
Integrating Adaptive Boosting and Support Vector
Machines with Varying Kernels

Kuo-Wei Hsu
Department of Computer Science, National Chengchi University

No. 64, Sec. 2, Zhi Nan Rd., Wen Shan District
Taipei City 11605, Taiwan (R.O.C.)

+886-2-29393091 ext. 62297
kwhsu@nccu.edu.tw

ABSTRACT
Adaptive Boosting, or AdaBoost , is a meta-learning algorithm
that employs a classification algorithm as a base learner to train
classification models and uses these models to perform collective
classification. One of its main features is that iteratively it forces
the base learner to work more on difficult samples. Usually it can
achieve better overall classification performance, when compared
to a single classification model trained by the classification
algorithm used as the base learner. SVM, short for Support Vector
Machine, is a learning algorithm that employs a kernel to project
the original data space to a data space where a hyperplane that can
linearly separate as many samples of classes as possible can be
found. Because both are top algorithms, researchers have been
exploring the use of AdaBoost with SVM. Unlike others simply
using SVM with a single kernel as the base learner in AdaBoost,
we propose an approach that uses SVM with multiple kernels as
the base learners in a variant of AdaBoost. Its main feature is that
it not only considers difficulties of samples but also classification
performance of kernels, and accordingly it selects as well as
switches between kernels in the boosting process. The experiment
results show that we can obtain better classification performance
by using the proposed approach.

CCS Concepts
• Information systems Data mining • Computing
methodologies Machine learning • Applied computing

Physical sciences and engineering

Keywords
AdaBoost; Classification; Multi-class; SVM

1. INTRODUCTION
Adaptive Boosting, commonly abbreviated to AdaBoost, is more a
framework than an algorithm for classification problems because
it can be used with many other classification algorithms [16].
AdaBoost forms a group of classification models generated by a
classification algorithm, which is used as a base learner, and
AdaBoost collects from them their classifications for a sample

that needs to be classified and then combines these classifications
into one by weighted voting. The weight of a classification model
depends on its classification performance, and the better
performance corresponds to the higher weight. Furthermore,
AdaBoost maintains the distribution of weights of samples.
Iteratively, AdaBoost updates the distribution by adjusting the
weight of each sample according to its degree of being
misclassified, and the more misclassified samples (which are
made by the group of classification models formed so far)
correspond to the higher weight. AdaBoost emphasizes more on
hard-to-classify samples.

AdaBoost has been applied in various applications. For example,
character recognition [40], text categorization [15, 41], gender
recognition [49], bankruptcy prediction [1], and financial distress
prediction [43].

Support Vector Machine, commonly abbreviated to SVM, is a
learning algorithm that constructs a hyperplane in a high-
dimensional data space to separate samples of classes, and its
objective is to achieve an optimal separation by having the
hyperplane with the largest distance to the nearest samples of any
class [5, 9]. Such a distance is called margin, and SVM achieves
low generalization error or high accuracy by having a large
margin on a set of samples used in training. Usually it is difficult
to draw a line or a hyperplane to separate samples in the original
data space of a given data set, because usually samples collected
from real-world applications are not linearly separable. Using an
appropriate kernel (which in fact is a function), SVM maps or
projects the samples from the original data space to a higher-
dimensional data space in which possibly it is less difficult to
linearly separate samples [37, 39]; even so, it is not always the
case that all samples are linearly separable. Nevertheless,
selecting an appropriate kernel is the first and most important step
in applying SVM to real-world data sets. After the projection,
SVM is looking for a line or a hyperplane that can separate as
many samples as possible. This means that some misclassified
samples or errors are allowed. For a given data set, SVM
constructs the hyperplane with the largest distance to the nearest
samples of any class by learning the parameters of the hyperplane
or, more specifically, solving an optimization problem to find the
best combination of the parameters of the hyperplane. Sequential
Minimal Optimization, commonly abbreviated to SMO, solves
such an optimization problem by dividing it into lower-
dimensional sub-problems and solving without greatly depending
on a numerical optimization technique [19, 22, 36].

SVM is finding applications in various domains. For example,
spam categorization [12], text classification [21], facial expression
recognition [30], Web taxonomy integration [50], intrusion
detection system [23], software defect prediction [13], network
traffic classification [14], clinical entity recognition [45],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
IMCOM’17, January 05–07, 2017, Beppu, Japan.
© 2017 ACM. ISBN 978-1-4503-4888-1/17/01…$15.00
DOI: http://dx.doi.org/10.1145/3022227.3022314

computer worm activity detection [33], video event detection [17],
fault diagnosis [31], and customer retention [29].

AdaBoost and SVM are top algorithms [48], so researchers have
been exploring the use of AdaBoost with SVM in the hope that,
on the basis of high classification performance often achieved by
SVM, AdaBoost can boost SVM and achieve higher classification
performance. As others, we surely want to correct as many errors
as possible and at the same time make no errors on samples that
are correctly classified in the first place, and therefore we focus on
errors that are associated with hard-to-classify samples. AdaBoost
pays more attention to hard-to-classify samples, and accordingly
we propose an approach to integrate AdaBoost and SVM. Like
others, we use SVM as the base learner to build classification
models. However, unlike others, we propose not to simply use
SVM as a general building block in AdaBoost but to integrate
SVM into the boosting process.

We propose an approach that uses SVM with different kernels in
different iterations of AdaBoost. The intuition behind our design
is as follows: Once we perform weighted sampling on samples
according to their degrees of being hard-to-classify, as we do in
each iteration in the boosting process, we change the distribution
of samples input into SVM to train a classification model, or in
other words, we change the original data space even before the
used kernel projects it into another data space. In this situation,
the used kernel may not work as well as it did at the beginning in
the boosting process, and the kernel used earlier may not be
suitable for being used later.

The proposed approach varies the use of kernels in SVM
according to weights of kernels. Similar to how we update
weights of samples in AdaBoost, we update the weight of each
kernel by referring to its classification performance, and the better
performance corresponds to the higher weight, which further
corresponds to the higher probability that the kernel will be used
again in the next iteration. This feature distinguishes the proposed
approach from those proposed by others. Inspired by the
exponential function used to update weights of samples in
AdaBoost, we use an exponential function to update weights of
kernels. These two exponential functions are related to
classification performance achieved by the classification model
used in an iteration.

The reminder of this paper is organized as follows: Section 2
briefly reviews the work related to the integration of boosting and
SVM. Section 3 presents the approach proposed to integrate
AdaBoost and SVM with varying kernels. Section 4 describes the
experiment settings and reports the experiment results. Section 5
concludes this paper and discusses the possible directions for
future work.

2. RELATED WORK
Some researchers use SVM as the base learner in AdaBoost (or in
a variant of AdaBoost), and most of their designs are made for
particular applications. Examples are as follows: For pedestrian
detection, Nishida and Kurita propose an algorithm that integrates
feature selection in AdaBoost and uses SVM as the base learner
[32]. Liu et al. propose to combine an integrated sampling
technique with a group of SVM models in order to obtain better
classification performance on imbalanced data sets, and they
conclude from their experiments that a group of SVM models
outperforms individual SVM models [28]. Wang and Japkowicz
use SVM as the base learner in boosting to form a group of SVM
models for classification on imbalanced data sets [47]. Cheng et al.
first use an optimization-based feature selection method and then

SVM-based AdaBoost to build classification models of ligands of
a serotonin receptor subtype [7], and Cheng and Zhang use similar
methods to build classification models of Estrogen Receptor-β
ligands [8]. In [34], the authors use this combination in facial
expression recognition. More examples of applications of this
combination of AdaBoost and SVM include sentiment analysis
[42] and facial expression recognition [34].

Dong and Han empirically compare several types of combinations
of SVM models for text classification problems and conclude that
boosting does not provide performance improvement for SVM,
and they explain it by that SVM is strong learner while boosting is
often used for weak (or less accurate) base learners [11]. We
argue that their findings are only for their experiment settings,
including the data that they use. First of all, there is no theoretical
evidence indicating that boosting cannot be used with a strong
base learner but can be used only with weak base learners. Second
of all, there is empirical evidence showing that boosting can
improve the classification performance of SVM.

Some researchers use AdaBoost as a special pre-processing
method to manipulate the data set that is then input to SVM for
model training. Examples are as follows: Pavlov and Mao use
boosting to determine the weights of samples and accordingly
create subsets of the original data set that are smaller and will be
used to train SVM models, and they use AdaBoost and SMO [35].
Littlewort et al. study AdaBoost, SVM, and an approach using
both of them for expression recognizer in order to assist in
human-robot interaction, and in their paper Adaboost is used to
select features and SVM is used to train models with data sets of
reduced features [27]. In [2], Bartlett et al. compare various
approaches designed to recognize facial actions, and they
conclude from their experiments that “best results were obtained
by selecting a subset of Gabor filters using AdaBoost and then
training Support Vector Machines on the outputs of the filters
selected by AdaBoost.” Bartlett et al. first use AdaBoost to select
features and then use SVM to build classification models for
facial expression recognition [3]. Working on eye detection, Tang
et al. propose an approach that first uses AdaBoost to train a
model for face location and a model for eye detection and then
uses SVM to train a model for precise eye position [44].

Some researchers propose approaches that manipulate the settings
of SVM for the case where AdaBoost is used as a pre-processing
method for SVM or for the case where SVM is used as the base
learner in AdaBoost. The manipulation includes kernel selection,
kernel construction, and parameter tuning. Examples are as
follows: To address the issue of kernel selection for SVM,
Bennett et al. focus on the regression problem and propose an
algorithm named Multiple Additive Regression Kernels in which
a boosting-type procedure is used to select among kernels formed
by different kernel functions and parameters [4]. Crammer et al.
use a boosting-type procedure to learn a proper combination of
weights of base kernels that are less accurate and then construct a
kernel that is more accurate, and they use the classification error
to adjust the weight of a base kernel (but not weights of samples)
[10]. Li et al. propose an algorithm that uses SVM with RBF
kernel as the base learner in AdaBoost and adaptively adjusts a
kernel parameter; in [24], they conclude from their experiments
that their algorithm is advantageous in “easier model selection
and better generalization performance”, and in [25], they
conclude that their algorithm “demonstrates better generalization
performance than SVM on imbalanced classification problems.”

Considering the situation that only a small number of samples is
available for training a classification model, Hertz et al. indicate

that classification performance of SVM can be improved by using
a kernel learned or computed from the training data, and they
present a boosting algorithm named KernelBoost that uses
boosting to combine “weak space partitions” and further to
compute a kernel that will be used in SVM [20].

To detect Alzheimer's disease on brain Magnetic Resonance
Imaging (MRI), Savio et al. discuss an algorithm named “Diverse
AdaBoost SVM” that uses SVM as the base learner in AdaBoost
and adjusts a kernel parameter according to the error rate and the
diversity value in each iteration of AdaBoost [38].

3. APPROACH
Because AdaBoost and SVM are well-developed and well-known,
we directly introduce the proposed approach in this section.

In Figure 1, Algorithm 1 describes the training part for integrating
AdaBoost and SVM with varying kernels. We use upper-case
letters to denote a group of items or elements, and we use lower-
case letters to denote an item, an element, or a value. To describe
the proposed approach in a concise yet complete manner, we use
APIs (Application Programming Interfaces) to represent
functional modules, in each of which computing operations are
programmed for a specific purpose. These APIs are not directly
related to the logic of the proposed approach. They are listed
below in alphabetical order:

 BuildSVM: It is to build an operational SVM model for
classification using the data set specified by the first input
parameter as the training data set with the kernel specified
by the second input parameter.

 Exp: The exponential function.

 GetClasses: It is to determine the number of class or
category labels of the data set specified by the input
parameter.

 GetKernel: It is to randomly select an index number of a
kernel according to weights of kernels specified by the
input parameter.

 GetLabel: It is to take a sample specified by the input
parameter and return its (actual) class label.

 GetMaxIndex: It is to take a list of numbers specified by the
input parameter and then determine the index (i.e. the
position in the list) of the number with the largest value.

 GetSamples: It is to randomly draw samples with
replacement from the data set specified by the first input
parameter according to weights of samples specified by the
second input parameter.

 Ind: The indicator function, which returns 1 if the condition
specified by the input parameter turns out to be true and 0
otherwise.

 Log: The Logarithmic function.

Algorithm 1 takes two input parameters, namely the given data set
for training and the number of iterations. It returns the resulting
AdaBoost classification model, which is a group of SVM models
for classification. We initialize variables at the beginning of the
algorithm and iteratively update the values for these variables. In
each iteration, it first randomly selects an index number of a
kernel according to weights of kernels, and also it randomly draws
samples with replacement from the data set according to weights
of samples. These samples are then used with the selected kernel

to train or build a classification model based on SVM. After the
model is trained or built, the algorithm evaluates its classification
performance and accordingly updates weights of samples and
weights of kernels.

The goal of the first inner loop in Algorithm 1 is to calculate the
weighted error rate of a model in an iteration of the outer loop.
The goal of the second inner loop is to use the exponential
function used in AdaBoost to update weights of samples.
AdaBoost is originally designed for binary classification problems.
There exist methods that allow AdaBoost to work on multi-class
classification problems. Algorithm 1 designed by referring to an
intrinsically multi-class AdaBoost algorithm named SAMME,
short for Stagewise Additive Modeling using a Multi-class
Exponential loss function, which is different from the original
AdaBoost in that it considers the number of classes when
computing the weight of a classification model [51]. This
difference is reflected in the term Log(GetClasses(D)-1) in
Algorithm 1. Inspired by the exponential function used to update
weights of samples in AdaBoost, we use an exponential function
to update weights of kernels, as we can see in the third inner loop
in Algorithm 1. Additionally, when updating weights of kernels,
we consider the number of kernels in order to avoid that the
algorithm is trapped in a kernel which is not actually the best. If
there exists a kernel that is not actually suitable for the given data
set but happens to perform well on some training samples in
earlier iterations, and if the algorithm increases its weight by a
large step, then the algorithm will need more iterations to realize
its actual performance and decrease its weights such that the
algorithm will have a chance to select other kernels. Because we
would not like to run many iterations, we make smaller the size of
a step in updating weights of kernels. The above two exponential
functions are related to classification performance achieved by the
classification model used in an iteration, so we say that the
proposed approach literally integrates AdaBoost and SVM.

SVM is originally designed for binary classification problems.
Most implementations of SVM deal with a multi-class
classification problem by transforming it into multiple binary
classification problems. In our current implementation of
Algorithm 1, we use SMO.

The effectiveness of SVM is dependent on the kernel used, and
the Gaussian kernel is commonly used. A byproduct of the
propose approach is an automatic kernel selection approach.
Considering that we run AdaBoost for t iterations for a kernel and
there are m kernels from which we want to select as the best one
for a given data set, we will build t × m SVM models and then
evaluate classification performance of each kernel, while we will
build only t SVM models and then know which kernel is the best
if we use the proposed approach.

The proposed approach is comparable to or even better than the
approach simply using SVM with a kernel in AdaBoost without
integrating them. As for the using or testing part, we can simply
use or test the trained AdaBoost classification model as a general
classification model. We give the model a new sample without a
pre-specified class or category label, and then the model will give
us an assigned or classified label. In Figure 2, Algorithm 2
describes the testing part for integrating AdaBoost and SVM with
varying kernels. We use the same notations as those used in
Algorithm 1. Given a sample, Algorithm 2 calculates the
likelihood that the sample belongs to a class, for all classes the
algorithm finds the one with the largest likelihood, and finally the
algorithm assigns the label of the found class to the sample.

Input: D is the given data set for training, and t is the number of iterations
Output: C is the resulting AdaBoost classification model, i.e. a group of SVM models for classification
1 Initialize weights of samples, WS ← {wsi | wsi = 1/n, 1 ≤ i ≤ n}, where wsi is the weight of di, the i-th sample in D, and n is the

number of samples
2 Initialize weights of kernels, WK ← {wki | wki = 1/m, 1 ≤ i ≤ m}, where wki is the weight of the i-th kernel and m is the number of

kernels
3 Initialize A ← {ai | ai = 0, 1 ≤ i ≤ t}, where ai is related to classification performance of ci, the i-th model in C
4 For i = 1 to t
5 ki ← GetKernel(WS), where k is the index number of the kernel selected and used in the i-th iteration
6 T ← GetSamples(D, WS), where T is the sampled data set for training in an iteration
7 ci ←BuildSVM(T,ki), where ci is the i-th model in C
8 e ← 0, where e is the weighted error rate of a model in an iteration
9 For j = 1 to n
10 e ← e + Ind(ci(dj) GetLabel(dj)) wsj, where ci takes a sample as an input parameter and returns a class label

 as the classification result
11 End For
12 ai ←1/GetClasses(D) × Log((1-e)/e) + Log(GetClasses(D)-1)
13 For j = 1 to n
14 wsj ← wsj × Exp((2 × Ind(ci(dj)) = GetLabel(dj))-1) × ai)
15 End For
16 For j = 1 to m
17 wkj ← wkj × Exp(Ind(e ≤ 1/GetClasses(D))) × ai/m)
18 End For
19 End For
20 Return C

Figure 1. Algorithm 1: The training part for integrating AdaBoost and SVM with varying kernels

Input: s is the sample that is going to be tested (or labeled)
Output: l is the class label (or the classification)
1 Initialize P ← {pi | pi = 0, 1 ≤ i ≤ GetClasses(D)}, where pi is related to the accumulated classification performance that models

provide with respect to the i-th class label; D is the one input to Algorithm 1
2 For i =1 to t (the number of iterations in Algorithm 1)
3 pci(s) ← pci(s) + ai
4 End For
5 l ← GetMaxIndex(P)
6 Return l

Figure 2. Algorithm 2: The testing part for integrating AdaBoost and SVM with varying kernels

4. EXPERIMENTS
All the data sets considered in experiments are public data sets,
and most are derived from the data sets available on the UC Irvine
Machine Learning Repository [26]. Table 1 summarizes the data
sets used in experiments and their characteristics. In the table, the
first and second columns are the number and name of the data set,
respectively; the third, fourth, and fifth columns are the numbers
of samples, attributes, and classes, respectively; the sixth column
is the number of attributes with missing values, and the seventh
column is the range of percentages of missing values on these
attributes; the eighth column, the last column, is the percentage of
samples that belong to the majority class (or classes). As we can
see from the table that these data sets have different levels of
quality or difficulty for classification.

We use AdaBoost and SMO provided by WEKA [18], and we use
the functions built in WEKA to implement the proposed approach.

Table 2 summarizes the results in accuracy obtained by using 10-
fold cross-validation. In the table, SVM means a single SVM
model, AB+SVM means the 10-iteration AdaBoost with SVM (or,
simply using SVM as the base learner in AdaBoost), ABSVM
means the proposed approach with 4 kernels and 10 iterations;
Poly means the polynomial kernel, N.Poly means the normalized
polynomial kernel, Puk means the Pearson VII function based
universal kernel [46], and RBF means the Radial Basis Function
(Gaussian) kernel [6]. In the table, the last column is considering
the number of kernels in updating weights of kernels, and the
second last column is not doing so; the former implies a smaller

step in updating weights and is associated with Line 17 in
Algorithm 1, while the latter implies a larger step and is
associated with Line 17 with a minor change.

AB+SVM performs better, or at least equally well as, SVM in 9
data sets. AdaBoost can possibly increase the classification
performance of SVM, but it decreases the classification
performance in the following cases: 1) in the data set
analcatdata_authorship, when the normalized polynomial kernel
is used; 2) in the data set breast-w, when the polynomial kernel is
used; and, 3) in the data sets ionosphere and vowel, when the RBF
kernel is used. Moreover, in the data set vehicle, it increases the
classification performance only when the normalized polynomial
kernel is used; and, in the data set vote, it shows the same
classification performance when the RBF kernel is used, while it

decreases the classification performance when the other 3 kernels
are used. These two data sets, vehicle and vote, possibly contain
noisy samples such that noise is overemphasized (and, in some
sense, amplified) in the boosting process and then misleads SVM
in the search for the optimal hyperplane. In these two data sets,
the proposed approach shows the highest accuracy. The results
prove the concept of selecting and switching between kernels in
the boosting process. For the proposed approach, when it is with a
smaller step in updating weights of kernels, it shows the highest
accuracy in 10 data sets; when it is with a larger step, it shows the
highest accuracy in 6 data sets. Compared to using a larger step,
using a smaller step shows higher accuracy in 13 data sets, and it
shows lower accuracy in only 1 data set. Therefore, it is better to
consider the number of kernels in updating weights of kernels.

Table 1. Data sets
No Data set Samples Attributes Classes Attr. w/ missing Missing Majority
1 analcatdata_authorship 841 70 4 1 37.7%
2 anneal 898 38 6 0 76.2%
3 autos 205 25 7 7 1%-20% 32.7%
4 balance-scale 625 4 3 0 46.1%
5 breast-w 699 9 2 1 2% 65.5%
6 car 1728 6 4 0 70%
7 diabetes 768 8 2 0 65.1%
8 ecoli 336 7 8 0 42.6%
9 ionosphere 351 34 2 0 64.1%

10 irish 500 5 3 2 1%-5% 65%
11 liver-disorders 345 6 2 0 58%
12 sonar 208 60 2 0 53.4%
13 vehicle 846 18 4 0 25.8%
14 vote 435 16 2 16 2%-24% 61.4%
15 vowel 990 13 11 0 9.1%

Table 2. Results in accuracy

 SVM AB+SVM ABSVM
No Poly N.Poly Puk RBF Poly N.Poly Puk RBF w/o kernel num. w/ kernel num.
1 99.4 99.8 99.2 98.7 99.4 99.2 99.2 98.9 99.3 99.5
2 96.5 94.9 96.3 89.9 97.6 94.9 97.2 92 98.1 99.1
3 68.3 61.5 61 43.9 69.8 65.4 63.9 44.4 68.3 68.8
4 87 90.9 89.6 87.2 87.5 90.9 90.1 89 90.1 90.4
5 96.4 93.7 96.4 96 96.3 93.8 96.7 96 96.3 96.6
6 93.3 96.3 91.4 83.9 93.5 96.4 91.6 84.6 87.9 99.6
7 76.2 65.9 75.7 65.1 77.2 65.9 77.2 65.1 73.8 77.9
8 82.1 70.2 86.6 42.6 83.3 70.8 87.5 42.6 86 86.3
9 87.2 83.9 94.3 75.8 87.7 85.2 94.6 74.9 95.4 96

10 98.6 98.6 98.4 90.8 98.6 98.6 98.4 91.3 98.4 98.6
11 57.4 60.3 67.8 58 58.3 60.6 69.3 58 66.4 69.9
12 75 74 83.7 66.3 75.5 76.4 85.6 73.1 88 87.5
13 73.9 73.8 74.8 40 72.9 74.6 74.6 39.7 76.4 76.4
14 95.2 95.4 94.9 94.7 94.5 94.9 94.5 94.7 95.9 96.1
15 69.7 50.9 94.7 29 77.4 65.9 98.1 28.2 98.1 98.2

Although the proposed approach shows the highest accuracy in
most of the data sets used in experiments, we are by no means
going to conclude that it is the best algorithm combining
AdaBoost and SVM. We need to run more experiments (and this
would be part of future work). Nevertheless, the results
demonstrate the proof of our concept for the integration of
AdaBoost and SVM.

We consider AB+SVM with the best kernel by referring to Table
2 and ABSVM when the number of iterations is increased from 10
to 100 with a step of 10. Figures 3, 4, and 5 present the results for
the data sets liver-disorders, sonar, and vehicle, respectively. In
these figures, the x-axis is the number of iterations and the y-axis
is accuracy.

In these three figures, we can observe periodic changes of
accuracy (or accuracy periodically being going up and down).
This is a characteristic of AdaBoost (or, more precisely, the
boosting process). These changes come from that AdaBoost
attempts to fix errors made in earlier iterations. As we can see
from these figures, the accuracy achieved by running the proposed
approach for 100 iterations is higher than that achieved by running
it for 10 iterations, but this is not the case for AB+SVM, which
possibly needs more iterations to fix errors. Therefore, these
figures show us that the proposed approach can more efficiently
fix errors. Furthermore, the data set associated with Figure 5 is a
data set that possibly contains noisy samples. From the figure, we
can see that noise has a negative effect on the classification
performance of AB+SVM but not on the proposed approach.
Again, The above findings are because the proposed approach
selects and switches between kernels in the boosting

Figure 3. AB+SVM with Puk kernel and ABSVM for the data

set liver-disorders

Figure 4. AB+SVM with Puk kernel and ABSVM for the data

set sonar

Figure 5. AB+SVM with normalized polynomial and Puk

kernels and ABSVM for the data set vehicle

5. CONCLUSION
AdaBoost is a meta-learning algorithm that employs a
classification algorithm as a base learner to form a group of
classification models and uses voting to combine individual
classifications made by these models for a sample into an overall
classification. It emphasizes more on hard-to-classify samples.
SVM is a generalized linear classifier, and it employs a function
called kernel to project the original data space to a data space
where it can find a hyperplane that can linearly separate as many
samples as possible based on their classes. It can minimize the
error and maximize the margin at the same time. Because
AdaBoost can improve the classification performance of its base
learner, it is often used with a weak (or less accurate) but simple
classification algorithm in order to perform faster classification
with acceptable accuracy. Because SVM is considered as a strong
(or more accurate) classification algorithm, to obtain accuracy that
is more than acceptable, researchers have been exploring the use
of AdaBoost with SVM in the hope that AdaBoost can further
improve the classification performance of SVM. For instance,
researchers use SVM with a single kernel as the base learner in
AdaBoost. However, because samples are sampled based on their
weights and their weights are updated based on their degrees of
being hard-to-classify in each iteration in the boosting process, the
data space is changed such that possibly the kernel used for data
space projection needs to be changed too.

We propose an approach that employs SVM with multiple kernels
as the base learners in a variant of the boosting process of
AdaBoost designed for multi-class classification. It uses SVM
with different kernels in different iterations. It varies the
employment of kernels based on their weights. From iterations to
iterations, it not only updates weights of samples but also updates
weights of kernels. In each iteration, it updates the two types of
weights based on the classification performance of the model
trained with the selected samples and the selected kernel. This is
the distinguishing feature of the proposed approach. Furthermore,
it is important to select an appropriate kernel when using SVM
(and when using AdaBoost with SVM), and often kernel selection
is done empirically. The proposed approach can do automatic
kernel selection, and it can let the kernels that do not perform well
also contribute to overall classifications. We implement the
propose approach by utilizing a popular machine learning toolkit.
We conduct experiments on public data sets. According to the
results, we can obtain better classification performance by using
the proposed approach.

65

67

69

71

73

75

10 20 30 40 50 60 70 80 90 100

ABSVM AB+SVM Puk

80
82
84
86
88
90
92

10 20 30 40 50 60 70 80 90 100

ABSVM AB+SVM Puk

70

72

74

76

78

80

10 20 30 40 50 60 70 80 90 100

ABSVM AB+SVM Puk AB+SVM N.Poly

As for the possible directions for future work, we plan to study the
use of other types of kernels and also investigate a more
intelligent way to select or switch between kernels.

6. ACKNOWLEDGMENTS
The author would like to thank anonymous reviewers for their
valuable time.

7. REFERENCES
[1] E Alfaro, N García, M Gámez, and D Elizondo. 2008.

Bankruptcy forecasting: An empirical comparison of
AdaBoost and neural networks. Decis. Support Syst. 45, 1
(April 2008), 110-122.
DOI=http://dx.doi.org/10.1016/j.dss.2007.12.002

[2] MS Bartlett, G Littlewort, C Lainscsek, I Fasel, and J
Movellan. 2004. Machine learning methods for fully
automatic recognition of facial expressions and facial actions.
In Proc. of International Conference on Systems, Man and
Cybernetics (SMC '04), 592-597.
DOI=http://dx.doi.org/10.1109/ICSMC.2004.1398364

[3] MS Bartlett, G Littlewort, M Frank, C Lainscsek, I Fasel,
and J Movellan. 2005. Recognizing facial expression:
Machine learning and application to spontaneous behavior.
In Proc. of Conference on Computer Vision and Pattern
Recognition (CVPR '05), 568-573.
DOI=http://dx.doi.org/10.1109/CVPR.2005.297

[4] KP Bennett, M Momma, and MJ Embrechts. 2002. MARK:
A boosting algorithm for heterogeneous kernel models. In
Proc. of the 8th International Conference on Knowledge
Discovery and Data mining (KDD '02), 24-31.
DOI=http://dx.doi.org/10.1145/775047.775051

[5] CJC Burges. 1998. A tutorial on support vector machines for
pattern recognition. Data Min. Knowl. Discov. 2, 2 (June
1998), 121-167.
DOI=http://dx.doi.org/10.1023/A:1009715923555

[6] Y-W Chang, C-J Hsieh, K-W Chang, M Ringgaard, and C-J
Lin. 2010. Training and testing low-degree polynomial data
mappings via linear SVM. J. Mach. Learn. Res. 11 (August
2010), 1471-1490.

[7] Z Cheng, Y Zhang, C Zhou, W Zhang and S Gao. 2009.
Classification of 5-HT1A receptor ligands on the basis of
their binding affinities by using PSO-Adaboost-SVM. Int. J.
Mol. Sci. 10, 8 (July 2009), 3316-3337.
DOI=http://dx.doi.org/10.3390/ijms10083316

[8] Z Cheng and Y Zhang. 2010. Classification models of
estrogen receptor-β ligands based on PSO-Adaboost-SVM.
Journal of Convergence Information Technology 5, 2 (April
2010), 67-83.

[9] C Cortes and V Vapnik. 1995. Support-vector networks.
Mach. Learn. 20, 3 (September 1995), 273-297.
DOI=http://dx.doi.org/10.1007/BF00994018

[10] K Crammer, J Keshet, and Y Singer. 2002. Kernel design
using boosting. In Proc. of Conference on Advances in
Neural Information Processing Systems 15 (NIPS '02), 553-
560.

[11] Y-S Dong and K-S Han. 2005. Boosting SVM classifiers by
ensemble. In Special Interest Tracks and Posters of the 14th
International Conference on World Wide Web (WWW '05),
1072-1073.
DOI=http://dx.doi.org/10.1145/1062745.1062874

[12] H Drucker, D Wu, and V Vapnik. 1999. Support vector
machines for spam categorization. Trans. Neur. Netw. 10, 5
(September 1999), 1048-1054.
DOI=http://dx.doi.org/10.1109/72.788645

[13] KO Elish and MO Elish. 2008. Predicting defect-prone
software modules using support vector machines. J. Syst.
Softw. 81, 5 (May 2008), 649-660.
DOI=http://dx.doi.org/10.1016/j.jss.2007.07.040

[14] A Este, F Gringoli, and L Salgarelli. 2009. Support vector
machines for TCP traffic classification. Comput. Netw. 53,
14 (September 2009), 2476-2490.
DOI=http://dx.doi.org/10.1016/j.comnet.2009.05.003

[15] A Esuli, T Fagni, and F Sebastiani. 2006. MP-Boost: a
multiple-pivot boosting algorithm and its application to text
categorization. In Proc. of the 13th International Conference
on String Processing and Information Retrieval (SPIRE '06),
1-12. DOI=http://dx.doi.org/10.1007/11880561_1

[16] Y Freund and RE Schapire. 1995. A decision-theoretic
generalization of on-line learning and an application to
boosting. In Proc. of the 2nd European Conference on
Computational Learning Theory (EuroCOLT '95), 23-37.
DOI=http://dx.doi.org/10.1007/3-540-59119-2_166

[17] N Gkalelis and V Mezaris. 2014. Video event detection using
generalized subclass discriminant analysis and linear support
vector machines. In Proc. of International Conference on
Multimedia Retrieval (ICMR '14), 25-32.
DOI=http://dx.doi.org/10.1145/2578726.2578745

[18] M Hall, E Frank, G Holmes, B Pfahringer, P Reutemann, and
IH Witten. 2009. The WEKA data mining software: an
update. SIGKDD Explor. Newsl. 11, 1 (November 2009), 10-
18. DOI=http://dx.doi.org/10.1145/1656274.1656278

[19] T Hastie and R Tibshirani. 1998. Classification by pairwise
coupling. In Proc. of Conference on Advances in Neural
Information Processing Systems 10 (NIPS '97), 507-513.

[20] T Hertz, AB Hillel, and D Weinshall. 2006. Learning a
kernel function for classification with small training samples.
In Proc. of the 23rd International Conference on Machine
learning (ICML '06), 401-408.
DOI=http://dx.doi.org/10.1145/1143844.1143895

[21] T Joachims. 2001. A statistical learning model of text
classification for support vector machines. In Proc. of the
24th International Conference on Research and Development
in Information Retrieval (SIGIR '01), 128-136.
DOI=http://dx.doi.org/10.1145/383952.383974

[22] SS Keerthi, SK Shevade, C Bhattacharyya, and KRK Murthy.
2001. Improvements to Platt's SMO algorithm for SVM
classifier design. Neural Comput. 13, 3 (March 2001), 637-
649. DOI=http://dx.doi.org/10.1162/089976601300014493

[23] L Khan, M Awad, and B Thuraisingham. 2007. A new
intrusion detection system using support vector machines and
hierarchical clustering. VLDB J. 16, 4 (October 2007), 507-
521. DOI=http://dx.doi.org/10.1007/s00778-006-0002-5

[24] X Li, L Wang, and E Sung. 2005. A study of AdaBoost with
SVM based weak learners. In Proc. of International Joint
Conference on Neural Networks (IJCNN '05), 196-201.
DOI=http://dx.doi.org/10.1109/IJCNN.2005.1555829

[25] X Li, L Wang, and E Sung. 2008. AdaBoost with SVM-
based component classifiers. Eng. Appl. Artif. Intell. 21, 5

(August 2008), 785-795.
DOI=http://dx.doi.org/10.1016/j.engappai.2007.07.001

[26] M Lichman. 2013. UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of
California, School of Information and Computer Science.

[27] GC Littlewort, MS Bartlett, J Chenu, I Fasel, T Kanda, H
Ishiguro, and J Movellan. 2003. Towards social robots:
Automatic evaluation of human-robot interaction by face
detection and expression classification. In Proc. of
Conference on Advances in Neural Information Processing
Systems 16 (NIPS '03), 1563-1570.

[28] Y Liu, A An, and X Huang. 2006. Boosting prediction
accuracy on imbalanced datasets with SVM ensembles. In
Proc. of the 10th Pacific-Asia conference on Advances in
Knowledge Discovery and Data Mining (PAKDD '06), 107-
118. DOI=http://dx.doi.org/10.1007/11731139_15

[29] S Maldonado, Á Flores, T Verbraken, B Baesens, and R
Weber. 2015. Profit-based feature selection using support
vector machines - General framework and an application for
customer retention. Appl. Soft Comput. 35, C (October 2015),
740-748. DOI=http://dx.doi.org/10.1016/j.asoc.2015.05.058

[30] P Michel and R El Kaliouby. 2003. Real time facial
expression recognition in video using support vector
machines. In Proc. of the 5th International Conference on
Multimodal Interfaces (ICMI '03), 258-264.
DOI=http://dx.doi.org/10.1145/958432.958479

[31] M Namdari and H Jazayeri-Rad. 2014. Incipient fault
diagnosis using support vector machines based on
monitoring continuous decision functions. Eng. Appl. Artif.
Intell. 28 (February 2014), 22-35.
DOI=http://dx.doi.org/10.1016/j.engappai.2013.11.013

[32] K Nishida and T Kurita. 2005. Boosting soft-margin SVM
with feature selection for pedestrian detection. In Proc. of the
6th international conference on Multiple Classifier Systems
(MCS '05), 22-31.
DOI=http://dx.doi.org/10.1007/11494683_3

[33] N Nissim, R Moskovitch, L Rokach, and Y Elovici. 2012.
Detecting unknown computer worm activity via support
vector machines and active learning. Pattern Anal. Appl. 15,
4 (November 2012), 459-475.
DOI=http://dx.doi.org/10.1007/s10044-012-0296-4

[34] E Owusu, Y Zhan, and QR Mao. 2014. An SVM-AdaBoost
facial expression recognition system. Applied Intelligence 40,
3 (April 2014), 536-545.
DOI=http://dx.doi.org/10.1007/s10489-013-0478-9

[35] D Pavlov, J Mao, and B Dom. 2000. Scaling-up support
vector machines using boosting algorithm. In Proc. of the
15th International Conference on Pattern Recognition (ICPR
'00), 219-222.
DOI=http://dx.doi.org/10.1109/ICPR.2000.906052

[36] JC Platt. 1999. Fast training of support vector machines
using sequential minimal optimization. In Advances in
Kernel Methods. MIT Press, 185-208.

[37] WH Press, SA Teukolsky, WT Vetterling, and BP Flannery.
2007. Numerical Recipes: The Art of Scientific Computing
(3rd Ed.). Cambridge University Press.

[38] A Savio, M García-Sebastián, M Graña, and J Villanúa. 2009.
Results of an Adaboost Approach on Alzheimer's Disease
Detection on MRI. In Proc. of the 3rd International Work-

Conference on the Interplay Between Natural and Artificial
Computation: Part II: Bioinspired Applications in Artificial
and Natural Computation (IWINAC '09), 114-123.
DOI=http://dx.doi.org/10.1007/978-3-642-02267-8_13

[39] B Scholkopf and AJ Smola. 2001. Learning with Kernels:
Support Vector Machines, Regularization, Optimization, and
Beyond. MIT Press.

[40] H Schwenk and Y Bengio. 1997. AdaBoosting Neural
Networks: Application to on-line Character Recognition. In
Proc. of the 7th International Conference on Artificial
Neural Networks (ICANN '97), 967-972.

[41] F Sebastiani, A Sperduti, and N Valdambrini. 2000. An
improved boosting algorithm and its application to text
categorization. In Proc. of the 9th International Conference
on Information and Knowledge Management (CIKM '00),
78-85. DOI=http://dx.doi.org/10.1145/354756.354804

[42] A Sharma and S Dey. 2013. A boosted SVM based sentiment
analysis approach for online opinionated text. In Proc. of
Research in Adaptive and Convergent Systems (RACS '13),
28-34. DOI=http://dx.doi.org/10.1145/2513228.2513311

[43] J Sun, M-Y Jia, and Hui Li. 2011. AdaBoost ensemble for
financial distress prediction: An empirical comparison with
data from Chinese listed companies. Expert Syst. Appl. 38, 8
(August 2011), 9305-9312.
DOI=http://dx.doi.org/10.1016/j.eswa.2011.01.042

[44] X Tang, Z Ou, T Su, H Sun, and P Zhao. 2005. Robust
precise eye location by adaboost and SVM techniques. In
Proc. of the 2nd International Conference on Advances in
Neural Networks (ISNN '05), 93-98.

[45] B Tang, H Cao, Y Wu, M Jiang, and H Xu. 2012. Clinical
entity recognition using structural support vector machines
with rich features. In Proc. of the 6th International Workshop
on Data and Text Mining in Biomedical Informatics
(DTMBIO '12), 13-20.
DOI=http://dx.doi.org/10.1145/2390068.2390073

[46] B Üstün, WJ Melssen, and LMC Buydens. 2006. Facilitating
the application of support vector regression by using a
universal Pearson VII function based kernel. Chemometr.
Intell. Lab. 81, 1 (March 2006), 29-40, 0169-7439,
DOI=http://dx.doi.org/10.1016/j.chemolab.2005.09.003

[47] BX Wang and N Japkowicz. 2010. Boosting support vector
machines for imbalanced data sets. Knowl. Inf. Syst. 25, 1
(October 2010), 1-20.
DOI=http://dx.doi.org/10.1007/s10115-009-0198-y

[48] X Wu, V Kumar, JR Quinlan, J Ghosh, Q Yang, H Motoda,
GJ McLachlan, A Ng, B Liu, PS Yu, Z-H Zhou, M Steinbach,
DJ Hand, and D Steinberg. 2007. Top 10 algorithms in data
mining. Knowl. Inf. Syst. 14, 1 (December 2007), 1-37.
DOI=http://dx.doi.org/10.1007/s10115-007-0114-2

[49] X Xu and TS Huang. 2007. SODA-boosting and its
application to gender recognition. In Proc. of the 3rd
International Conference on Analysis and Modeling of Faces
and Gestures (AMFG'07), 193-204.

[50] D Zhang and WS Lee. 2004. Web taxonomy integration
using support vector machines. In Proc. of the 13th
International Conference on World Wide Web (WWW '04),
472-481. DOI=http://dx.doi.org/10.1145/988672.988736

[51] J Zhu, H Zou, S Rosset, and T Hastie. 2009. Multi-class
adaboost. Statistics and Its Interface 2 (2009), 349-360.

