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Abstract

This article compares two types of GARCH models, namely, the VG-NGARCH

and the GARCH-jump model with autoregressive conditional jump intensity,

i.e., the GARJI model, to make inferences on the log of stock returns when there
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are irregular substantial price fluctuations. The VG-NGARCH model imposes

a nonlinear asymmetric structure on the conditional shape parameters in a

variance-gamma process, which describes the arrival rates for news with

different degrees of influence on price movements and provides an ex ante

probability for the occurrence of large price movements. On the other hand,

the GARJI model, a mixed GARCH-jump model proposed by Chan and Maheu

(Journal of Business & Economic Statistics 20:377–389, 2002), adopts two

independent autoregressive processes to model the variances corresponding to

moderate and large price movements, respectively. An empirical study using

daily stock prices of four major banks, namely, Bank of America, J.P. Morgan

Chase, Citigroup, and Wells Fargo, from 2006 to 2009 is performed to compare

the two models. The goodness of fit of the VG-NGARCH model vs. the GARJI

model is demonstrated.

Keywords

VG-NGARCH model • GARCH-jump model • Autoregressive conditional jump

intensity • GARJI model • Substantial price fluctuations • Shape parameter •

Variance-gamma process • Ex ante probability • Daily stock price • Goodness

of fit

82.1 Introduction

To model asset returns, the following two frequently observed circumstances must

be recognized: the volatility clustering and the leverage effect (Nelson 1991;

Campbell and Hentschel 1992; Engle and Ng 1993). The two phenomena have

led to the development of the family of nonlinear asymmetric GARCH models in

financial forecasting and derivatives pricing (Nelson 1991; Engle and Ng 1993;

Glosten et al. 1993; Ding et al. 1993). Nevertheless, Gaussian distributed return

innovations in conventional ARCH-/GARCH-type models are unable to capture

irregular substantial price fluctuations resulting from extreme news reports, even

when the heteroskedasticity in the conventional ARCH-/GARCH-type models has

been taken care.

To account for both normal and large price movements, a mixed GARCH-

jump model that combines a GARCH-type model with a Poisson jump process for

the dynamics of log-returns was first proposed by Jorion (1988). Later, compli-

cated mixed GARCH-jump models that consider jumps in both log-returns and

volatilities were developed by Duffie et al. (2000), Pan (2002), Eraker

et al. (2003), and Eraker (2004). The mixed GARCH-jump model with

autoregressive jump intensity (GARJI), proposed by Chan and Maheu (2002), is

a more advanced mixed GARCH-jump model, of which the conditional variance

of asset returns is divided into two parts corresponding to moderate and large

price movements resulting from normal and extreme news events, respectively.

The dynamics of the two variances in a discrete-time setting are sketched by two
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conditionally independent autoregressive processes (Chan and Maheu 2002;

Maheu and McCurdy 2004).

Instead of a jump-diffusion process in the mixed GARCH-jump model with a

continuous sample path for the asset price dynamics, the VG-NGARCH model is

a GARCH-type model that uses a variance-gamma (VG) process, a pure jump

process having finite sum of absolute price movements during a defined time frame,

to model the price dynamics to avoid the problem that the sum of absolute price

movements during a finite time period is infinite. As pointed by Madan et al. (1998),

the VG process is a purely jump Levy process of infinite activities characterizing

a “high” arrival rate of jumps of different sizes and will adequately allow us to

dispense with the need to consider the variant influences of news reports on the

magnitude of price movements (Andersen 1996; Clark 1973; Ross 1989). With

the VG process, the VG-NGARCH model captures the volatility clustering and

the leverage effect by modeling the VG process’s shape parameter in a nonlinear

asymmetric autoregressive process. For this reason, the VG-NGARCH model is

more informative and parsimonious compared to the GARJI model. The specifica-

tion of a VG process is given in Appendix 1.

The goodness of fit of the VG-NGARCH and the GARJI model to the log of

stock price returns of four major banks listed in the S&P 500 are given. Since latent

random business times are introduced into the VG framework, to find parameter

estimates, Monte Carlo expectation-maximization (MCEM) algorithm together

with the Metropolis algorithm are implemented. The two estimation approaches

are given in Appendix 2.

The structure of this article continues as follows. In Sect. 82.2, the two GARCH-

type models, namely, the VG-NGARCH and the GARJI models, are introduced. In

Sect. 82.3, results of the empirical study and the performance of the two types of

GARCH models are presented and compared. Finally, a concluding remark is made

on Sect. 82.4.

82.2 Model Specifications

This section gives introduction and specifications for the GARJI model and the

VG-NGARCH model.

82.2.1 GARJI Model

Chan and Maheu (2002) proposed a GARCH-jump model with autoregressive

conditional jump intensity, i.e., the GARJI model, in which the conditional variance

of return innovations is divided into two distinct modules that define smooth and

steep fluctuations in price driven by normal and extreme news events, respectively.

The GARJI model employs two conditionally independent autoregressive processes

for the two components in a discrete-time economy in which the trading period

82 A VG-NGARCH Model for Impacts of Extreme Events on Stock Returns 2265



[0, T] is partitioned into T subintervals (0, 1], (1, 2], . . . , (T�1, T]. The dynamics of

the log-return Yt ¼ ln(St/St�1) are as follows:

Yt ¼ mþ et, t ¼ 1, . . . ,T: (82.1)

Here the return innovation et is partitioned into two independent components e1,t
and e2,t corresponding to normal and unusual price movements, respectively. Let

F t�1 be the information set available at time t�1. Conditional on F t�1 , the

innovation from normal price movement

e1, t F t�1 � N 0;s2
t

� ��� (82.2)

is normally distributed with the conditional variance, st
2, being parameterized by

a GARCH function of the previous return innovation et�1 as

s2t ¼ a0 þ a1 et�1 � cð Þ2 þ a2s2t�1: (82.3)

The parameters employed for the GARCH function are based on the work of

Chan and Maheu (2002) and Maheu and McCurdy (2004), albeit in a more simpli-

fied range that accommodates the asymmetric feedback from positive through

negative news while allowing for the ex post evaluation of the expected number

of jumps through the interval (t�2, t�1] as a result of the information set F t�1 at

time t�1. The second component, e2,t, represents the jump innovation and is the

discrepancy between the total jump size and the expected total jump size of the nt
jumps during (t�1, t], i.e.,

e2, t ¼
Xnt
j¼1

Ut, j � ylt,

where Ut,j is the jth jump size being normally distributed with mean y and standard
deviation d and nt denotes the number of jumps distributed according to Poisson

with an autoregressive conditional jump intensity (ARJI)

lt ¼ l0 þ rlt�1 þ gxt�1: (82.4)

The intensity residual, xt�1 ¼ E nt�1 F t�1j Þ � lt�1ð , is defined as the difference

between the filter expected number of jumps given F t�1, E nt�1 F t�1j Þð and the

previous intensity lt�1. The probabilities of jumps to fluctuate periodically and cluster

with a persistence parameter of 0 < r < 1 are afforded by specifying the conditional

intensity. The conditional density of the log-return Yt given the information setF t�1 is

f YtjF t�1ð Þ ¼
X1
nt¼0

f Yt nt;F t�1jð Þ e
�ltlntt
nt!

, (82.5)
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where the conditional probability density f(Ytjnt, F t�1) is

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p s2t þ ntd

2
� �q exp � Yt � mþ ylt � yntð Þ2

2 s2t þ ntd
2

� � !
:

From Eqs. 82.1 to 82.5, it is clear that the main feature of GARJI model is

the inclusion of both normal and extreme return innovations. Because these

two types of innovations certainly affect future volatility differently. Nevertheless,

it is impossible to identify the cutoff point between normal and extreme

price movements by observing the log-returns. Consequently, only an ex post

probability for the number of jumps, nt, from the information set F t�1 at time

t can be acquired, as nt is non-observable. The ex post probability for nt jumps given

F t�1 is

P ntjF tð Þ ¼ f Ytjnt,F t�1ð Þ
f YtjF t�1ð Þ � e�ltlntt

nt!
: (82.6)

82.2.2 VG-NGARCH Model

To model stock price dynamics, Madan and Seneta (1990), Madan and Milne

(1991), Madan et al. (1998), Carr et al. (2003), and Geman et al. (2001) considered

the use of a VG process. In the following the specification of log-returns in terms of

a VG process is given in a discrete-time setting. For t ¼ 1,. . ., T, the time-t
log-return Yt ¼ ln(St/St�1) can be formulated as

Yt ¼ mþ ft þ ygt þ et (82.7)

where m denotes the mean of instantaneous return rate, gt denotes a gamma-

distributed random time change during the interval (t� 1, t], and ft denotes a time-

varying parameter. The specification of a VG process is given in Appendix 1.

Because of the characteristics of the VG process, the return innovation et is

conditionally Gaussian distributed as

et F t�1 � N 0, s2gt
� �

:
�� (82.8)

It is worth noting that the conditional variance of the innovation et depends on gt
during the interval (t � 1, t]. To accommodate the volatility clustering effect, the

random time change gt is considered to be gamma-distributed with a time-varying

shape parameter nt, specifically

gt F t�1 � gamma nt; 1ð Þ:j (82.9)
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It is further assumed that the shape parameter nt follows a nonlinear asymmetric

NGARCH (1,1) process that depends on the previous return innovation et�1 and

shape parameter nt�1, respectively. The relation among them is as follows:

vt ¼ a0 þ a1 et�1 � c
ffiffiffiffiffiffiffiffi
vt�1

pð Þ2 þ a2vt�1, t�1 (82.10)

where c>0. The time-varying parameter ft in Eq. 82.7 is defined to be

ft ¼ nt ln 1� y� 1

2
s2

� �
: (82.11)

The skewness and kurtosis of log-return at time t are functions of the drift

parameter y, volatility s, and the first four moments of the shape parameter nt,
which depend on the NGARCH parameters a ¼ (a0, a1, a2, c). The skewness and
kurtosis functions are given in Appendix 3. According to the skewness and kurtosis

functions, the sign of the skewness relies on the sign of the drift parameter y.
Moreover, if a0 > 0 and a1(s

2 + c2) + a2 < 1, then shape parameter becomes

stationary, and

v1 ¼ limt!1E ntþ1ð Þ ¼ a0 1� s2 þ c2
� �

a1 � a2
� 	�1

: (82.12)

From Eq. 82.18, the proposal transition density f of the target distribution, i.e.,

the posterior distribution p(g|Y;Q), is chosen to be the distribution of T independent

gamma random variables with shape parameters n1� 0.5, . . .,nT� 0.5, respectively,

and scale parameter 1/k. Specifically,

f /
YT
t¼1

exp �kgt þ nt � 1:5ð Þlog gtð Þð Þ:

At the lth iteration of the independent Metropolis chain algorithm, a random

sample of time changes g ¼ (g1,. . ., gT)
0 is drawn from the proposed transition

density f. The random sample g is accepted and g(l) ¼ g with probability

min exp �
XT
t¼1

dt
gt
� dt

g
l�1ð Þ
t

 !" #
, 1

( )
; (82.13)

otherwise, g(l) ¼ g(l�1).

82.3 Empirical Study

Due to the extended periods of market instability experienced by banks as

a consequence of the extreme news reports associated with the 2008 financial crisis,

this study selects four big commercial banks listed in the S&P 500, namely,
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the Bank of America (BAC), J.P. Morgan Chase (JPM), Citigroup (Citi), and Wells

Fargo (WF), to study their stock price dynamics. Daily price data including intraday

highs and lows, and adjusted close prices, are collected from January 3, 2006

to December 31, 2009. Table 82.1 lists the correlation coefficients among them.

Since all correlation coefficients exceed 0.7, their price movements are highly

correlated. Table 82.2 lists the mean, standard deviation, skewness, and kurtosis

for log-returns of the four banks.

82.3.1 Estimation and Validation

Parameter estimates and log-likelihood of the VG-NGARCH model for each bank

are given in Table 82.3. Besides model fitting, two testing procedures were

conducted and the results are also contained in Table 82.3.

The first one with the null hypothesis, H0: a1 ¼ a2¼ c¼ 0, helps us to determine

whether the VG-NGARCH model can be reduced to a simpler model, i.e., the VG

model by Madan et al. (1998). Based on the likelihood ratio test, the

autoregressive shape dynamics are strongly favored for all banks over the VG

model with constant shape parameter. The second testing procedure is the Ljung-

Box test, with H0 describing the randomness of residuals. To compute Ljung-Box

Q statistic, the lag is set to be 25, and the large p-values for all banks, as shown

in Table 82.3, indicate that there is no significant serial correlation remaining

among the residuals for all banks after their log-returns were fitted by the

VG-NGARCH model.

Table 82.1 Correlations of daily log-returns

Bank Bank of America J.P. Morgan Citigroup Wells Fargo

Bank of America 1 0.81168 0.80231 0.84943

J.P. Morgan Chase 1 0.71070 0.84059

Citigroup 1 0.71889

Wells Fargo 1

Table 82.2 Summary for daily log-returns

Bank Bank of America J.P. Morgan Citigroup Wells Fargo

Days 754 754 754 754

Mean �0.00138 �0.00019 �0.00246 0.00003

St.dev 0.03769 0.03269 0.04294 0.03153

Min �0.30408 �0.19694 �0.3056 �0.21034

Max 0.2409 0.19368 0.45729 0.28371

Range 0.54498 0.39062 0.76289 0.49406

Skewness �0.47452 0.02702 0.67837 0.09241

Kurtosis 16.62389 9.24964 27.40201 15.55658
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Parameter estimates and log-likelihood of GARJI for each bank are given in

Tables 82.4. After fitting GARJI model for each bank, residuals are diagnosed by

the Ljung-Box test, with the lag being 25. From Table 82.4, the p-values of the

Ljung-Box Q statistic for all banks under GARJI model are much smaller than those

under the VG-NGARCHmodel. To be more specific, p-values for Bank of America

and Wells Fargo are too small to provide strong evidence that there is significant

serial correlation among the residuals for Bank of America and Wells Fargo after

fitting the GARJI model to their log-returns.

Table 82.3 VG-NGARCH model estimates and tests

Parameter Bank of America J.P. Morgan Citigroup Wells Fargo

y �0.0058 �0.0060 �0.0076 �0.0039

s 0.0218 0.0205 0.0239 0.0178

n1 2.7839 2.3371 2.9322 3.5000

a0 0.1682 0.1082 0.1651 0.1619

a1 0.4038 0.3929 0.4629 0.4529

a2 0.5347 0.5408 0.4808 0.5008

c 0.0081 0.0005 0.0003 0.0083

Log-likelihood 1,951.7 1,857.4 1,841.6 1,945.0

H0: a1 ¼ a2 ¼ c ¼ 0

Log-likelihood 1,684.6 1,688.1 1,636.7 1,763.4

Likelihood ratio test 526.2 345.2 409.8 386.8

p-value 0.0000 0.0000 0.0000 0.0000

H0: Residuals are random

Ljung-Box Q (lag ¼ 25) 8.9911 6.5697 11.5924 8.2869

p-value 0.9986 0.9999 0.9929 0.9991

Table 82.4 GARJI model estimates and tests

Parameter Bank of America J.P. Morgan Citigroup Wells Fargo

l0 0.1165 0.1072 0.1164 0.0754

r 0.3923 0.4799 0.3053 0.3626

g 0.4570 0.3579 0.1034 0.5886

y 0.0102 0.0154 0.0099 0.0080

d 0.0218 0.0341 0.0306 0.0546

s0 0.0312 0.0279 0.0405 0.0283

a0 0.0001 0.0001 0.0001 0.0001

a1 0.3568 0.4351 0.545 0.3634

a2 0.5872 0.4997 0.3856 0.5761

c 0.0356 0.0645 0.0218 0.0909

Log-likelihood 1,887.1 1,843.7 1,764.1 1,918.0

H0: Residuals are random

Ljung-Box Q (lag ¼ 25) 43.7338 30.5120 31.4383 43.7169

p-value 0.012 0.2061 0.1761 0.012

2270 L.-J. Kao et al.



82.3.2 Model Selection Based on Information Criteria

Since the two models are not nested, their goodness of fit is measured by the

following three criteria based on log of the maximum likelihood and the number

of parameters: Akaike information criterion (AIC), Schwarz criterion (SC), and

Hannan-Quinn criterion (HQ). The formulas for the three criteria are as follows:

AIC ¼ �2 L=Tð Þ þ 2 k=Tð Þ
SC ¼ �2 L=Tð Þ þ klog Tð Þ=T
HQ ¼ �2 L=Tð Þ þ 2klog log Tð Þð Þ=T

where L is log of the maximum likelihood, k is the number of parameters, and T is

the sample size. The model minimizing these information criteria is preferred.

Comparing log-likelihoods and the three information criteria for the

VG-NGARCH and GARJI models listed on Tables 82.3, 82.4, and 82.5, the

VG-NGARCH model not only has higher log-likelihood values but also

has smaller values on AIC, SC, and HQ for all banks, suggesting that it provides

not only better fitting but also more parsimonious model specification for these

bank data.

82.3.3 Evaluation of Volatility Forecasts

This subsection evaluates the performance of each model on variance forecasts

through comparing the out-of-sample volatility forecasts of the VG-NGARCH

model with those of the benchmark GARJI. To assess out-of-sample forecasts,

a range-based estimate of ex post volatility was calculated in compliance with the

method of Parkinson (1980) and Maheu and McCurdy (2004) as follows:

Ranget ¼
ffiffiffi
�

p
log Pt, h=Pt, l
� �

,

where Pt,h and Pt,l represent the intraday high prices and low prices, respectively.

The parameter � in the above formula is the calibration parameter to make the range

Table 82.5 Information criteria

Bank of America J.P. Morgan Citigroup Wells Fargo

VG-NGARCH model

AIC �5.1610 �4.9083 �4.8662 �5.0278

SC �5.1181 �4.8654 �4.8233 �5.0056

HQ �5.1445 �4.8918 �4.8497 �5.0106

GARJI model

AIC �4.9579 �4.8426 �4.6474 �4.9465

SC 4.8904 �4.7752 �4.5799 �4.8801

HQ �4.9319 �4.8167 �4.6214 �4.9209
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estimate of the unconditional variance equal the unconditional variance of daily

returns. To conduct out-of-sample analyses, all models were reestimated using

observations from January 2, 2008 to December 31, 2009. These out-of-sample

estimates were kept to derive the out-of-sample forecast for the date-t conditional
variance given F t�1, denoted as eVar Yt F t�1j Þð . Following the approach of Maheu

and McCurdy (2004), the range-based ex post volatilities were regressed on the

out-of-sample forecasts of the conditional variances as

Ranget ¼ b0 þ b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieVar Yt F t�1j Þ þ errort:ð
q

(82.14)

The coefficient of determination, R2, of the regression tells us the proportion of

the total variation for the range-based volatilities explained by the out-of-sample

conditional variance forecasts. Hence, the model with higher R2 is considered to be

superior in forecasting volatilities. The R2s of the regression models given in

Eq. 82.14 are displayed on Table 82.6 for all banks under the VG-NGARCH and

GARJI models, respectively. Since R2s under the VG-NGARCH model are

all larger than those under the GARJI model for all banks, the VG-NGARCH

outperforms the GARJI model on out-of-sample volatility forecasts.

82.3.4 Prediction of Large Price Movements or Jumps

In this subsection, the VG-NGARCH model is examined for its performance on

predicting the probability of large price movements due to extreme events. Here,

large price movement is defined to occur when the absolute log-return exceeds 0.05.

From Eqs. 82.7, 82.8, and 82.9, the ex ante probability of large price movements is

given by

Table 82.6 Out-of-sample variance forecasts

Bank of America J.P. Morgan Citigroup Wells Fargo

VG-NGARCH

b0 0.0000 0.0023 0.0049 0.0098

b1 1.1626 1.1666 1.2582 1.0759

R2 0.6575 0.6407 0.6482 0.6148

F 963.8306 895.3023 924.9720 801.2075

p-value 0 0 0 0

GARJI

b0 �0.0392 �0.0221 �0.0333 �0.0206

b1 1.3681 1.3284 1.4201 1.2472

R2 0.6500 0.6317 0.6470 0.5727

F 932.1904 861.0316 919.9395 672.7951

p-value 0 0 0 0
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Fig. 82.1 (continued)
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P jYt > 0:05j jF t�1ð Þ ¼
ð1
0

1� F
0:05� mþ ft þ ygtð Þ

s
ffiffiffiffi
gt

p
� �
 �

h gtð Þdgt

þ
ð1
0

F
�0:05� mþ ft þ ygtð Þ

s
ffiffiffiffi
gt

p
� �

h gtð Þdgt

(82.15)

where h(gt) denotes the probability density function of a gamma distribution with

shape and scale parameters nt and 1, respectively.

For the GARJI model, the performance of prediction on jumps is based on the ex

post probability of at least one jump occurring, which is expressed as

P nt � 1 F tj Þ ¼ 1� P nt ¼ 0 F tj Þ,ðð (82.16)

where, following Eq. 82.6,

P nt ¼ 0jF tð Þ ¼ e�lt f Ytj0,F t�1ð Þ
f Yt F t�1j Þ:ð

After the parameters in Eqs. 82.15 and 82.16 are replaced by their estimates,

P Yt > 0:05j jF t�1j Þð and P nt � 1 F t�1jj Þð are estimated for the whole study period

for each bank. In order to compare their performances, the probabilities belonging

to Years 2006 and 2008 are plotted on Figs. 82.1 and 82.2, respectively. From

Fig. 82.1, the ex ante probabilities for large price movements under the

VG-NGARCH model are smoother than those resulting from the GARJI model

over the same period, where no noteworthy extreme events occurred during 2006.
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Thus, the ex post probabilities of jumps from the GARJI model tend to over

predict the chance of jumps when price movements are moderate.

On the other hand, as Year 2008 has been well recognized by the occurrences of

financial turbulence and crisis, Fig. 82.2 does demonstrate that much higher
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probabilities of large price movements and jumps are predicted compared to those

of Year 2006. Specifically, on September 16, 2008, the log-returns for Bank of

America, J.P. Morgan, Citigroup, and Wells Fargo were �0.2398, �0.1066,

�0.1642, and �0.1007, respectively. The corresponding ex ante probabilities of

large price movements using the VG-NGARCH model were 0.7114, 0.4544,

0.6621, and 0.5368, respectively, while the ex post probabilities of jumps using

the GARJI model were 0.8308, 0.6806, 0.7980, and 0.8348, respectively. Though

both models show the ability to catch up large price movements or jumps, the

VG-NGARCH model provides smoother and thus more reliable predictions than

the GARJI model.

82.4 Conclusion

Differing from the GARJI model, for the VG-NGARCH model, based on a

purely jump VG process, no cutoff point is required between normal and extreme

price movements. In addition, instead of two independent autoregressive

processes, a nonlinear asymmetric autoregressive process is used to model the

shape parameter of the VG process. This makes the VG-NGARCH model

more informative and parsimonious compared to the GARJI model. Furthermore,

the empirical study demonstrates that through diagnosing the randomness of

residuals, computing three information criteria (AIC, SC, and HQ), forecasting

out-of-sample conditional volatility, and predicting the likelihood of large

price movements or jumps, the VG-NGARCH model consistently outperforms

the GARJI model. The superiority of the VG-NGARCH model relative to

the benchmark GARJI model should improve the prediction ability of the occur-

rences of extreme events and hence is a better modeling approach to make

financial management.
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Appendix 1: Variance-Gamma Process

AVG process is a Brownian motion evaluated at a random business time modulated

by a stochastic gamma process, to replace the role of Brownian motion. Specifi-

cally, at time s, a VG process X is given by

X sð Þ ¼ yg s; 1; gð Þ þ sW g s; 1; gð Þð Þ, (82.17)

where g(s; 1, g) is the gamma process with unit mean rate and variance g,W represents

a standard Brownian motion, and y and s are the drift and volatility parameters,

respectively. The extent of random time change Dg ¼ g(s;n,g) � g(0;n,g) is the

increment of the gamma process during the interval (0, s]. Therefore, Dg follows

gamma distribution with shape and scale parameters being ns and g, respectively.
Since the scale parameter g can be transformed into one, it is set to one in our study.

Appendix 2: Parameter Estimation: Monte Carlo EM and
Metropolis Algorithm

Method of maximum likelihood is adopted for the VG-NGARCH model. However,

since the random time changes g1, . . ., gT are unobservable, the parameters of the

VG-NGARCH model are unidentifiable. To resolve this problem, the mean of

instantaneous return rate m is set to the mean of the log-returns Y1, . . ., YT, namely,

m̂ ¼ Y , and the Monte Carlo EM (MCEM) algorithm (Wei and Tanner 1990;

McCulloch 1997) is employed to estimate the parameters Q ¼ (y, s, n1, a)0,
where a ¼ (a0, a1, a2, c) is the NGARCH parameter.

To perform the MCEM algorithm, at each iteration a set of K samples of

the unobservable random time changes, g(1), . . ., g(K), where g(l) ¼ (g1
(l),. . ., gT

(l)),

1 ≦ l ≦ K, are drawn from the posterior distribution p(g|Y;Q), which is

p gjY;Yð Þ /
YT
t¼1

exp �kgt � dt=gt þ nt � 1:5ð Þlog gtð Þf g, (82.18)

where nt ¼ a0 þ a1 et�1 � c
ffiffiffiffiffiffiffiffi
nt�1

p� �2 þ a2vt�1 is the time-t shape parameter, and the

coefficients k and dt are

k ¼ y2

2s2
þ 1 and dt ¼

Yt � Y � ft

� �2
2s2

:

Since Eq. 82.18 is not proportional to any density function of well-known

distributions, it is not possible to directly sample the time changes, g(1), . . ., g(K),
from the posterior distribution p(gjY;Q) at each iteration of the EM

algorithm. Consequently, the Metropolis chain strategy is carried out here
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(Metropolis et al. 1953; Hastings 1970). In the independent Metropolis chain

algorithm, a random outcome is sampled from its target distribution p by generating

a chain of size L as follows: at the nth step of the chain, if the chain is at a point

Xn¼ x, a candidate value y is sampled from a proposal transition density f(y) for the
next location Xn+1. The candidate Xn+1 ¼ y is accepted with probability

p x; yð Þ ¼ min
p yð Þf xð Þ
p xð Þf yð Þ ; 1
� 

:

An independent uniform random variate U is generated; if U < p(x, y), then
Xn+1 ¼ y; otherwise the step is rejected and the chain remains at Xn+1 ¼ x. After
L such steps, where L is sufficiently large, a realization is obtained from the target

distribution p.

Appendix 3: Skewness and Kurtosis of Log-returns

The unconditional skewness and kurtosis of log-return at time t are expressed in

terms of the model parameters and the first four moments of the shape parameter nt,
which are

Skewness Ytð Þ¼ 2y3þ3ys2
� �

E ntð Þþ3 tþyð Þ y2þs2
� �

V ntð Þþ tþyð Þ3E3 nt�E ntð Þð Þ
y2þs2
� �

E ntð Þþ tþyð Þ2V ntð Þ
h i3=2 ;

(82.19)

Kurtosis Ytð Þ ¼ 3 y2 þ s2
� �2

E n2t
� �þ 3s4 þ 6y4 þ 12y2s2

� �
E ntð Þ þ Q

y2 þ s2
� �

E ntð Þ þ tþ yð Þ2V ntð Þ
h i2 , (82.20)

where t ¼ ln(1 � y � s2/2); and

Q ¼ 6 tþ yð Þ2 y2 þ s2
� �

E n3t
� �þ E3 ntð Þ � 2E ntð ÞE n2t

� �� 	
þ 4 tþ yð Þ 2y4 þ 3y2s2

� �
V ntð Þ þ tþ yð Þ4E4 nt � E ntð Þð Þ:
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Finance, 11, 79–96.
Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between expected value

and the volatility nominal excess return on stocks. Journal of Finance, 48, 1997–1801.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applica-

tions. Biometrika, 57, 97–109.
Jorion, P. (1988). On jump processes in the foreign exchange and stock markets. The Review of

Financial Studies, 1, 427–445.
Madan, D. B., & Milne, F. (1991). Option pricing with VG martingale components.Mathematical

Finance, 1(4), 39–55.
Madan, D. B., & Seneta, E. (1990). The variance gamma (V.G.) model for share market returns.

Journal of Business, 63(4), 511–524.
Madan, D. B., Carr, P., & Chang, E. C. (1998). The variance gamma process and option pricing.

European Finance Review, 2, 79–105.
Maheu, J. M., & McCurdy, T. H. (2004). News arrival, jump dynamics and volatility components

for individual stock returns. Journal of Finance, 59(2), 755–793.
McCulloch, C. E. (1997). Maximum likelihood algorithms for generalized linear mixed models.

Journal of the American Statistical Association, 92, 162–170.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).

Equations of state calculations by fast computing machines. Journal of Chemical Physics,
21, 1087–1091.

Nelson, D. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica,
59, 347–370.

Pan, J. (2002). The jump-risk premia implicit in options: Evidence from an integrated time-series

study. Journal of Financial Economics, 63, 3–50.
Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return.

Journal of Business, 53, 61–65.
Ross, S. A. (1989). Information and volatility: The no-arbitrage Martingale approach to timing and

resolution irrelevancy. Journal of Finance, 47, 1–17.
Wei, G. C. G., & Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and

the Poor Man’s data augmentation algorithms. Journal of the American Statistical Association,
85, 699–704.

82 A VG-NGARCH Model for Impacts of Extreme Events on Stock Returns 2279


	82 A VG-NGARCH Model for Impacts of Extreme Events on Stock Returns
	82.1 Introduction
	82.2 Model Specifications
	82.2.1 GARJI Model
	82.2.2 VG-NGARCH Model

	82.3 Empirical Study
	82.3.1 Estimation and Validation
	82.3.2 Model Selection Based on Information Criteria
	82.3.3 Evaluation of Volatility Forecasts
	82.3.4 Prediction of Large Price Movements or Jumps

	82.4 Conclusion
	Appendix 1: Variance-Gamma Process
	Appendix 2: Parameter Estimation: Monte Carlo EM and Metropolis Algorithm
	Appendix 3: Skewness and Kurtosis of Log-returns
	References


