 90.9 89.6 87.2 87.5 90.9 90.1 89 90.1 90.4 
5 96.4 93.7 96.4 96 96.3 93.8 96.7 96 96.3 96.6 
6 93.3 96.3 91.4 83.9 93.5 96.4 91.6 84.6 87.9 99.6 
7 76.2 65.9 75.7 65.1 77.2 65.9 77.2 65.1 73.8 77.9 
8 82.1 70.2 86.6 42.6 83.3 70.8 87.5 42.6 86 86.3 
9 87.2 83.9 94.3 75.8 87.7 85.2 94.6 74.9 95.4 96 

10 98.6 98.6 98.4 90.8 98.6 98.6 98.4 91.3 98.4 98.6 
11 57.4 60.3 67.8 58 58.3 60.6 69.3 58 66.4 69.9 
12 75 74 83.7 66.3 75.5 76.4 85.6 73.1 88 87.5 
13 73.9 73.8 74.8 40 72.9 74.6 74.6 39.7 76.4 76.4 
14 95.2 95.4 94.9 94.7 94.5 94.9 94.5 94.7 95.9 96.1 
15 69.7 50.9 94.7 29 77.4 65.9 98.1 28.2 98.1 98.2 

 



Although the proposed approach shows the highest accuracy in 
most of the data sets used in experiments, we are by no means 
going to conclude that it is the best algorithm combining 
AdaBoost and SVM. We need to run more experiments (and this 
would be part of future work). Nevertheless, the results 
demonstrate the proof of our concept for the integration of 
AdaBoost and SVM. 

We consider AB+SVM with the best kernel by referring to Table 
2 and ABSVM when the number of iterations is increased from 10 
to 100 with a step of 10. Figures 3, 4, and 5 present the results for 
the data sets liver-disorders, sonar, and vehicle, respectively. In 
these figures, the x-axis is the number of iterations and the y-axis 
is accuracy. 

In these three figures, we can observe periodic changes of 
accuracy (or accuracy periodically being going up and down). 
This is a characteristic of AdaBoost (or, more precisely, the 
boosting process). These changes come from that AdaBoost 
attempts to fix errors made in earlier iterations. As we can see 
from these figures, the accuracy achieved by running the proposed 
approach for 100 iterations is higher than that achieved by running 
it for 10 iterations, but this is not the case for AB+SVM, which 
possibly needs more iterations to fix errors. Therefore, these 
figures show us that the proposed approach can more efficiently 
fix errors. Furthermore, the data set associated with Figure 5 is a 
data set that possibly contains noisy samples. From the figure, we 
can see that noise has a negative effect on the classification 
performance of AB+SVM but not on the proposed approach. 
Again, The above findings are because the proposed approach 
selects and switches between kernels in the boosting 

 
Figure 3. AB+SVM with Puk kernel and ABSVM for the data 

set liver-disorders 

 
Figure 4. AB+SVM with Puk kernel and ABSVM for the data 

set sonar 

 
Figure 5. AB+SVM with normalized polynomial and Puk 

kernels and ABSVM for the data set vehicle 

5. CONCLUSION 
AdaBoost is a meta-learning algorithm that employs a 
classification algorithm as a base learner to form a group of 
classification models and uses voting to combine individual 
classifications made by these models for a sample into an overall 
classification. It emphasizes more on hard-to-classify samples. 
SVM is a generalized linear classifier, and it employs a function 
called kernel to project the original data space to a data space 
where it can find a hyperplane that can linearly separate as many 
samples as possible based on their classes. It can minimize the 
error and maximize the margin at the same time. Because 
AdaBoost can improve the classification performance of its base 
learner, it is often used with a weak (or less accurate) but simple 
classification algorithm in order to perform faster classification 
with acceptable accuracy. Because SVM is considered as a strong 
(or more accurate) classification algorithm, to obtain accuracy that 
is more than acceptable, researchers have been exploring the use 
of AdaBoost with SVM in the hope that AdaBoost can further 
improve the classification performance of SVM. For instance, 
researchers use SVM with a single kernel as the base learner in 
AdaBoost.  However, because samples are sampled based on their 
weights and their weights are updated based on their degrees of 
being hard-to-classify in each iteration in the boosting process, the 
data space is changed such that possibly the kernel used for data 
space projection needs to be changed too. 

We propose an approach that employs SVM with multiple kernels 
as the base learners in a variant of the boosting process of 
AdaBoost designed for multi-class classification. It uses SVM 
with different kernels in different iterations. It varies the 
employment of kernels based on their weights. From iterations to 
iterations, it not only updates weights of samples but also updates 
weights of kernels. In each iteration, it updates the two types of 
weights based on the classification performance of the model 
trained with the selected samples and the selected kernel. This is 
the distinguishing feature of the proposed approach. Furthermore, 
it is important to select an appropriate kernel when using SVM 
(and when using AdaBoost with SVM), and often kernel selection 
is done empirically. The proposed approach can do automatic 
kernel selection, and it can let the kernels that do not perform well 
also contribute to overall classifications. We implement the 
propose approach by utilizing a popular machine learning toolkit. 
We conduct experiments on public data sets. According to the 
results, we can obtain better classification performance by using 
the proposed approach. 
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As for the possible directions for future work, we plan to study the 
use of other types of kernels and also investigate a more 
intelligent way to select or switch between kernels. 
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