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a b s t r a c t

Many variable annuity products associated with guaranteed minimum withdrawal benefit (GMWB)
or its lifelong version, a guaranteed lifelong withdrawal benefit (GLWB), have enjoyed great market
success in the United States and Asia. The interaction impacts among complex policy provisions and the
randomness of the account value of the policy, the prevailing interest rate, as well as the mortality rate
may significantly influence the evaluations of GMWBs/GMLBs, especially when the guaranteed payments
are made over a long, or even a lifelong, horizon. To deal with aforementioned risk factors and policy
provisions, this paper proposes a novel three-dimensional (3D) tree that can analyze how different policy
provisions influence the evaluation of GMWB/GLWBs under investment interest rate, and mortality risks
simultaneously. The orthogonalization method is used to convert correlated dynamics of the account
value of the policy and the short-term interest rate into two independent processes that can be easily
simulated by our 3D tree. Besides, the structure of our 3D tree is sophisticatedly designed to avoid
the unstable (oscillating) pricing results phenomenon that has characterized many numerical pricing
methods. Rigorous numerical experiments are given to analyze the interaction effects among policy
provisions and the aforementioned risk factors on the evaluation of GMWBs/GLWBs.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The variable annuity (VA) is a popular insurance product sold
in insurance markets. Differing from a traditional life insurance
product, a VA product allows the policyholder to choose the
investment portfolio and thus bear the profit or loss due to the
investment performance. To protect the policyholder from the
downside investment risk, granting an investment guarantee has
become a popular rider attached to VA products. With this design,
the policyholder is guaranteed to receive a prespecified stream
of return(s) from the issuer through various types of investment
guarantees, such as guaranteedminimumdeath benefits (GMDBs),
guaranteed minimum maturity benefits (GMMBs), guaranteed
minimum income benefits (GMIBs), and guaranteed minimum
withdrawal benefits (GMWBs). For simplicity, the aforementioned
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policies are collectively referred to as ‘‘GMXBs’’. These VA products
have enjoyed great market success both in the United States and
Asia.

The GMWB rider recently introduced by Hartford in 2002
has become a popular innovated design for VAs (see Yang and
Dai, 2013). A GMWB rider protects the policyholder against
the downside investment risk by providing him/her with the
right to regularly withdraw a fixed rate1 of a contractually
specified amount from the investment account over a prespecified
withdrawal period. Recently, this guaranteedwithdrawal period of
a GMWB rider has been extended to be lifelong, to which we refer
by guaranteed lifetimewithdrawal benefits (GLWBs hereafter). For
a GLWB rider, the withdrawal rate may depend on the issue age2
and there is no limit for the total amount that is withdrawn over
the term of the policy. The remaining investment will be returned
to the policyholder (or the insured’s beneficiary) when a GMWB
expires (or a GLWB holder dies). A GLWB rider has become very

1 This rate is guaranteed to return at least the entire investment.
2 It refers to the policyholder’s age when the policy was first issued.
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popular in the USmarket (see Otar, 2007; LIMRA, 2013). According
to a report by LIMRA in 2013, the election rates of GLWB, GMWB,
GMIB, and GMAB are 81%, 2%, 15%, and 2%, respectively.

The granting of GMXBs can be treated as exotic options
embedded in VA products. Evaluating these VA products and
embedded exotic options is critical for an insurance company
to determine the hedging strategies and the fair charge—a fair
amount of the insurance fee that makes the policy value (or the
present value of future cash flows received from the policy) equal
to the present value of investments. Evaluating a GMWB has
drawn much attention in the academic literature in recent years
since this policy is popular and has many complex provisions.
Milevsky and Salisbury (2006) price GMWBs by taking advantage
of the concept of a Quanto Asian put. Chen et al. (2008) then
consider the jump risk in the account value and employ a
jump–diffusion process to evaluate the GMWBs. Dai et al. (2008)
instead provide a rigorous derivation of the singular stochastic
control model for pricing variable annuities with GMWB using
the Hamilton–Jacobi–Bellman (HJB) equation. Bauer et al. (2008)
consider a universal pricing framework for pricing various GMXBs
by using simulation techniques. Yang and Dai (2013) analyze the
impacts of different provisions on the pricing of the GMWBs.

The aforementioned pricing models are based on a constant
interest rate environment. However, ignoring the interest rate
risk would significantly misprice a policy, since interest-rate-
sensitive instruments are usually important components of the
corresponding investment portfolio. This price deviation problem
becomes significant with the increment of the policy’s maturity,
especially for a lifelong policy such as a GLWB. Recently, a
few studies have examined the GLWB rider (see Piscopo and
Haberman, 2011; Holz et al., 2012), but they have not considered
the interest rate risk. The interest rate risk seems to have been first
considered by Nielsen and Sandmann (1995) to price an equity-
linked life insurance. Lin and Tan (2003) and Kijima and Wong
(2007) further consider the pricing of equity-indexed annuities and
show that the interest rate risk becomes significant when valuing
long-duration insurance policies. Peng et al. (2012) first analyze
the interest rate risk for pricing GMWBs by employing the Vasicek
model (see Vasicek, 1977) that cannot exactly fit the real market
zero rate curves. Due to the mathematical complexity, they derive
lower and upper bounds for the GMWB value without considering
various provisions of GMWBs. Our paper goes further to price
GMWBs/GLWBs under the extended Vasicek model (see Hull and
White, 1994), which can exactly fit the prevailing zero curve.

In addition, the longevity risk plays a significant role in pricing
GMWBs/GLWBs (see Piscopo and Haberman, 2011; Yang and Dai,
2013; Fung et al., 2013), especially for the later one. Piscopo
and Haberman (2011) and Fung et al. (2013) point out that the
issuers of lifetime-payment guarantees may suffer from longevity
risk since policyholders on average live longer than expected.
Yang and Dai (2013) adopt a deterministic mortality model in
pricing the GMWB contracts and did not address the issue of
longevity risk. This study further examines the GLWB contracts
and considers the critical issue of longevity risk for such contracts.
Biffis (2005) propose an affine jump–diffusion mortality process
that can provide a flexible framework for actuarial valuations of a
number of life insurance contracts. Thus, we further incorporate
the stochastic mortality model proposed by Biffis (2005) into our
pricing model for both GMWB and GWLB contracts and reflect its
impacts associated with different product features.

Yang and Dai (2013) argue that many popular provisions as
well as the surrender option embedded in GMWBs significantly
influence the evaluations of fair charges. A GMWB/GLWB policy
may grant a policyholder the right to surrender the policy to
redeem the whole account value or to over-withdraw from the
account subject to a predetermined early redemption penalty. A
policyholder will surrender the policy (or over-withdraw from
the account) if he or she finds that the value of redeeming early
exceeds the value of the withdrawal guarantee minus the losses
of the insurance fee, the mortality risk, and the time value due to
postponed withdrawals. Ignoring the surrender option provision
may result in strong price deviations for different types of GMXB
as mentioned in Shen and Xu (2005), Costabile et al. (2008), and
Yang andDai (2013). Similarly, many studies (see Chen et al., 2008;
Dai et al. (2008)) have carefully studied the partial withdrawal
provision; that is, the policyholder is allowed to withdraw any
amount from the account to maximize his/her benefit.

However, the values of such provisions and the surrender
option could be affected not only by the future investment
uncertainty but also the interest rate and mortality rate risks. To
make a valuation framework for GMWB/GLWBs more realistically,
we extend Yang and Dai (2013) by analyzing all provisions
mentioned in their paper under a stochastic investment, interest
rate and mortality rate environment simultaneously. In other
words, we focus on how the presence of the investment risk, the
interest rate risk, themortality risk, and other provisions influence
the surrender option premium. Our work can also analyze the
optimal withdrawal behaviors by mimicking the method in Yang
and Dai (2013). Extending, we further considers another two
popular provisions: a ratchet guarantee provision and a regular
premium provision. In most GMWBs/GLWBs, policyholders are
required to invest their policy accounts during the so-called
‘‘deferral period’’ and the guaranteed withdrawals are deferred
to take place at the beginning of the so-called ‘‘withdrawal
period’’. A ratchet guarantee determines the amount of total
guaranteed withdrawals as the maximum of the policy account
value during the deferral period. A regular premium provision
requires a policyholder to invest the account periodically during
the deferral period. While our numerical experiments suggest that
these two provisions would significantly influence the evaluation
of GMWBs/GLWBs,most existingworksmay significantlymisprice
the policies due to the ignorance of the deferral period and the
provisions.

Our paper constructs a three-dimensional (3D) tree to simulta-
neously model the investment, the interest rate, and the mortality
risks for pricing GMWBs/GLWBs. Compared to a univariate pric-
ing method (like the Yang and Dai, 2013 method that only mod-
els the dynamics of the account value), developing a multivariate
method elevates the difficulty to a new level due to the following
problems. First, directly modeling the aforementioned risks simul-
taneously will result in the ‘‘curse of dimensionality’’; that is, we
need to build a high-dimension tree3 that makes the tree structure
too complex to deal with. Second, it is hard to build a feasible tree
to match the correlations among correlated processes being sim-
ulated (see Zvan et al., 2003). Third, it is also hard to build a tree
to simultaneously match the moments of several processes with
stochastic drift terms as mentioned in Lyuu and Wang (2011). Fi-
nally, many numerical methods generate oscillating pricing results
due to the nonlinearity error as mentioned in Figlewski and Gao
(1999), and this undesirable property may make the evaluation of
the fair charge intractable. Recall that the fair charge denotes a fair
amount of the insurance fee that makes the policy’s value equal to
the present value of investments. Oscillating pricing results for the
policy’s value would make the above equilibrium unsolvable. The
oscillating pricing problem can be alleviated by making some tree
nodes coincide with the ‘‘critical locations’’—the locations where
the function of the policy’s value is highly nonlinear as suggested
in Dai and Lyuu (2010).

3 In this case, we require four dimensions for time, the account value, the short
rate, and the mortality risk.
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Our 3D tree is sophisticatedly designed to address the above
problems. First, by adopting the assumption that themortality risk
is independent of the investment and the interest rate risks,4 we
will prove in a later section that the curse of dimensionality can be
alleviated. Thus we can first build our 3D tree to simulate the dy-
namics of the account value and the short rate. The mortality risk
can be taken into account by first evaluating the expected mortal-
ity rate at each time step (of our 3D tree) and then by incorporating
these expected mortality rates into our tree. Reducing tree dimen-
sion from four to three not only avoid complex tree construction
procedure but also significantly reduce the computational time re-
quired to evaluate a GMWB/GLWB policy. To address the second
problem, we first convert the account value and the short rate pro-
cesses into two uncorrelated processes by means of the orthogo-
nalizationmethod. Then our treemodels the evolution of these two
uncorrelated processes to avoid invalid tree structures due to the
correlation calibration. To address the last two problems, we take
advantage of the ‘‘mean-tracking’’ tree construction method pro-
posed by Dai (2009) to adjust our 3D tree. The tree structure is ad-
justed tomatch the drift termof the account value or tomake some
tree nodes coincide with critical locations to alleviate the oscillat-
ing pricing problem. Our numerical experiments show that our ro-
bust 3D tree can reasonably analyze the interaction effects among
investment risk, interest rate risk, mortality risk, and various pro-
visions that are not well studied in the previous literature.

The remainder of this paper is organized as follows. In Section 2,
we describe a GMWB/GLWB policy and its various provisions, and
then express the underlying mathematical models used to model
the investment risk, the interest rate risk, and the mortality risk.
In Section 3, we construct a 3D tree to model the aforementioned
three risks and discuss how we adjust the tree structure to
avoid infeasible tree structures and oscillating pricing results. In
Section 4, we analyze the impacts of the aforementioned risks
and various provisions of GMWBs/GLWBs on their values and fair
charges. Section 5 concludes the paper.

2. Financial settings and mathematical models

2.1. Introduction to GMWBs/GLWBs

The life span of a GMWB policy can be divided into the deferral
period with length T1 and the withdrawal period with length T2.
A policyholder is allowed to either invest the policy account once
at the inception of the deferral period (i.e., a single premium) or
to invest the account periodically during the deferral period (i.e.,
regular premium). In return for the investment, the policyholder
can periodically withdraw a specified amount from the account
during the withdrawal period. Let W (t) denote the account value
at time t . During the deferral period (from time 0 to time T1), the
account value W (t) jumps up with the investment amount I at
an investment date and otherwise follows a lognormal diffusion
process due to the change in the value of the investment and the
payment of the fair charge. Thus, under a regular premium setting,
the process ofW (t) at an investment date τ follows

W (τ+) = W (τ−) + I, (1)

where τ− and τ+ denote the times immediately before and after
time τ , respectively. Under a single premium setting, we set
W (0+) = I . Between any two investment dates, the dynamics of
W (t) follows

dW (t) = (r(t) − α)W (t)dt + σW (t)dB(t), (2)

4 Piscopo and Haberman (2011), Holz et al. (2012) and Yang and Dai (2013) also
assume that the mortality rate is independent of the investment risk.
where r(t) denotes the prevailing short rate (introduced later),
σ represents the volatility of the account value process, and B(t)
denotes the Brownian motion. The fair charge α refers to a proper
rate received by the insurance company that makes a GMWB
value – the present value of expected future cash flows received
from the GMWB – equal to the present value of the policyholder’s
investment.

On the other hand, the holder is allowed to periodically with-
draw the guaranteed withdrawal amount G from the GMWB ac-
count at eachwithdrawal date during thewithdrawal period (from
time T1 to thematurity date T1 +T2). If the account value is insuffi-
cient to finance the withdrawal, the policyholder is guaranteed to
receive G and the account value becomes 0. The fall in the account
value due to a discrete withdrawal at a withdrawal date τ can be
expressed as

W (τ+) = max(W (τ−) − G, 0). (3)

Between any two withdrawal dates, W (t) follows the lognormal
diffusion process as in Eq. (2).

A GLWB policy is similar to a GMWB one except that the for-
mer policy does not have an explicit maturity; that is, it will not
terminate unless the policyholder surrenders the policy early or
the policyholder dies. Since human mortality experiences in many
countries show that 110 is the maximum survival age, we in-
corporate this age-limit finding into our numerical analysis. Thus
our finite-time-spanned numerical method can easily adopt these
mortality models to evaluate a GLWB by setting the length of the
withdrawal period T2 as the maximum survival age minus T1 and
the issue age.

Next, let us review various provisions embedded in GMWBs/
GLWBs. The lump sum of guaranteed withdrawal amounts is
usually set as themaximumof a contract-specified value C(T1) and
the account value at the end of the deferral period W (T1). C(T1)
can be determined by a principal guarantee or a rollup interest
rate guarantee (see Yang and Dai, 2013). This paper will further
analyze the impact of a ratchet guarantee; that is, C(T1) is defined
as the maximum of the account value during the deferral period.
The guaranteedwithdrawal amount G at eachwithdrawal date can
be expressed as

G =
Max[C(T1),W (T1)]

λT2
=

gMax[C(T1),W (T1)]
λ

, (4)

where λ denotes the number of withdrawal dates per year, and g
denotes the proportion of the value that will be withdrawn per
year. In a GMWB policy, the length of the withdrawal period T2
is given and g is set to 1/T2. On the other hand, a GLWB policy
provides a lifelong guarantee without determining T2 and thus g
is exogenously specified in the policy.

The aforementioned model of account dynamics presents a
general structure of a deferred variable annuity embedded in
GMWBs/GLWBs. Most research papers (e.g., Milevsky and Salis-
bury, 2006; Dai et al., 2008; Chen et al., 2008, and so on) ignore the
deferral period and their setting is a degenerated case of ourmodel
by setting T1 = 0 and C(T1) = W (0). Yang and Dai (2013) ar-
gue that ignoring the deferral period and corresponding provisions
might significantly misprice the policies. This paper extends their
work by analyzing all provisionsmentioned in their paper plus two
other ones: a regular premium and a ratchet guarantee, under the
stochastic interest rate and the mortality rate environment.

Surrender options are embedded in most GMWBs/GLWBs to
allow policyholders to surrender their policies prior to maturity.
A rational policyholder will surrender the policy early once he or
she finds that the continuation value of the policy is less than the
early redemption value. The continuation value is the value to hold
the policy without surrendering the policy immediately, and this
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Fig. 1. A brief illustration for converting the Hull–White interest rate tree to the foundation of our 3D Tree. Notes: Panel (a) shows the brief structure for the Hull–White
interest rate tree. R(0, 1), R(1, 1), R(1, 2), and R(1, 3) denote the short rates for nodes A, B, C, and D, respectively. Panel (b) presents a brief structure of our 3D tree (formed
by the hollow nodes) and the converted interest rate tree (formed by the gray nodes). The pillars of R(0, 1), . . . , R(1, 3) are marked by the gray dashed lines.
value can be evaluated as the present value of future expected
cash flows generated from holding the policy. On the other hand,
surrendering the policy allows a policyholder to over-redeem the
remaining account value subject to an early redemption penalty;
thus, the early redemption value at a withdrawal date t is

G + (1 − k)(Wt − G),

where k denotes the proportional penalty charge. Obviously, a
rational policyholderwill surrender the policy if the loss of the time
value due to postponingwithdrawals plus the futuremortality risk
and the interest rate risk exceeds the early redemption penalty
k(Wt −G). The complex relationships among the surrender option
premium, other provisions, interest rate risk, and mortality risk
will be studied in this paper.

A partial withdrawal provision allows a policyholder to with-
draw any amount from the account to maximize his or her benefit.
Yang and Dai (2013) show that their tree can model this provision
by using more state variables to keep the information required to
analyze different withdrawal strategies as proposed in Hull and
White (1993). Their method can be easily incorporated into our
3D tree model. While the partial withdrawal provision has been
widely studied in much of the literature (see Chen et al., 2008; Dai
et al., 2008), the relationships among the surrender options, other
provisions, and market variables are rarely studied (see Yang and
Dai, 2013). Thus this paper will focus on the analyses of surrender
options.

2.2. Review of mathematical and numerical models

The mathematical and numerical models adopted to construct
our 3D tree to analyze the impact of the market price risk, the
interest rate risk, and the mortality risk are sketched separately as
follows.
The interest rate dynamics

The Hull–White interest rate model (see Hull and White, 1990)
is a no-arbitrage short rate model that can calibrate the prevailing
zero rate curve. The short rate at time t, r(t), follows the stochastic
process

dr(t) = a(θ(t) − r(t))dt + ηdZ2(t), (5)
where a is the mean-reverting rate, θ(t) is a function of time
to calibrate the prevailing zero rate curve, η is the interest
rate volatility, and Z2(t) denotes a Brownian motion. The
aforementioned interest rate dynamics can be discretely simulated
by a trinomial interest rate tree proposed byHull andWhite (1994)
as illustrated in Fig. 1(a). A tree divides a certain time interval
[0, T ] into n time steps, each with length 1t (≡ T/n). It discretely
specifies the values and the evolutions for simulated variable(s) at
each time step. For example, the short rate R(0, 1) at time step 0
will move to R(1, 1), R(1, 2), or R(1, 3) at time step 1, where R(i, j)
denotes the short rate for the jth node at the ith time step.

It is hard to build a feasible tree for modeling correlated
processes as mentioned in Zvan et al. (2003). Thus, we convert
the account value process and the short rate process into two
independent processes X(t) and Y (t)5 by the orthogonalization
method discussed in the next section. Then we build a 3D tree to
model the evolution of X(t) and Y (t) as illustrated in Fig. 1(b). We
will show that Y (t) can be expressed as a linear function fy of the
short rate, and thus the Hull–White interest rate tree in Fig. 1(a)
can be converted to construct the foundation of our 3D tree (or the
‘‘converted interest rate tree’’ formed by gray nodes in Fig. 1(b)).
Our 3D tree is built based on the converted interest rate tree to
model the evolution of X(t), which governs part of the account
value dynamics that is uncorrelated with the short rate.
The account value dynamics

To model the properties of the account value process, a log-
normal diffusion process (see Eq. (2)) with periodical jumps due
to investments and withdrawals (see Eqs. (1) and (3)), X(t), will
follow the drift-varying diffusion process dX(t) = mx(t, r(t))dt +

dZ(t)6 with periodical jumps. The diffusion process can be
simulated by the CRR tree (see Cox et al., 1979), and the jumps
in X(t) can be modeled by the stair tree (see Dai, 2009). Besides,
to avoid oscillating pricing results caused by various provisions of
GMWBs/GLWBs, we adopt the core idea of the bino-trinomial tree

5 See Section 3.1 for the detailed definitions of X(t) and Y (t).
6 The drift termmx(t, r(t)) will be derived in the next section, and dZ(t) denotes

a Brownian motion.
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(see Dai and Lyuu, 2010). Although the three aforementioned tree
models are originally constructed based on a constant drift rate
environment, we slightly modify their models so that they can be
applied under a varying drift rate environment to construct our 3D
tree.

A brief sketch of these tree models is illustrated in Fig. 2. A
discrete-time tree can properly simulate X(t) by adjusting the
movements and the branching probabilities to make the first two
moments implied by the tree structurematch themoments of X(t)
(see Duffie, 1996). Take the CRR binomial structure beginning from
node A (with value XA at time τ ) as an example. It may either move
upward to nodeB (with valueXB = XA+

√
1t)with probability p or

downward to nodeD (with value XD = XA−
√

1t) with probability

1 − p, where p =
emx(τ ,r(τ ))1t+0.51t2

−e−
√

1t

e
√

1t−e−
√

1t
to match the first two

moments of the account value process.
Periodically, investments and withdrawals will lead to jumps

in the account value process and hence jumps in X(t) as illustrated
by nodes B and C in Fig. 2. These jumps not only ruin the CRR tree
structure, but alsomake the tree size and hence the computational
time growdramaticallywith the number of jumps. To avoid the so-
called ‘‘combinatorial explosion’’ problem, the stair tree proposed
by Dai (2009) suggests that a trinomial structure can be inserted
to connect an after-jump node like node C back to the nodes that
follow the CRR tree structure at time τ + 21t . He proposes a
mean-tracking method to ensure that the trinomial branch can
be feasibly constructed to match the first two moments of X(t).
Specifically, the outgoing middle branch from node C will connect
to node F, whose value is closest to Xc + mx (τ + 1t, r (τ + 1t)),
the conditional expected value of X(τ + 21t) given that X(τ +

1t) = Xc . The other two branches will connect to the adjacent
nodes of node F. The trinomial branch probabilities are then solved
by matching the first two moments of X(t) as follows7:

pu = (βγ + 1t) (γ − β) /φ

pm = (δγ + 1t) (δ − γ ) /φ

pd = (δβ + 1t) (δ − β) /φ,

(6)

where φ = (β − δ) (γ − β) (γ − δ) , δ, β , and γ denote the
values of nodes E, F, and H minus the conditional expected value
Xc + mx (τ + 1t, r (τ + 1t)).

The nonlinearity error (discussed in Figlewski and Gao, 1999)
may cause a policy value evaluated by a tree to oscillate
significantly as illustrated by the thin gray curve plotted in Fig. 3(a).
This oscillation prevents us from stably finding the fair charge,
a proper insurance rate that makes the policy value equal the
present value of a policyholder’s investment (denoted by the
black dashed line). Specifically, multiple solutions will be found
since the oscillating thin gray curve crosses the black dashed line
at multiple points, like α1, α2, and α3. To stably measure the
fair charge α without the disturbance of the nonlinearity error
problem, the structure of our 3D tree is sophisticatedly designed
to generate smoothed pricing results as plotted by the solid black
curve in Fig. 3(a). We follow Dai and Lyuu (2010)’s core idea
by making some tree nodes coincide with the so-called ‘‘critical
locations’’, that is, the places where the policy value function is
highly nonlinear due to kinks. Two types of kinks can be identified
in a GMWB/GLWB policy. The first type occurs at time T1 when the
account value equals C(T1) as illustrated in Fig. 3(b). This is because
the lump sum of the guaranteed withdrawal amounts is set to
the maximum of C(T1) and W (T1) (see Eq. (4)). The second type
occurs at each withdrawal date when the account value equals the

7 Dai (2009) shows that the above approach can generate a feasible trinomial
structure without introducing negative branch probabilities.
Fig. 2. Abrief sketch of the CRR tree, the stair tree, and theBTT.Notes: The evolution
of X(t) during the time interval [τ , τ + 1t] is modeled by the CRR tree. The down
jump from node B to node C reflects the jump in the account value and the outgoing
trinomial structure is constructed by taking advantage of the stair tree. The layout of
nodes at time τ +21t follows the layout of the CRR tree. To alleviate the oscillating
pricing problem by taking advantage of the core idea of BTT, node I is designed to
coincide with the critical locationmarked by the thick black line. The value for each
node is listed next to the node. The branching probability like p and pu for each
branch is directly marked on that branch. The variable k denotes an integer.

guaranteed withdrawal amount G. This is because the guaranteed
withdrawal provision allows the policyholder to withdraw G from
the account even if the account value is insufficient. Finally, Fig. 2
sketches how we make a node, say, I, match a critical location. Let
time τ + 21t be a withdrawal date. The value for node I, Ω , is
properly selected tomake the corresponding account value at node
I be G.8 The values for other nodes at time τ + 21t are designed
to have the forms . . . , Ω + 2k

√
1t, Ω + (2k + 2) , . . . , where k

denotes an integer; that is, the nodes at time τ+21t still follow the
layout of the CRR tree to avoid the aforementioned combinatorial
explosion problem.
The mortality dynamics

When a policyholder dies, the withdrawal guarantees of the
GMWB/GLWB are annulled and the remaining account value is
returned to the beneficiary. Due to the longevity risk and the
occasional spread of high-lethal-rate diseases, ignoring mortality
uncertainty will significantly misprice a long-term policy like
a GMWB/GLWB. Although developing a robust mortality model
is not the focus of our research, we provide a flexible pricing
approach that can adopt a wide class of mortality models. In this
paper, we first sketch a special case (Vasicek, 1977 model) of Biffis
(2005)’s affine stochastic mortality model in this Section and then
demonstrate how his model is incorporated into our 3D tree in the
next section. Biffis (2005) decomposes the mortality rate µx

t into a
deterministic function of time and age ux(t) plus a mean reverting
stochastic process YD

t , which represent the current estimation of
the futuremortality rate and theuncertainty of the futuremortality
rate, respectively. His model can be expressed as follows:

µx
t = ux(t) + YD

t

dYD
t = aD


bD − YD

t


dt + σDdZt ,

(7)

where µx
t denotes the tth-year mortality rate of a person whose

age is x in year 0, ux(t) denotes the estimation of µx
t , Y

D
t follows

8 The detailed derivation of Ω will be discussed in Section 3.
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a b

Fig. 3. Price oscillations and the nonlinearity error. Notes: Panel (a) plots the oscillating pricing results (the thin gray curve) and the smoothing pricing results (the solid
black curve) generated by a naïve tree and our 3D tree, respectively. The black dashed line denotes the present value of the policyholder’s investment. Panel (b) points out
the kink of the GMWB/GLWB value functions at time T1 .
a mean reverting process with the long-term average level bD, the
mean reverting speed aD, and the volatility σD.

To obtain the fair value of GMWB/GLWB contracts, we follow
Biffis (2005) using a risk-neutral adjustment to the mortality rate
on the same realistic basis.9 Thus, the risk-neutral probability for a
person aged x+ τ to survive for s− τ -years, denoted as s−τpx+τ , is
evaluated as

s−τpx+τ = EQ

e(−

 s
τ µx

udu)|gτ


= e(−

 s
τ µx(u)du)  

s−τ p̄x+τ

EQ

e−

 s
τ YD

u du
|gτ


  

ADJQ (τ ,s,YD
τ )

, (8)

where the sequence (gt)t∈R+ denotes the filtration, and the
σ -algebra gt can be interpreted as the information available up to
time t . The risk-neutral survival rate can be decomposed into two
components: the constant component s−τ p̄x+τ can be evaluated by
directly integrating the function ux(t) over the time interval [τ , s],
and the risk-neutral adjustment component ADJQ (τ , s, YD

τ ) can be
evaluated by taking advantage of the bond pricing formula of the
Vasicek (1977) interest rate model. Specifically, the risk-neutral
adjustment component can be expressed as

ADJQ (τ , s, YD
τ ) := EQ


e−

 s
τ YD

u du
|gτ


= exp(A(τ , s) − B(τ , s)YD

τ ),

where B(τ , s) =
1−e−aD(s−τ)

aD
, and A(τ , s) =


B(τ , s) − (s − τ)


bD −

σD
2

2aD2


−

σD
2

4aD
B(τ , s)2.

3. A novel tree for evaluating a GMWB/GLWB policy

To accurately evaluate a GMWB/GLWB policy, we construct a
3D tree that can simultaneously model the account value process,
the short rate process, the mortality risk, and other various

9 Due to the insurance market is not complete, for fair valuation purposes, Biffis
(2005) employs the sense of Draft Statement of Principles and International Financial
Reporting Standard No. 4. published by International Accounting Standards Board
in 2001 and 2004, respectively, to deal with market valuation of life insurance
contracts. (Also see IASB, 2001, 2004.)
provisions. First, the orthogonalization method is used to convert
the aforementioned two correlated processes into another two
uncorrelated ones. As a result, the proposed 3D tree can model the
evolution of these two uncorrelated processes instead. In addition,
to make the 3D tree generate stable pricing results, the 3D tree
is designed to coincide with the critical locations to alleviate the
price oscillation problem as illustrated in Fig. 3(a). By adopting
the assumption that the mortality risk is independent of the
investment and the interest rate risks, we can prove that the
mortality risk can be priced by simply incorporating the expected
mortality rates evaluated in Eq. (8) into the proposed 3D tree.
Finally, we explain how the backward induction procedure is
designed to deal with various provisions, like surrender options.
The following discussions focus on a GMWB policy, and the
extension to a GLWB policy is straightforward.

3.1. Constructing uncorrelated processes by the orthogonalization
method

To avoid the difficulty of constructing a tree that directly
simulates the correlated processes simultaneously, we first
convert the account value and the short rate processes into two
uncorrelated ones by the orthogonalizationmethod and then build
a tree for these two uncorrelated processes instead. Let ρ denote
the correlation between the account value process (see Eq. (2)) and
the short rate process (see Eq. (5)); that is, dB(t)dZ2(t) = ρdt . Thus,
dB(t) can be rephrased as follows:

dB(t) = ρdZ2(t) +


1 − ρ2dZ1(t),

where Z1(t) denotes another Brownian motion independent of
Z2(t). Then the account value process and the interest rate process
can be expressed in terms of Z1(t) and Z2(t) as follows:
d lnW (t)
dr(t)


=

(r(t) − α) −
σ 2

2
aθ(t) − a · r(t)

 dt

+


1 − ρ2σ ρσ

0 η

 
dZ1(t)
dZ2(t)


. (9)

By multiplying the inverse of the matrix


1 − ρ2σ ρσ

0 η


on both

sides of the above equation, two uncorrelated processes X(t) and
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Fig. 4. A two-step deferral period tree. Notes: 1t denotes the length of a time step. The tree formed by gray-colored nodes on the Y–t plane denotes the converted interest
rate tree discussed in Fig. 1(b). The Y coordinate for each node is listed next to the node. Pu, Pm , and Pd denote the outgoing branch probabilities from A′ to the following
nodes at time T1/2. P ′

u denotes the probability formoving from fy(R(1, 1)) to fy(R(2, 1)). Each pillar emitted by a gray color node ismarked by a gray dashed line. The outgoing
binomial branches emit from A to B and L at the pillar of R(1, 1), M and N at the pillar of R(1, 2), and O and P at the pillar of R(1, 3). The outgoing branches emitted from
L,M,N,O and P are ignored for simplicity. The outgoing trinomial branches from B to C,D, and E at the pillar of R(2, 1) are plotted by black dashed lines. Other outgoing
branches from node B are ignored for simplicity. The x coordinate for each node at time T1 is listed next to the node. The account values for nodes F, I, and J are C(T1). The
log-price-distance between two adjacent nodes at the same pillar is 2

√
1t .
Y (t) are constructed as follows:


dX(t)
dY (t)


≡


d lnW (t)

σ

1 − ρ2

−
ρdr(t)

η

1 − ρ2

dr(t)
η



=


(r(t) − α) −

σ 2

2

σ

1 − ρ2

−
ρ(aθ(t) − ar(t))

η

1 − ρ2

(aθ(t) − ar(t))
η

 dt

+


1 0
0 1

 
dZ(t)
dB2(t)


≡


mx(t, r(t))dt + dZ(t)
my(t, r(t))dt + dB2(t)


, (10)

where mx(t, r(t)) and my(t, r(t)) denote the drift functions for
X(t) and Y (t), respectively.

Now, by integrating both sides of Eq. (10) and by setting X(0) ≡

Y (0) ≡ 0. X(t) and Y (t) can interpreted as functions of W (t) and
r(t) as follows:

X(t) =
1

1 − ρ2


ln W (t)

W (0)

σ
− ρ


r(t) − r(0)

η


≡ fx (W (t), r(t))

Y (t) =
r(t) − r(0)

η
≡ fy ((t)) .

(11)

By solving the above equations, W (t) and r(t) can be interpreted
as functions of X(t) and Y (t) as follows:
W (t) = W (0) exp


σ


1 − ρ2 · X(t) + ρ · [Y (t)]


r(t) = r(0) + ηY (t).
(12)
3.2. Constructing the 3D tree for the deferral and the withdrawal
periods

We construct a 3D tree by simulating the evolution of X(t) and
Y (t) introduced in Eqs. (9)–(11) during the deferral period and
the withdrawal period. The corresponding account value and the
short rate at each node in the tree can be obtained by substituting
the X(t) and the Y (t) values of that node into Eq. (12). We first
discuss how to convert the Hull–White interest rate tree into the
foundation of our tree as illustrated in Fig. 1. Then we demonstrate
the tree construction for the deferral period by using a two-
time-step tree illustrated in Fig. 4. We call it the deferral-period
tree for simplicity. Next, we demonstrate the tree construction
for the withdrawal period by using another two-time-step tree
illustrated in Fig. 5. We call it the withdrawal-period tree for
simplicity. For brevity, the following discussion only focuses on
the tree construction for modeling the account value drops due
to periodical withdrawals. A similar method can be extended to
model the upward jumps of the account value due to a regular
premium provision.
Mapping the Hull–White interest rate tree into the foundation
of our tree

We first map the short rate of each node in the Hull–White
Tree as illustrated in Fig. 1(a) into its corresponding Y (t) by
the function fy defined in Eq. (11) as illustrated in Fig. 1(b). For
example, nodes A (with short rate R(0, 1)), B (with short rate
R(1, 1)), and D (with short rate R(1, 3)) map to node A′ (with
value fy(R(0, 1))), B′ (with value fy(R(1, 1))), and D′ (with value
fy(R(1, 3))), respectively. In Fig. 1(b), the converted interest rate
tree formed by gray nodes can be viewed as the foundation of our
3D tree composed of hollow nodes. Specifically, the projection of
our 3D tree on the Y–t plane is the converted interest rate tree.
For example, the y coordinates for both nodes D1 and D2 at time
1t are fy(R(1, 3)). These two nodes are passed through by the
vertical gray dashed line emitted from node D′; we call this line
the pillar of R(1, 3) for simplicity. Similarly, nodes B1, B2, and B3
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Fig. 5. A two-step withdrawal-period tree. Notes: The tree formed by gray-colored nodes on the Y–t plane denotes the converted interest rate tree discussed in Fig. 1(b).
The tree begins from nodes D and H with coordinates


Ω1 + 2k

√
1t, fy(R(2, 1))


and


Ω2 + 2k

√
1t, fy(R(2, 2))


, respectively. The policyholder is allowed to withdraw G

from the account at time (T1 + T2)/2 and the corresponding downward jumps are reflected by the downward arrows. The x coordinates for the nodes at time (T1 + T2)/2
and T1 + T2 are listed next to the nodes. P ′′

u denotes the branch probability moving from fy(R(2, 1)) to fy(R(3, 1)).
that are passed through by the pillar of R(1, 1) have the same y
coordinate fy(R(1, 1)). Note that the outgoing branches from node
A1 may either follow the trinomial branches (plotted in thick black
solid lines) or the binomial branches (plotted in black dashed lines).
The trinomial branches can be constructed by taking advantage of
the mean-tracking method mentioned in Fig. 2, and are used to
adjust the tree structure to connect after-jump nodes or to match
critical locations. Otherwise, the CRR binomial branches are used
to simplify our tree structure.
The deferral-period tree

The deferral-period tree in Fig. 4 begins at node A with
coordinate (0, 0) since we set X(0) = Y (0) = 0 in Eq. (10). For an
arbitrary node, say, A, the corresponding account value, say,W (0),
and the short rate, say, r(0), can be obtained by substituting the
coordinate of that node, say, (0, 0), into Eq. (12). We first focus on
the converted interest rate tree (formedby graynodes) constructed
by converting the Hull–White interest rate tree as discussed in
Fig. 1. From time 0 to time T1/2, the process Y (t) will move
from fy(R(0, 1)) to fy(R(1, 1)), fy(R(1, 2)), and fy(R(1, 3)) with
probabilities Pu, Pm, and Pd, respectively. The branch probabilities
can be uniquely solved by matching the first two moments of
process Y (t)defined in Eq. (9).We thenmodel the evolution ofX(t)
based on the converted interest rate tree to form the 3D deferral-
period tree. Two outgoing branches from node A will reach nodes
B and L at the pillar of R(1, 1). This binomial structure follows
the structure of the CRR tree introduced in Fig. 2 by setting the
risk free rate r(τ ) as R(0, 1). The x coordinates for node B and
node L are

√
1t and −

√
1t , respectively. Since X(t) and Y (t) are

independent, the branch probability from node A to node B can
be calculated as simply a direct multiplication of Pu by p, where p
denotes the upward branch probability of the CRR tree defined in
Fig. 2. Similarly, the branch probability from node A to node L is
Pu(1 − p). The outgoing binomial branches from node A to M and
N at the pillar of R(1, 2) and to O and P at the pillar of R(1, 3) are
constructed in similar ways.

Recall that a kink in the policy value function occurs at time T1
when the account value equals C(T1) as mentioned in Fig. 3(b). To
alleviate the oscillation problem, we must have some nodes, say,
F, I, and J, tomatch the kink. Specifically, the x coordinates for these
three nodes, Ωi (i = 1, 2, 3), are equal to fx(C(T1), R(2, i)), where
the function fx is defined in Eq. (11). The nodes at the same pillar
will follow the CRR tree structure, that is, the distance between
two adjacent nodes at the same pillar is set as 2

√
1t . Thus, the

x coordinate for each node at the pillar of R(2, i) must have the
form Ωi + 2ℓ

√
1t , where ℓ denotes an integer. Therefore, the

outgoing branches emitted from the nodes at time T1 can still
follow the CRR binomial structure to avoid the aforementioned
combinatorial explosion problem. To meet the change in the node
structure at time T1, the outgoing branches emitted from each
node at time T1/2 follow the trinomial structure constructed by
the aforementioned mean tracking method. For example, node B
will connect to node D and its two adjacent nodes C and E given
that the x coordinate for node D. Ω1 + 2k

√
1t is closest to the

conditional mean XB + mx (T1/2, R(1, 1)) 1t among the nodes at
the same pillar, where XB denotes the x coordinate of node B.
The outgoing trinomial branch probabilities from node B can be
obtained by substituting the x coordinates of nodes C, D, and E
minus XB + mx (T1/2, R(1, 1)) 1t for δ, β , and γ into Eq. (6). Due
to the independence of X(t) and Y (t), the branch probabilities
from node B to nodes C,D, and E can be calculated as P ′

upu, P
′
upm,

and P ′
upd, respectively, where P ′

u denotes the probability of moving
from fy(R(1, 1)) to fy(R(2, 1)) in the converted interest rate tree.
The outgoing branches from node B to the nodes located at the
pillars of R(2, 2) and R(2, 3) and outgoing branches from other
nodes at time T1/2, say, L, to the nodes at time T1 can also be
constructed in the same way.
The withdrawal-period tree

Next, we discuss the construction of the withdrawal-period
tree. For convenience, let Wz denote the account value at node
z . Several withdrawal-period trees are constructed to connect
to the nodes of the deferral-period tree at time T1, and each
withdrawal-period tree begins from some nodes located at the end
of the deferral period tree that determine the same guaranteed
withdrawal amount G (see Eq. (4)).10 Thus the sizes of the

10 For simplicity, the following discussion only focuses on the principal guarantee
and the rollup interest rate guarantee designs. To deal with the ratchet guarantee
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downward jumps of the account value (marked by the downward
arrows) in the same withdrawal-period tree must be identical. For
example, the guaranteedwithdrawal amount determined bynodes
D and H are equal since

WD = W (0) exp

σ


1 − ρ2 ·


Ω1 + 2k

√
1t


+ ρ · fy (R(2, 1))


= C(T1) exp

σ

1 − ρ22k

√
1t


= W (0) exp

σ


1 − ρ2 ·


Ω2 + 2k

√
1t


+ ρ · fy (R(2, 2))


= WH ,

and G =
max(C(T1),WD)

λT2
=

max(C(T1),WH )

λT2
. So we can construct a

withdrawal-period tree emitting from these two nodes as illus-
trated in Fig. 5. Similarly, we can construct another withdrawal-
period tree emitting from nodes F, I, J, and K in Fig. 4. This is
because the guaranteed withdrawal amount G for this tree is
C(T1)/λT2, which can be obtained by substituting the inequality
C(T1) = WF = WI = WJ > WK into Eq. (4).

The structure of the withdrawal-period tree illustrated in
Fig. 5 is very similar to that of the deferral-period tree except
for the positions of the kinks of the policy value function and
the downward jumps of the account value (denoted by the
downward arrows) due to the guaranteed withdrawal. Recall that
the policyholder can withdraw the guaranteed amount G from the
account on the withdrawal dates (time (T1 +T2)/2 and (T1 +T2) in
our example), even if the account value is insufficient to finance the
withdrawal. Thus the kinks in the policy value function occurwhen
the account value equals G on the withdrawal dates. To alleviate
the oscillation problem described in Fig. 3(a), we should have some
tree nodes, say, c and h in our example, coincide with the kinks.
Valid outgoing trinomial branches emitted from the nodes at times
T1 and (T1 + T2)/2 to the following time step can be constructed
by the aforementioned mean-tracking method.

The drops in the account value are reflected by the drops in
the x coordinates of the nodes on the withdrawal dates. Take node
a for example. The withdrawal reduces the account value from
Wa (denoted by node a) to Wa − G (denoted by node a′) and the
outgoing branches to the next time step are emitted from node a′.
Similarly, thewithdrawal will also change the position of node b to
b′. Note that this downward jump structure will not occur at node
c and the nodes below c (which are not plotted in the figure). This
is because withdrawing from the account with insufficient funds
will reduce the account value to zero and no more investment
will take place. Thus the outgoing branches for the nodes below
c (inclusive) are not required. Note also that the downward jump
structure will not occur at the maturity date. This is because the
remaining account value will be returned to policyholders and no
more investment will be conducted.

The branch construction method for the withdrawal-period
tree is the same as that for the deferral-period tree and is briefly
sketched as follows. The converted interest rate tree (colored in
gray on the Y–t surface) emits from fy(R(2, 1)) and fy(R(2, 2))—
the projections of node D and node H on the Y–t surface. This tree
can map to part of the Hull–White interest rate tree discussed in
panel (a) of Fig. 1. Our withdrawal tree is constructed based on
this partial converted interest rate tree. Two trinomial structures,
one from node D to the nodes at the pillar of R(3, 1) and the
other from node a′ to the nodes at the pillar of R(4, 2) are
plotted. Other branches are ignored for simplicity. These trinomial

design, we can imitate the Hull and White (1993) lookback option pricing method
by adding extra states to each node of the deferral period tree to remember the
maximum account value ever reached. Thus each withdrawal-period tree begins
from the states (instead of nodes) of the deferral-period tree that determines the
same guaranteed withdrawal amount G.
structures are also constructed by the mean tracking method. For
example, the outgoing trinomial branches from node D connect
to node b and its two adjacent nodes a and c given that the x
coordinate for node b fx (Wb, R(3, 1)) is closest to the conditional
mean


Ω1 + 2k

√
1t


+ mx (T1, R(2, 1)) among the nodes at the
same pillar, where Ω1 + 2k

√
1t is the x coordinate of node

D. The outgoing trinomial branch probabilities from node D can
be obtained by substituting the x coordinates of nodes a, b, and
c minus Ω1 + 2k

√
1t + mx (T1, R(2, 1)) for δ, β , and γ into

Eq. (6). Due to the independence of X(t) and Y (t), the branch
probabilities from node D to nodes a, b, and c are P ′′

u pu, P
′′
u pm,

and P ′′
u pd, respectively, where P ′′

u denotes the branch probability
moving from fy(R(2, 1)) to fy(R(3, 1)). Similarly, the outgoing
trinomial branches emitted from other nodes, say, a′ and b′, can
be constructed in a similar way.

3.3. Incorporating a stochastic mortality model into our 3D Tree

Under the assumption that the mortality risk is independent
of the investment and the interest rate risks, we can show that a
stochastic mortality model can be easily incorporated into our 3D
tree without adding an extra dimension to model the evolution of
the mortality rate. Let väx(0) denote a variable life annuity that
is initiated at time 0, with the issue age being x. This annuity is
assumed to pay a cash flow Uti at time ti, where i = 1, 2, . . . , n,
given that the policyholder survives at time ti. The present value
of this annuity can be expressed as the expected value of the lump
sum of future discounted cash flows as follows:

väx(0) = E


n

i=1

Uti exp


−

 ti

0
r(t)dt


exp


−

 ti

0
µx

tdt


=

n
i=1

E

Uti exp


−

 ti

0
r(t)dt


× E


exp


−

 ti

0
µx

tdt


,

where r(t) denotes the short rate defined in Eq. (5), exp

−
 ti
0 r(t)

dt

denotes the present value of one dollar paid at time ti, µx

t de-

notes the mortality rate defined in Eq. (7), exp

−
 ti
0 µx

tdt


de-
notes the survival rate of the policyholder at time ti. Obviously, the
last equation means that the annuity’s value can be expressed as
the lump sum of the expected discounted cash flows (without the
mortality risk) at each payment date ti multiplied by the expected
survival probability at time ti. This implies that the mortality risk
can be incorporated into our 3D tree by inserting the mortality
event into each nodewith the probability being set to the expected
mortality probability evaluated by Eq. (8).

Now we demonstrate how we insert a default event to a
node, say, A in Fig. 4, as illustrated in Fig. 6. The probability
of a policyholder dying within the time interval [0, 1t] can be
evaluated as 1 − 1tpx by Eq. (8). Since the mortality risk is
independent of the investment and the interest rate risk, each
branch probability is changed to the direct multiplication of the
original branch probability evaluated in Fig. 4 by the expected
survival probability. For example, the branch probability for
moving to node B is Pup1tpx, where Pu and p denote the probability
for the process Y (t) moving from fy(R(0, 1)) to fy(R(1, 1)) and the
upward branch probability for the CRR tree, respectively.

3.4. Evaluating a GMWB by the backward induction procedure

A GMWB can be priced by taking advantage of the derivative
pricing method as found in many GMXB pricing papers. Specifi-
cally, theGMWBvalue is evaluated as the expected present value of
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Fig. 6. Inserting a mortality event at node A. Notes: The downward arrow denotes
a mortality event with a mortality probability listed next to the arrow. The
probabilities to move from node A to node B and from node A to node L are marked
directly on the branches connected to B and L.

the lump sum of future payments. The backward induction proce-
dure stepwise calculates the expected discounted value from ma-
turity T1 + T2 back to time 0. For convenience, let VX denote the
GMWB value at the tree node X. A policyholder is entitled to with-
draw a contractually specified amount G on predetermined with-
drawal dates, even when the account value does not meet G. In
addition, at the maturity date, the policyholder can receive the re-
maining funds (if any) from the account after the final withdrawal.
Therefore, the GMWB value for an arbitrary node X at maturity is
max (G,WX ). Thus, in Fig. 5, the GMWB values for nodes g,h, and
i areWg ,Wh(=G), and G, respectively. Each node in our tree either
has six outgoing branches (like node A in Fig. 4) or nine outgoing
branches (like nodes D and a′ in Fig. 5) plus a mortality branch as
in Fig. 6. Assume that the successor nodes connected by a node z
located at time τ are numbered by 1, 2, . . . , n. Pi and Vi denote the
probability of reaching the ith node from node z and the GMWB
value at the ith node, respectively. Then the GMWB value at node z
can be expressed as the expected discounted GMWB values of the
nodes connected by the outgoing branches of node z as follows:

Vz = e−r(z)1t
n

i=1

PiVi + 1tqx+τWZ , (13)

where r(z) denotes the short rate at node z, and n denotes
the number of outgoing branches from node z. The last term in
Eq. (13) reflects the provision that the account value is returned to
the beneficiarywhen the policyholder dies. Take nodeA illustrated
in Fig. 6 as an example. The GMWB value for node A is

VA = e−R(0,1)1t (PBVB + PLVL + PMVM + PNVN

+POVO + PPVP) + 1tqxWA.

Note that the short rate r(A) is equal to R(0, 1) since node A is
located at the pillar of R(0, 1).

At the withdrawal dates, the policyholder can choose either to
withdraw the guaranteed withdrawal amount G from the account
or to surrender the policy early at the expense of the early
redemption penalty. Take node a in Fig. 5 as an example. If the
policyholder decides to keep the policy, the continuation value
(for holding the policy) is the sum of the withdrawal G plus the
expected present value of the future income from holding the
policy. This expected present value is also the GMWB value for
node a′ and can be evaluated by Eq. (13). Thus, the continuation
value can be expressed as Va′ + G. On the other hand, the
policyholder may decide to surrender the GMWB to receive G +

(1 − k) (Wa − G), where k denotes the early redemption penalty.
Since the policyholder will decide whether to surrender the policy
to maximize the benefit, the GMWB value at node a can be
expressed as: Va = max (Va′ + G,G + (1 − k) (Wa − G)). The
Fig. 7. Comparing the values between GMWBs and GLWBs.11

Fig. 8. Comparing the values among GLWBs under different withdrawal ratios.

GMWB values for other nodes at withdrawal dates, say, b, can be
evaluated in the same way.

After developing a pricing method for GMWBs, we can
iteratively fine tune the insurance fee to find the fair charge α to
make the policy a breakeven one; that is, to make the GMWB value
equal to the present value of the policyholder’s investment. Since
the pricing results of our tree converge smoothly as shown by the
solid black curve in Fig. 3(a), α can be found by common numerical
root finding algorithms such as the bisection method (see Lyuu,
2002).

4. Numerical results

In this section, we first show that our 3D tree model can
stably evaluate GMWBs/GLWBs in Section 4.1, and then the
comprehensive sensitivity analysis for the fair charges is given in
Section 4.2. In the former section, we first show that our tree can
generate converging GMWB pricing results without oscillations in
Table 2. Then we analyze how the issue age and the withdrawal
rate influence GMWB/GLWB values in Figs. 7 and 8, respectively.
The comparison of the GMWB and GLWB values is studied. In the
latter section, we attempt to study the effect of interest rate risk
andmortality risk on the fair charges and surrender options, which
cannot be achieved in the existing literature. Our results show
that ignoring the interest rate risk will significantly misprice fair
charges and surrender option premiums as illustrated in Table 3.On
the other hand, ignoring the mortality risk can overestimate these
two values as shown in Table 4. Thus we perform all following
sensitivity analysis by simultaneously considering the interest rate
and the mortality risks. The effects of various factors, such as
various provisions (Tables 5, 8, and 11), the length of deferred
period (Table 5), the volatility of the account value (from Table 3
to Table 10), the interest rate parameters (Tables 6 and 7),

11 The policyholder is assumed to invest 100 initially, the insurance fee is set to 0,
and the length of the withdrawal period is 10 years. The policyholder can withdraw
2% of the account value per year at the inception of the withdrawal period.
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Table 1
Parameter values.

Model Notation Definition Parameter values

Interest rate dynamics
η Volatility 0.01
a Mean reverting rate 0.1
r(0) Initial short rate 0.0325

Account dynamics w0 Initial investmentsa 100
Correlation ρ Correlation between r(t) and W (t) −0.25

Mortality
aD Mean reverting speed of the stochastic part of the mortality rate YD

t 0.5
bD Average level of YD

t −0.035
σD Volatility of YD

t 0.01

GMWB policy k Early redemption penalty 0.1
λ Number of withdrawal dates per year 1

a Under a single premium provision, an investor invests w0 at time 0. Under a regular premium provision, the lump sum of the present values of all investments equals
w0 .
Table 2
Evaluating GMWB values under different scenarios.

Time steps G = 4 or g = 4% G = 5 or g = 5% G = 10 or g = 10%
(T1, T2) = (0, 25) (T1, T2) = (0, 20) (T1, T2) = (0, 10)
σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4

Without mortality risk

100 105.864 112.619 119.361 106.339 113.097 119.803 107.056 113.236 119.341
200 105.858 112.628 119.438 106.331 113.124 119.924 107.048 113.252 119.432

1000 105.844 112.630 119.494 106.319 113.124 119.971 107.044 113.252 119.454
2000 105.841 112.632 119.499 106.317 113.124 119.975 107.043 113.252 119.456

With mortality risk

100 103.887 108.951 114.301 104.985 110.644 116.428 106.600 112.449 118.265
200 103.881 108.958 114.366 104.977 110.669 116.541 106.591 112.465 118.353

1000 103.869 108.961 114.414 104.966 110.669 116.584 106.587 112.464 118.375
2000 103.867 108.960 114.418 104.964 110.667 116.587 106.587 112.464 118.377

Notes: The numbers in the second column denote the time steps in our tree model. The numerical settings used to generate the pricing results follow the settings in Table 1
(if applicable) except the length of the withdrawal period T2 listed in the first row and the account value volatility σ listed in the second rowa . The insurance fee is set to
zero for examining the accuracy of the tree model under different scenarios.

a All the settings for the interest rate model and the policy in the following experiments will also follow the settings in Table 1 unless stated otherwise for consistency.
Table 3
The impacts for introducing the stochastic interest rate on fair charges (unit: bps).

G = 5 and (T1, T2) = (0, 20) for all cases Fixed interest rate Stochastic interest rate ρ = −0.25 Stochastic interest rate ρ = 0.25
σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4

No surrender option 66 142 216 62 135 209 78 153 225
with surrender option 66 224 523 62 203 488 79 264 572
Surrender option premium 0 82 307 0 68 279 1 111 347

Notes: The risk-free rate is assumed to be 3.25% under the fixed interest rate assumption. The values of fair charges under this assumption are from Yang and Dai (2013).
The stochastic interest rate scenarios follow the settings in Table 1 except the correlations specified in the first row. The mortality risk is not considered in this experiment.
Table 4
Fair charges for GMWBs for deferred life annuities under the stochastic interest rate environment (unit: bps).

Condition (T1, T2) = (5, 20) (T1, T2) = (5, 10)
σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4

With mortality risk No surrender option 111 225 348 218 433 658
With surrender option 114 325 591 222 523 875

Without mortality risk No surrender option 125 258 399 233 465 709
With surrender option 150 429 759 243 582 977

Note: ρ = −0.25 in this table.
Table 5
Impacts of roll-up guaranteed and ratchet guaranteed designs.

Condition (T1, T2) = (5, 10) (T1, T2) = (3, 10) (T1, T2) = (5, 10)
Roll-up with rate = 3% Ratchet guarantee Ratchet guarantee
σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4

No surrender option 372 647 925 468 934 1498 450 887 1398
With surrender option 445 892 1374 604 1343 2193 541 1171 1897

Notes: The mortality risk is considered in this table and the following experiments.
the correlation between the interest rate and the account value
(Tables 3 and 7), the mortality risk parameters (Tables 9 and
10), and their joint effects on fair charge and surrender option
premiums of GMWBs/GLWBs are discussed.
For simplicity, we first assume that a policyholder invests a
single premium with a deferred variable annuity associated with
a GMWB policy. The settings for the interest rate model and the
GMWB policy in the following experiments are shown in Table 1
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Table 6
Impacts of the long-term interest rate level (θ(t)) on the fair charges for GMWBs (T1, T2) = (0, 20) (unit: bps).

Condition θ(t) = 1.5% θ(t) = 3.25% θ(t) = 5%
σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.2 σ = 0.3 σ = 0.4

No surrender option 125 225 319 51 114 179 21 62 108
With surrender option 136 389 750 51 131 326 21 62 132
Table 7
Impacts of interest rate volatility (η) and the correlation (ρ) on the fair charges for GMWBs (T1, T2) = (0, 10) (unit: bps).

Condition ρ = −0.8 ρ = 0 ρ = 0.8
η = 0.01 η = 0.02 η = 0.01 η = 0.02 η = 0.01 η = 0.02

No surrender option 128 100 166 176 200 241
With surrender option 128 100 166 177 205 273
Table 8
Comparing the fair charges and the surrender option premiums for GMWBs and
GLWBs (unit: bps).

Conditions σ = 0.2 σ = 0.3 σ = 0.4

GLWB With surrender option 75 168 303
Without surrender option 75 158 245

GMWB With surrender option 52 109 212
Without surrender option 52 107 165

Notes: (T1, T2) = (0, 20) in a GMWB policy. The guaranteed withdrawal ratio g is
set to 5%.

unless stated otherwise. To provide a fair comparison between
the fixed and the stochastic interest rate environments, the fixed
interest rate and the function of the long-term interest rate θ(t)
(defined in Eq. (5)) are assumed to be a constant 3.25%unless stated
otherwise. For convenience,we use the pair (T1, T2) to indicate that
the lengths of the deferral period and the withdrawal period are T1
and T2, respectively.

4.1. Evaluating the GMWBs/GLWBs

Evaluating a GMWB/GLWB policywith a naïve treemight result
in oscillating pricing results as plotted by the thin gray curve
in Fig. 3(a), and this unwelcome property will prevent us from
accurately finding the fair charge α. To alleviate the oscillation
problem, our tree is adjusted to coincidewith the critical locations.
Thus the pricing results generated by our tree model illustrated in
Table 2 converge smoothly and quickly with the increment in the
number of time steps of the tree n (listed in the second column).
Even incorporating the stochastic mortality rates will not lead to
deterioration in this smoothing convergence property. Indeed, this
property will generate smoothing pricing results as illustrated by
the solid black curve in Fig. 3(a) and will help us to accurately find
fair charges.
A simple sensitivity analysis for the GMWB values in Table 2
is provided as follows. Here we focus on immediate life annuities
(i.e., T1 = 0) and the deferred annuities (i.e., T1 ≠ 0) will be dis-
cussed later. We first compare how the lengths of the guaranteed
withdrawal periods T2 listed in the first row influence the values
of the GMWBs. Increasing T2 (or decreasing the guaranteed with-
drawal amount G) implies that some withdrawal payments are
postponed and the policyholder loses the time value of the with-
drawals. Therefore, a GMWBvalue decreaseswith the increment of
T2 to reflect the loss of time value. Besides, it can be observed that
the value of a GMWB increases with the volatility of the account
value σ . This is because a GMWB can be roughly decomposed into
an annuity plus a call option on the remaining account value (after
periodical withdrawals during the withdrawal period) at maturity
and that the call option value increases with σ . Finally, incorpo-
rating the mortality risk would reduce the GMWB value, since the
withdrawal guarantee will be annulled due to the death of the pol-
icyholder.

Now we compare the difference between a GMWB policy with
a limited withdrawal period and a GLWB policy with a lifelong
withdrawal period in Fig. 7. The withdrawal amount is set as 2%
of the account value at the inception of the withdrawal period. The
issue age of the policyholder has very little impact on the GMWB
valuewhen the issue age is not toohigh. This is becausemost young
policyholders could survive to the end of the withdrawal period.
However, when the issue age is high, the increasing mortality risk
is more likely to annul the withdrawal guarantee and to reduce
the GMWB value. On the other hand, a GLWB policy provides a
lifelong withdrawal guarantee. This implies that the total amounts
that can be withdrawn from a GLWB are highly related to the
life expectancy of the policyholder. That is why the GLWB value
decreases with the increment of the issue age. Note that a GLWB
value would converge to the GMWB value when the issue age is
high, say, 70 in this example. This is because a higher issue age is
Table 9
The impacts of changing the mortality parameters aD, bD , and σD on the fair charges (unit: bps).

bD = −0.035 aD = 0.5
aD = 0.4 aD = 0.5 aD = 0.6 bD = −0.035 bD = −0.025 bD = −0.015

σD = 0.01 347.58 350.19 351.84 350.19 327.36 306.24
σD = 0.02 349.58 351.45 352.88 351.45 328.60 307.40
σD = 0.03 352.88 353.76 354.64 353.76 330.91 309.16
Table 10
The impacts of changing the mortality parameters aD and bD and the account value volatility σ on the fair charges (unit: bps).

bD = −0.035 aD = 0.5
aD = 0.4 aD = 0.5 aD = 0.6 bD = −0.035 bD = −0.025 bD = −0.015

σ = 0.2 152.57 153.53 154.08 153.53 145.29 137.55
σ = 0.3 347.58 350.19 351.84 350.19 327.36 306.24
σ = 0.4 577.06 582.00 585.30 582.00 538.74 499.26
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more likely to result in the policyholder having a higher chance of
dying prior to the end of the withdrawal period, and making the
cash flow pattern of a GMWBmore similar to that of a GLWB. Next,
we focus on the impact of the presence of the surrender option on
the GLWB value. The difference between the dotted line (the GLWB
with a surrender option) and the dashed line (the GLWBwithout a
surrender option) can be viewed as the premium of the surrender
option. This value decreases with the increment of the issue age.
This is because a higher issue age implies a higher mortality risk
that makes the policy more likely to be terminated early due to
the death of the policyholder. This early termination reduces the
option value.

Fig. 8 suggests that the GLWB value increases with the
increment of the guaranteed withdrawal ratio g . This incremental
property is more significant than the property of the GMWB
value increment observed in Table 2. This is because, in a GMWB
policy, the increment of g entails a decrement in the length of the
withdrawal period T2 as described in Eq. (4). On the other hand, a
GLWBpolicy provides a lifelongwithdrawal guaranteewhich is not
influenced by g . Besides, the value increment due to the increment
of g will decrease as the issue age increases. This is because a higher
issue age implies a highermortality risk that ismore likely to annul
the guaranteed withdrawals.

4.2. Sensitivity analyses for fair charges

Comparisons between fixed/stochastic interest rate assump-
tions

The insurance company receives the fee withdrawn from
the account during the lifetime of the policy in return for the
investment guarantee and other policy provisions. Evaluating the
break even insurance fee, or the fair charge α, is thus important for
issuing GMWBs/GLWBs. Yang and Dai (2013) analyze the impacts
of different GMWB provisions on fair charges without considering
the impacts of the randomness of the interest rate. The numerical
results in Table 3 compare fair charges under the constant and
the stochastic interest rate assumptions and show that ignoring
the randomness of the interest rate will overprice (underprice)
fair charges given the correlation between the interest rate and
the account value ρ is large (small). For example, given that ρ =

0.25 and the volatility of the account σ = 0.3, introducing the
randomness of the interest rate would increase the fair charge
from 142 basis points (bps) to 153 bps if the surrender option
provision were absent (or from 224 bps to 264 bps if the surrender
optionwere present). On the other hand, a smallerρ, −0.25,would
reduce the fair charge from 142 basis points (bps) to 135 bps if
the surrender option provision were absent (or from 224 bps to
203 bps if the surrender option were present).

Yang andDai (2013) also suggest that introducing the surrender
option will increase fair charges, and their findings are confirmed
in Table 3. In addition, incorporating the randomness of the
interest rate would further enhance (reduce) the impact given
the correlation ρ is large (small). Recall that the surrender option
grants the policyholder the right to redeem the policy early at
the cost of a higher fair charge—call it the surrender option
premium for simplicity. Under the fixed interest rate assumption,
the presence of the surrender optionwould increase the fair charge
from 142 bps to 224 bps given that the volatility of the account
σ = 0.3; the surrender option premium is 82 bps (=224–142).
On the other hand, under the stochastic interest rate assumption,
the surrender option premium would either increase to 111 bps
(=264–153) given ρ = 0.25 or decrease to 68 bps given ρ =

−0.25.
It can be observed that the increment (or decrement) of

the account value volatility σ would also increase (or decrease)
the hedge cost and as a consequence the fair charge and the
surrender option premium. For example, under the fixed interest
rate assumption, increasing the volatility σ from 0.3 to 0.4 would
increase the fair charge from 142 bps to 216 bps given that the
surrender option is absent (or from 224 bps to 523 bps given that
the surrender option is present). The surrender option premium
would further increase from 82 bps to 307 bps. On the other
hand, decreasing the volatility σ from 0.3 to 0.2 would decrease
the fair charge to less than 100 bps and make the surrender
option valueless. Introducing the randomness of the interest rate
could further enhance (reduce) the impacts of changing σ on the
surrender option premium given ρ is large (small). Compared to
the premium increment 225 bps (=307–82) due to the increment
of σ from 0.3 to 0.4 under the fixed interest rate assumption, the
increment would further rise (fall) to 236 bps (211 bps) given
that ρ = 0.25 (ρ = −0.25). The aforementioned changes in
fair charges and option premiums reflect the cost faced by the
insurance company in hedging the interest rate risk. When ρ is
small, a considerable part of the interest rate risk and the account
value risk are neutralized. Thus, introducing the interest rate risk
would decrease both fair charges and option premiums. On the
other hand, this neutralization effect becomes insignificant with
a larger ρ and introducing the interest rate risk will increase fair
charges and option premiums. This finding is consistent to the
finding of Peng et al. (2012). The above phenomena imply that
ignoring the interest rate riskmight significantlymisprice GMWBs.
Thus, the stochastic interest rate settingswill be taken into account
in the following experiments unless stated otherwise.12

The following experiments focus on five issues in GMWBs/
GLWBs: First, we reexamine the impacts of various GMWB
provisions in Yang and Dai (2013) on fair charges under the
stochastic interest rate assumption. Second, we analyze how
different parameters of the stochastic interest ratemodel influence
the fair charges of GMWBs. Third, we compare fair charges
between the GMWB and GLWB policies. Since a GLWB provides
a lifelong withdrawal guarantee, the mortality risk plays an
important role in pricing a GLWB policy. The fourth topic analyzes
how the parameters of the mortality model influence the fair
charges of GLWBs. Finally, Yang and Dai (2013) argue that their
numerical evaluation model can faithfully model the jumps of the
account value due to discrete withdrawals. They claim that the
discrete withdrawal setting is more typical than the continuous
withdrawal onewhich is widely adopted in the previous literature.
Our experiments suggest that the withdrawal settings do not
influence the fair charge much. On the other hand, the feature to
model the jumps of the account value can be used to evaluate the
policy with a regular premium provision. The regular premium
setting is more popular than the single premium setting. However,
many studies only analyze the latter setting. Our experiments
show how regular premium settings significantly influence fair
charges.
Analyzing the impacts of policy provisions on fair charges

We analyze the impacts of deferred guaranteed withdrawals
and corresponding provisions under the stochastic interest rate as-
sumption in this subsection. Note that the above numerical analy-
ses rely on the immediate guarantee withdrawal assumption; that
is, the deferral period is absent (or T1 = 0). Althoughmany studies

12 Yang and Dai (2013) program spend less computational time than our program
but their program ignores the interest rate risk. We run both programs on a
Win2003 computer with an Intel Core2 Duo CPU @2.53 GHz and 2 GB RAM. It
cost about 132 s and 12 s to run our program and Yang and Dai’s program on a
100-time-step tree, respectively. Although our program spends 120 s more than
Yang and Dai’s program to model the interest rate risk, the experimental results in
Table 3 suggests that ignoring the interest rate risk might significantly misprice fair
charges and surrender option premiums.
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adopt this assumption to keep their analyses simple, most GMWB
policies are deferred variable annuities. In addition, ignoring the
impact of deferring withdrawals significantly misprices the fair
charge, which can be observed by comparing Tables 3 and 4. A
5-year deferral period is inserted into each case of Table 4 and the
lump sum of the guaranteed withdrawal amount is protected by
the principal guarantee; that is, C(T1) in Eq. (4) is set to the present
value of investmentw0. Thus,we can compare the ‘‘ρ = −0.25 col-
umn’’ in Table 3 with the ‘‘(T1, T2) = (5, 20)’’ column in Table 4.13
Here we first focus on the case that does not incorporate the mor-
tality risk tomake our analysis focus on the presence of the deferral
period. It can be observed that the insertion of the deferral period
will further increase the fair charge from 135 bps (see Table 3) to
258 bps (see Table 4) given that σ = 0.3 and that the surrender op-
tion is absent. This is because the principal guarantee provides the
downside protection on the policyholder’s investment. This benefit
is more than the loss of the time value due to the postponement of
the guaranteedwithdrawals caused by the insertion of the deferral
period.

Ignoring the mortality risk will overprice the fair charge and
the surrender option premium as illustrated in Table 4. This is
because both the guaranteedwithdrawal and the surrender option
provision will be annulled due to the death of the policyholder.
For example, given σ = 0.3, incorporating the mortality risk
reduces the fair charge from 258 bps to 225 bps given that the
surrender option is absent (or from 429 bps to 325 bps given that
the surrender option is present). The surrender option premium
declines from 171 bps (=429–258) to 100 bps (=325–225). To
avoid the bias, the mortality risk will be taken into account in the
following experiments unless stated otherwise.

Besides, Table 4 also compares how the length of the
withdrawal period influences fair charges. Recall that reducing the
length of thewithdrawal period T2 from 20 years to 10 yearswould
increase the guaranteed withdrawal amount G as defined in Eq.
(4). This implies that the policyholder can receive the guaranteed
payments earlier and reduce the loss of time value. Thus the
insurance company should receive a higher insurance fee in return
for offering early guarantee payments. For example, reducing T2
from 20 years to 10 years would increase the fair charge from 399
bps to 709 bps given that σ = 0.4 and that both the mortality risk
and the surrender option are absent.

Besides, the effects of changing the account value volatility σ on
the fair charge for a deferred variable annuity in Table 4 are similar
to those for an immediate variable annuity illustrated in Table 3.
Thus we ignore the detailed analyses for simplicity.

The roll-up interest rate and ratchet guarantee designs are
both popular in variable deferred annuities, and the significant
increment in the fair charge due to these twoguarantee designs can
be observed by comparing Table 4with Table 5. A i% roll-up interest
rate guarantee ensures that the policyholder will receive w0(1 +

T1)i instead of w0 determined in the principal guarantee. Granting
extra 3% return would increase the fair charge from 222 bps (see
Table 4) to 445 bps (see Table 5) given that σ = 0.2, (T1, T2) =

(5, 10), and the surrender option provision is present. Replacing
the rollup interest guarantee design by the ratchet guarantee
design without changing other settings would further increase the
fair charge to 541 bps. It is obvious that ignoring the impacts of the
guarantee designs would significantly misprice the fair charge.

Numerical experiments for analyzing the ratchet guarantee
designunder different deferral period are also illustrated in Table 5.
Based on the same guaranteed withdrawal period of 10 years, we

13 This ensures that the numerical settings for both scenarios are the same
except the length of the deferral period T1 , which are 0 and 5 for Tables 3 and 4,
respectively.
find that both the fair charge and the surrender option premium
decrease with the increment of the deferral period. This is because
increasing the deferral period implies that the policyholder would
lose the time value due to the postponed withdrawal. Even
though a longer deferral period may provide a higher guaranteed
withdrawal based on the mechanism of the ratchet guaranteed
design, the loss of time value due to the postponed withdrawal
cannot be compensated by the gain from the possible increment
of guaranteed withdrawals. According to the above analyses, we
conclude that a valuation method capable of pricing different
guaranteed designs is essential for pricing fair charges.
Sensitivity analyses of the interest rate model parameters

Now we examine how the changes in interest rate parameters,
like the long term interest rate level θ(t), the correlation between
the short rate and the account value ρ, and the short rate volatility
η of the Hull and White (1990) model, influence the fair charges
in Table 6. We set the long-term interest rate level θ(t) as a
constant function of time t . The numerical results suggest that
both the fair charge and the surrender option premium decrease
with the increment of θ(t). For example, under the condition of
σ = 0.3, increasing θ(t) from 1.5% to 3.25% decreases the fair
charge from 225 bps to 114 bps given that the surrender option
is absent (or from 389 bps to 131 bps given that the surrender
option is present). This is because increasing θ(t)will decrease the
insurance company’s obligation, i.e. the present values of future
guaranteed withdrawals. Besides, the surrender option premium
also dramatically decreases from 164 bps (=389–225) to 17 bps
(131–114). Note also that increasing θ(t) further to 5% would even
make the surrender option valueless.

The impacts of different interest rate volatilities η and the
correlations between the interest rate and the account value on the
fair chargesρ are studied in Table 7.When the correlationρ is large
(small), the fair charge increases (decreases) with the increment of
the interest rate volatility. For example, given that the surrender
option is absent, increasing η from 0.01 to 0.02 will increase the
fair charge from 200 bps to 241 bps if ρ is 0.8 (but decrease the
fair charge from 128 bps to 100 bps if ρ = −0.8). Similarly, the
impacts of increasing the interest rate volatility η on the surrender
option premium also increase as the correlation ρ increases. For
example, when σ = 0, increasing η from 0.01 to 0.02 increases
the surrender option premium from 0 bps (=166–166) to 1 bps
(=177–176). However, when ρ increases to 0.8, increasing η will
dramatically increase the surrender option premium from 5 bps
(=205–200) to 32 bps (=273–241). Thus, ignoring the impacts
of the stochastic interest rate will significantly misprice the fair
charge and the surrender option premium.
Comparison between GMWBs and GLWBs

Now we compare GMWB and GLWB policies as illustrated
in Table 8. In contrast to a GMWB policy that offers a limited
withdrawal period, say T2 = 20 years, a GLWB policy offers a
lifelong withdrawal guarantee. Here the guaranteed withdrawal
ratio for both GMWB and GLWB are set to 5% so we can focus
our analyses on the impact between the limited and the lifelong
withdrawal guarantees. Obviously, a GLWB issuer receives a higher
fair charge than a GMWB issuer in return for offering a longer
withdrawal guarantee. A longer guarantee also increases the
likelihood of the policyholder exercising the surrender option.
Thus, the surrender option premium for a GLWB policy is higher
than a GMWB one given all other conditions being equal. Besides,
it can be observed that both the fair charge and the surrender
option premium of a GLWB increase with the increment of σ ,
which is analogous to the aforementioned property for a GMWB
policy. Indeed, the results of the sensitivity analysis for both the
GMWB and GLWB policies are quite similar. Thus, in the following
experiments, we will focus on GLWBs for simplicity.
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Table 11
The impacts of changing investment/withdrawal frequencies on fair charges (unit: bps).

Frequency Single premium Annual premium Semiannual premium Seasonal premium Monthly premium

Annual withdrawals 350.19 532.70 551.73 563.82 572.53
Semiannual withdrawals 351.12 534.37 553.57 565.58 574.37
Seasonal withdrawals 351.34 535.24 554.48 566.33 575.24
Continuous withdrawals 352.00 535.91 555.25 567.09 575.96
Fig. 9. The impacts of changing σD on the fair charges. Notes: The x- and y- axes
denote σD and fair charge, respectively. The black-solid line, black-dotted line, and
the gray line denote the case that aD = 0.4 and bD = −0.035, aD = 0.5 and
bD = −0.035, and aD = 0.4 and bD = −0.025.

The mortality risk and the investment risk
The impacts of mortality risk and investment risk on the

fair charges are analyzed in Tables 9 and 10.14 Since the
mortality dynamics are governed by the underlying parameters of
(aD, bD, σD) as shown in Eq. (7), we examine different parameter
values on the fair charges. It can be observed that the fair charge
increases with the increment of the mean reverting speed (aD) and
the volatility (σD) of the stochastic part of the mortality rate YD

t . To
see the effect resulting from mortality risk parameter (σD), Fig. 9
presents how the fair charge is sensitive to the increment of the
mortality risk parameter σD. This is because the more volatile the
mortality rate is, the higher the hedge cost of the mortality risk
(and as a consequence the fair charge) that will be incurred. On the
other hand, bD can be viewed as the long-term average level of YD

t .
That is, a lower bD on average implies a lower mortality rate and a
longer life expectancy. It could then result in a longer withdrawal
period, and thus a higher fair charge. Similarly, increasing the
volatility of the account value σ will also increase the hedge cost
and the fair charge as illustrated in Table 10. The insurer cannot
ignore the trend ofmortality improvement and volatility in pricing
GMWB/GLWB policies.
The impacts of withdrawal frequencies and single/regular
premiums

Discrete investments and withdrawals would lead to jumps in
the account value as in Eqs. (1) and (3) and make the evaluation
problem intractable. To simplify this problem, many studies adopt
continuous withdrawals and the single premium provision, which
is uncommon in insurance markets. Yang and Dai (2013) argue
that replacing discrete withdrawals with continuous ones may
significantly misprice the fair charge, while Dai et al. (2008) argue
that different withdrawal frequencies do not influence the fair
charge that much. To clarify the conflict, we analyze the impacts
of withdrawal frequencies in Table 11. It seems that increasing
the withdrawal frequencies only mildly increases the fair charges.
This is because a higher withdrawal frequency accelerates the
speed of receiving guaranteed withdrawals and reduces the
loss of time value. On the other hand, we find that replacing
a regular premium provision with a single one or decreasing

14 In Tables 9–11, the length of the deferral period T1 is 10 years and all other
parameters follow the settings in Table 1 unless explicitly stated in this table.
investment frequencies significantly reduces fair charges. To keep
the comparisons fair, the investment amounts for all investment
frequencies are appropriately set to make the lump sum of the
present values (under different frequencies) equal.

5. Conclusion

Granting GMWBs has emerged as a key component associated
with variable annuity products in investment and retirement
income systems. The life span of a GMWB can be longer than
a decade or even be lifelong (i.e., a GLWB). In addition to the
investment risk, both the interest rate risk and the mortality
risk play significant roles in evaluating such a long-term policy.
Evaluating GMWBs/GLWBs has drawn much attention in both
academia and in practical fields because such policies are popular
and have many complex provisions that need to be dealt with. As
a result, analyzing the impacts of the aforementioned risks and
provisions in valuing GMWBs/GLWBs has become a critical issue
in developing the variable guarantee and has also become a great
challenge to the insurer.

To address the aforementioned issue, this paper proposes
a 3D tree that can analyze the interaction impacts of the
aforementioned risks and provisions on the value and the fair
charge of a GMWB/GLWB. The structure of our 3D tree is
sophisticatedly designed to avoid the unstable (oscillating) pricing
results phenomenon that is a characteristic of many numerical
pricing methods. To the best of our knowledge, this paper is the
first one to deal with investment, interest rate and mortality rate
risk simultaneously without losing the realistic product feature in
dealing with the most popular guarantee designs of GMWB/GLWB
contracts. Thus, the main contribution of this paper is to build
up the valuation framework that can further include a stochastic
interest rate model and a stochastic mortality model for GMWB
and GLWB contracts, extending Yang and Dai (2013). With such
a realistic valuation framework, we can identify some important
findings which cannot be observed using the existing model. First,
comparing to fixed-interest-rate scenarios evaluated in Yang and
Dai (2013) model, introducing the interest rate risk significantly
influence fair charges and surrender option premiums. Our tree
model can stably price the interest rate risk. In addition, the
significant impacts of changing interest rate volatility as well as
the correlation between the short rate and the account value
on fair charges can be analyzed by our tree model. Second, we
can capture the longevity risk to value both GMWB and GLWB
contracts. We compare the difference between a GMWB policy
with a limitedwithdrawal period and aGLWBpolicywith a lifelong
withdrawal period. Third, the values of the popular provisions
and the surrender option associating with GMWB/GLWB contracts
could be affected by not only the future investment uncertainty but
also the interest rate and mortality rate risks. The proposed 3-D
tree model can analyze the popular provisions and the surrender
option under a stochastic investment, interest rate and mortality
rate environment simultaneously.

Some effects regarding the interaction among the policy
provisions, investment risk, mortality risk, and interest rate risk
on the evaluation of GMWBs/GLWBs are important and worth
emphasizing here. Our analysis suggests that both the fair charge
and the surrender option premium increase with the increment
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of the volatility level of the investment account and the mortality
rate. They decreasewith the increment of the length of the deferral
period and the long-term interest rate level. The impact of the
interest rate volatility on the fair charge depends on the correlation
between the interest rate and the account value. The comparisons
between immediate and deferred withdrawals, single and regular
premiums, as well as between principal guarantee, rollup interest
guarantee and ratchet guarantee designs are also well studied in
our paper. Our analysis also shows that evaluating GMWBs/GLWBs
without considering the impacts of interest rate risk, mortality
risk, and the aforementioned provisions may result in significant
pricing errors. These numerical findings are critical in developing,
pricing, and hedging GMWB/GLWB contracts.

In this paper, we incorporate the stochastic mortality model
proposed by Biffis (2005) and the interest rate model by Hull and
White (1994) in our pricing model and show that changing the
model’s parameters could significantly influence the evaluation
of GMWBs/GLWBs. Our analysis suggests that the selection of
financial and mortality models and the calibration of model
parameters are critical in evaluating GMWBs/GLWBs and deserve
to be studied further. Indeed, the insurer may determine a proper
mortality model and parameters based on the insurer’s mortality
experience in order to capture the randomness of mortality rates
due to longevity risk and the occasional spread of high-lethal-
rate diseases. In addition, the financial models shall be calibrated
to the market condition. We believe that insurers can discover
an appropriate mortality model for capturing longevity risk and
financial models to apply our proposed 3D tree model for pricing
GMWBs/GLWBs.
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