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Abstract. High dimensional covariate information provides a detailed
description of any individuals involved in a machine learning and classi-
fication problem. The inter-dependence patterns among these covariate
vectors may be unknown to researchers. This fact is not well recognized in
classic and modern machine learning literature; most model-based pop-
ular algorithms are implemented using some version of the dimension-
reduction approach or even impose a built-in complexity penalty. This
is a defensive attitude toward the high dimensionality. In contrast, an
accommodating attitude can exploit such potential inter-dependence pat-
terns embedded within the high dimensionality. In this research, we
implement this latter attitude throughout by first computing the similar-
ity between data nodes and then discovering pattern information in the
form of Ultrametric tree geometry among almost all the covariate dimen-
sions involved. We illustrate with real Microarray datasets, where we
demonstrate that such dual-relationships are indeed class specific, each
precisely representing the discovery of a biomarker. The whole collec-
tion of computed biomarkers constitutes a global feature-matrix, which
is then shown to give rise to a very effective learning algorithm.

Keywords: Microarray · Semi-supervised learning · Data cloud geom-
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1 Introduction

Under the high dimensionality, it becomes unrealistic to build learning algo-
rithms based on required smoothness of manifolds or distributions to typical
real world datasets. After recognizing the fact of that, it is clearly essential to
extract authentic data structure in a data-driven fashion. Ideally if such com-
puted structures can be coherently embedded into a visible geometry, then the
developments of learning algorithm would be realistic and right to the point of
solving the real issues in hand.

Microarrays are examples of the high dimensional datasets. Microarrays pro-
vide a means of measuring thousands of gene expression levels simultaneously.
Clustering genes with similar expression patterns into a group can help biologists
obtain more information about gene functioning [5,10]. In addition, clustering
subjects into groups by their gene expression patterns can help medical profes-
sionals determine people’s clinical diagnosis status [3,4,14]. Machine learning
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has been discussed extensively in this setting because it can help researchers
investigate medical data in a more efficient way. Therefore, many methods for
classifying microarray data have been developed and reviewed by researchers
[17,20,22,24].

Many studies have shown that the logistic regression approach is a fast and
standardizable method for data classification [9,25]. Regardless of its extensive
use, it might not be appropriate for dealing with gene expression data [19,23,26].
Since most of the microarray data are in a large p small n setting, a subset of
the genes is selected through some methods and the regression prediction is per-
formed with these genes. However, it is difficult to determine the size of the gene
subset that will be chosen. If too few genes are included, the prediction error may
be large. If too many genes are used, the model may be overestimated and either
fail to converge or yield an unstable result. It is difficult to find a reliable method
for both selecting the genes and performing logistic regression. Although logis-
tic regression can be extended to a multi-class classification problem, a suitable
method for multi-class classification with gene expression is needed [2,6,8,21].

Multicollinearity may be another problem in regression analysis on gene
expression data. Since gene expression is highly correlated to the expression
of other genes, the classification line that we obtain to separate the data may be
unstable. Another problem may be sparseness. The regression model may not
reach convergence under these conditions. When the sample size is too small,
logistic regression may not provide enough power for performing the prediction.

Cross-validation is a measure for checking the performance of a predicted
model. However, in such high dimensional microarray data, it may not be efficient
and may yield a range of predicted results.

Two-way clustering was introduced to microarray clustering decades ago.
Researchers tried to narrow down the numbers of genes and of subjects and
found features for a small subset of genes and a small subset of subjects [1,13].
The two-way method overcomes the problems identified above and also decreases
the noise from irrelevant data. Feature selections can improve the quality of
the classification and clustering techniques in machine learning. Chen et al. [7]
developed an innovative iterative re-clustering procedure biDCG through a DCG
clustering method [12] to construct a global feature matrix of dual relationships
between multiple gene-subgroups and cancer subtypes.

In this research, we attempt to take the accommodating attitude toward
the high covariate dimensionality, and to make use computational approaches
to uncover the hidden inter-dependence patterns embedded within the collec-
tion of covariate dimensions. The essential component is to include all covariate
information when constructing the DCG tree geometry. It is important because
the geometry pertaining to a subset of covariate data might be significantly
different from the geometry pertaining to the whole. The DCG tree is better
to be based all involving covariate information of labeled and unlabeled sub-
jects. The computed pattern information would be used as the foundation for
constructing learning algorithm. So that the theme of “machine learning” here
is a data-driven discovery in the computational and experimental enterprize in
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contrasting to heavily handed statistical modeling endeavors. This data-driven
discovery theme is detailed as follows.

Consider n subjects indexed by i = 1, .., n, and each subject is encoded with
class-category number and is equipped with p-dimensional covariate information.
Let a n × p matrix collectively record all covariate information available. Here
we assume that an empirical distance among the n row vectors, and another
empirical distance for the p column vectors are available. By using either one of
empirical distances, we calculate a symmetric distance matrix. Then we apply the
Data Cloud Geometry (DCG) computational algorithm, developed by Fushing
and McAssey [11,12], to build an Ultrametric tree geometry TS on the subject
space of n p-dimensional row vectors, and another Ultrametric tree geometry TC

on the covarite space of p n-dimensional column vectors.
In our learning approach, we try to make simultaneous use of computed

pattern information in the Ultrametric tree geometries TS and TC . The key
idea was motivated by the interesting block patterns seen by coupling these
two DCG tree geometries on the n × p covariate matrix. The coupling is meant
to permute the rows and columns according to the two rooted trees in such
a fashion that subject-nodes and covariate-nodes sharing the core clusters are
placed next to each other, while nodes belonging to different and farther apart
branches are placed farther apart. This is the explicit reason why a geometry
is needed in both subject and covariate spaces. Such a block pattern indicates
that each cluster of subjects has a tight and close interacting relationship with
a corresponding cluster of covariate dimensions. This block-based interacting
relationship has been discovered and explicitly computed in [7], and termed
a “dual relationship” between a target subject cluster and a target covariate
cluster. Functionally speaking, this dual relationship describes the following fact:
By restricting focus to a target subject cluster, the target covariate cluster can
be exclusively brought out on the DCG tree as a standing branch. That is,
this target covariate cluster is an entity distinct from the rest of the covariate
dimensions with respect to the target subject cluster. Vice versa, by focusing
only on the target covariate cluster, the target subject cluster can be brought
out in the corresponding DCG tree.

Several real cancer-gene examples are analyzed here. Each cancer type turns
out to be one target subject cluster. And interestingly, a cancer type has somehow
formed more than one dual relationship with distinct target covariate (gene) clus-
ters. If an identified dual relationship constitutes the discovery of a biomarker,
then multiple dual relationships mean multiple biomarkers for the one cancer
type. Further, the collection of dual relationships would constitute a global-
feature matrix of biomarkers. A biomarker for a cancer type not only has the
capability to identify such a cancer type, but at the same time it provides nega-
tive information to other cancer types that have no dual relationships with the
biomarker. Therefore, a collection of dual-relation-based blocks discovered on
the covariate matrix would form a global feature identification for all involved
cancer types. An effective learning algorithm is constructed in this paper.
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2 Method

2.1 Semi-supervised Learning

Step 1. Choosing a particular cancer type (which includes target labeled subjects
and all unlabeled subjects) to cluster genes into groups.

Step 2. Classifying whole labeled and unlabeled subjects by each gene-subgroup.
Finding a particular gene-subgroup that can classify the target cancer
type. Repeating the procedures to whole the cancer types. These proce-
dures yield the first dual relationship between the gene-subgroups and
cancer subtypes. The cancer subtypes here may contain some unlabeled
subjects within the cluster.

Step 3. Classifying genes again by a particular cancer subtype and the unknown
ones that are in the same cluster as in step 2 yields the second gene-
subgroups. Then, with these new gene-subgroups, classifying all subjects
will yield the second dual-relationship.

Step 4. The calculation of

ViVi′

||Vi||||Vi′ || = cos θii′ , i, i′ = 1, .., n

is performed using the 2nd dual relationship to calculate. Here Vi is a
vector for the unlabeled subject’s data and Vi′ is a vector for the other
target labeled subject’s data..

Step 5. Plotting the density function of cos θii′ for each cancer subtype deter-
mines the classification with the function having the largest density
mode.

By the method above, we can obtain clusters of the unlabeled data and labeled
data. We will not lose any information from the unlabeled data. By repeating
the re-clustering procedure, we can confirm that the unlabeled subjects have
been correctly classified.

2.2 Datasets

We applied our learning algorithm to several datasets. The first dataset is the
one from [7]. The dataset contains 20 pulmonary carcinoids (COID), 17 nor-
mal lung (NL), and 21 squamous cell lung carcinomas (SQ) cases. The second
dataset was obtained from [18], containing 83 subjects with 2308 genes with 4
different cancer types: 29 cases of Ewing sarcoma (EWS), 11 cases of Burkitt
lymphoma (BL), 18 cases of neuroblastoma (NB), and 25 cases of rhabdomyosar-
coma (RMS). The third gene expression dataset comes from the breast cancer
microarray study by [16]. The data includes information about breast cancer
mutation in the BRCA1 and the BRCA2 genes. Here, we have 22 patients, 7
with BRCA1 mutations, 8 with BRCA2 mutations, and 7 with other types. The
fourth gene expression dataset comes from [15]. The data contains a total of
31 malignant pleural mesothelioma (MPM) samples and 150 adenocarcinoma
(ADCA) samples, with the expression of the 1626 genes for each sample. A
summary of the datasets can be found in Table 1.
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Table 1. Data description

Data Number Number of subjects in each label Dimensions

of labels

Chen 3 20 COID, 17 NL, 21 SQ 58×1543

Khan 4 29 EWS, 11 BL, 18 NB, 25 RMS 83×2308

Hedenfalk 3 7 BRCA1, 8 BRCA2, 7 others 22×3226

Gordon 2 31 MPM, 150 ADCA 181×1626

Table 2. Data description in semi-supervised setting

Data Number of Number of subjects in each label

unlabeled

subjects

Chen 15 15 COID, 12 NL, 16 SQ

Khan 20 23 EWS, 8 BL, 12 NB, 20 RMS

Hedenfalk 6 5 BRCA1, 6 BRCA2, 5 others

Gordon 20 21 MPM, 140 ADCA

Table 3. Accuracy rates for different examples - semi-supervised learning

Data set Accuracy

Chen 15/15

Khan 1/20

Hedenfalk 4/4

Gordon 20/20

3 Results

We made some of the subjects unlabeled to perform semi-supervised learning.
For the Chen dataset, we took the last 5 subjects in each group as unlabeled.
For the Khan dataset, unlabeled data are the same as those mentioned in [18].
Since the sample size for Hedenfalk dataset is not large, we unlabeled only the
last 2 subjects in BRCA1 and the last 2 subjects in BRCA2. We unlabeled 10
subjects for each group for the Gordon dataset. The number of labeled subjects
and unlabeled subjects can be found in Table 2. The predicted results can be
found in Table 3. However, we could not find the distinct dual-relationship for
the second dataset.

4 Discussion

In the present study, we have proposed a semi-supervised data-driven learn-
ing rule based on the biDCG algorithm. Through our learning rule, we have
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efficiently classified most of the datasets with their dual relationships. In addi-
tion, we incorporated unlabeled data into the learning rule to prevent misclassi-
fication and the loss of some important information.

A large collection of covariate dimensions must have many hidden patterns
embedded in it to be discovered. The model-based learning algorithm might cap-
ture the aspects allowed by the assumed models. We made use computational
approaches to uncover the hidden inter-dependence patterns embedded within
the collection of covariate dimensions. However, we could not find the dual rela-
tionships for one dataset, as demonstrated in the previous sections. For that
dataset, we could not predict precisely. The reason is that the distance function
used was not appropriate for a description of the geometry of this particular
dataset. We believe that the measuring of similarity or distance for two data
nodes plays an important role in capturing the data geometry. However, choosing
a correct distance measure is difficult. With high dimensionality, it is impossible
to make assumptions about data distributions or to get a priori knowledge of the
data. Therefore, it is even more difficult to measure the similarity between the
data. Different datasets may require different methods for measuring similarity
between the nodes. A suitable selection of measuring similarity will improve the
results of clustering algorithms

Another limitation is that we have to decide the smoothing bandwidth for
the kernel density curves. A different smoothing bandwidth or kernel may lead
to different results. Therefore, we can not make exact decisions. Besides, when
the size of gene is very large, a great deal of computing time may be required.

By using the inner product as our decision rule, we know that, when two
subjects are similar, the angle between the two vectors will be close to 0 and
cosθ will be close to 1. The use of cosθ makes our decision rule easy and intuitive.
The performance of the proposed method is excellent. In addition, it can solve
the classification problem when we have outliers in the dual relationship.

The contributions of our studies are that the learning rules can specify gene-
drug interactions or gene-disease relations in bioinformatics and can identify the
clinical status of patients, leading them to early treatment. The application of this
rule is not limited to microarray data. We can apply our rule of learning processes
to any large dataset and find the dual-relationship to shrink the dataset’s size.
For example, the learning rules can also be applied to human behavior research
focusing on understanding people’s opinions and their interactions.

Traditional clustering methods assume that the data are independently and
identically distributed. This assumption is unrealistic in real data, especially
in high dimensional data. With high dimensionality, it is impossible to make
assumptions about data distributions and difficult to measure the similarity
between the data. We believe that measuring the similarity between the data
nodes is an important way of exploring the data geometry in clustering. Also,
clustering is a way to improve dimensionality reduction, and similarity research is
a pre-requisite for non-linear dimensionality reduction. The relationships among
clustering, similarity and dimensionality reduction should be considered in future
research.
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