國立政治大學 應用數學系 碩士 學位論文

一個卡特蘭等式的組合證明
A Combinatorial Proof of a Catalan Identity

政治

碩士班學生:劉映君 撰指導教授:李陽明 博士

中華民國 106 年 6 月 16 日

國立政治大學應用數學系 劉映君君所撰之碩士學位論文

一個卡特蘭等式的組合證明 A Combinatorial Proof of a Catalan Identity

指導教授:

系主任:

中華民國 106 年 6 月 16 日

致謝

感謝這三年來中所有指導過我的老師,還有系上幫助過我的學長姐及同 學們,幫助我順利完成學業。

首先感謝我的指導教授李陽明老師,謝謝老師對於我所投入的時間及心血,無論是平常上課、準備論文以及最後的論文修改,因為有老師的耐心指導,才能有這篇論文的誕生。

接著要感謝的是我最愛的家人,讀研究所的這三年來總是讓他們操煩, 而且上研究所後與家人相處的時間減少許多,但他們仍給於我精神上的關 懷,並給我很多支持與協助。

最後,感謝研究所的同學們,在我面對困難的時候伸出援手,也陪伴我度過這三年的研究所生活。

Zorional Chengchi University

中文摘要

在這篇論文裡,我們探討卡塔蘭等式 $(n+2)C_{n+1}=(4n+2)C_2$ 的證明方法。以往都是用計算的方式來呈現卡塔蘭等式的由來,但我們選擇用組合的方法來證明卡塔蘭等式。

這篇論文主要是應用 C_{n+1} 壞路徑對應到打點 C_n 好路徑以及 C_{n+1} 好路徑對應到打點 C_n 壞路徑的方式來證明卡特蘭等式。

Abstract

In this thesis, we give another approach to prove Catalan identity, $(n+2)C_{n+1} = (4n+2)C_2$. In the past we use the method of computation to show Catalan Identity, in this thesis we choose a combinatorial proof of the Catalan identity.

This thesis is primary using the functions from C_{n+1} totally bad path to C_n dotted good path, and from C_{n+1} good path to C_n dotted totally bad path.

Chengchi University

Keywords: Catalan Identity

Contents

口試委員會審定書	i
致謝 政治	ii
中文摘要	iii
Abstract	iv
Contents	v
List of Figures 2	vi
1 Introduction 2 Paths Start with North	1
List of Figures 1 Introduction 2 Paths Start with North	3
3 Paths Start with East	14
4 Summary	25
A Some examples of Catalan identity $(n+2)C_{n+1} = (4n+2)C_n$	27
Bibliography	30

List of Figures

2.1	GTēQ	4
2.2	QëGT	4
2.3	QēGT	5
2.4	$Q'\vec{e}G'T'$	5
2.5	QëGT	6
2.6	$Q'\vec{e}G'T'$	6
2.7	QëGT	7
2.8	$Q'\vec{e}G'T'$. Z	7
2.9	$Q'\vec{e}G'T'$	8
2.10	QëGT	8
2.11	$R\hat{e}S \xrightarrow{preimage \ under \ f_1} S\hat{e}R \qquad \ldots \qquad \ldots$	9
2.12	Lemma2.4	10
2.13	n=3	11
3.1	$TG\vec{n}Q$	15
3.2	QпТG	15
3.3	QnTG	16
3.4	$Q'\vec{n}T'G'$	16
3.5	$Q'\vec{n}T'G'$	17
3.6	QnTG	17
3.7	QпТG	18
3.8	$Q'\vec{n}T'G'$	18

3.9	QnTG	19
	$Q'\vec{n}T'G'$	
3.11	$R\hat{n}S \xrightarrow{preimage \ under \ f_2} S\hat{n}R \ldots \ldots \ldots \ldots \ldots$	20
3.12	Lemma3.7 2nd part	21
3.13	n=3	22
4.1	$A_1 \xrightarrow{g_1} B_1 \xrightarrow{h_1} C_1 \dots \dots$	25
4.2	$A_2 \xrightarrow{g_2} B_2 \xrightarrow{h_2} C_2$	26

Chapter 1

Introduction

Definition 1.1. A segment is either an east(e) or a north(n). A path consists of consecutive segments.

Definition 1.2. An (n, n) path is a path with n e's and n n's segments.

Definition 1.3. A good path means that all segments are below diagonal y = x. A bad path is a path that is not a good path.

Note: A bad path has at least one segment above diagonal y = x.

Definition 1.4. A totally bad path means that all segments are above diagonal y = x.

Catalan numbers are the number of good paths from the origin to the point (n, n), and we define Catalan number, C_n , by $C_n = \frac{1}{n+1}C_n^{2n}$, for $n \ge 0$. In this thesis, we focus on a combinatorial proof of a Catalan identity,

$$(n+2)C_{n+1} = (4n+2)C_n$$
. [6]

In general, we obtain this formula by

$$(n+2)C_{n+1} = \frac{(n+2)C_{n+1}^{2n+2}}{n+2}$$

$$= \frac{(2n+2)!}{(n+1)!(n+1)!}$$

$$= \frac{(2n+1)(2n)!(2n+2)}{(n+1)n!n!(n+1)}$$

$$= \frac{2(2n+1)(2n)!(2n+2)}{(n+1)n!n!(2n+2)}$$

$$= \frac{(4n+2)(2n)!}{(n+1)n!n!}$$

$$= \frac{(4n+2)C_n^{2n}}{n+1} = (4n+2)C_n$$

It is well-known that the number of paths with n+1 flaws, which has n+1 east and n+1 north segments above the diagonal y = x, is equal to the number of such paths with n flaws, which is equal to the number of such paths with n-1 flaws, and so on. In other words, we have split up the set of all paths into n + 2 equally sized classes. Since there are C_{n+1}^{2n+2} paths, we obtain the

desired formula
$$C_{n+1} = \frac{1}{(n+2)}C_{n+1}^{2n+2}$$
. So the left side $(n+2)C_{n+1} = C_{n+1}^{2n+2}$. By Pascal Identity, $C_{n+1}^{2n+2} = C_{n+1}^{2n+1} + C_{n+1}^{2n+1}$.

On the right-hand side,
$$(4n+2)C_n = 2(2n+1)C_n = \underbrace{(2n+1)C_n}_{Dotted\ good\ paths} + \underbrace{(2n+1)C_n}_{Dotted\ totally\ bad\ paths}$$

In Chapter 2, we give a bijective proof between "Paths start with north" and "Dotted good paths".

In Chapter 3, we give a bijective proof between "Paths start with east" and "Dotted totally bad paths".

Therefore, we complete the proof of $(n+2)C_{n+1} = (4n+2)C_n$ combinatorially. For more details, we refer to [1-5, 7-10]

Chapter 2

Paths Start with North

Definition 2.1. The set X_1 consists of all (n+1, n+1) paths which have at least one flaw.

Each path in X_1 can be factorized into \overrightarrow{GTeQ} . The set Y_1 consists of all (n+1, n+1) paths which has at most n flaws.

Define a function f_1 from X_1 into Y_1 by the following:

- 1. Starting from the bottom left, (0,0), follow the path until it first travels above the diagonal y = x.
- 2. Continue to follow the path until it touches the diagonal y=x again. Denote by \overrightarrow{e} , the first such segment that touches the diagonal y=x, in fact, \overrightarrow{e} must be an east segment.
- 3. Swap the portion of the path before \overrightarrow{e} with portion after \overrightarrow{e} .

i.e.
$$f_1(GT\overrightarrow{e}Q) = Q\overrightarrow{e}GT$$
,

where G is an (i,i) good path, $0 \le i \le n+1$, T is a (j,j+1) totally bad path, $0 \le j \le n-i$, the east segment \overrightarrow{e} is the first east which touches the diagonal y = x, and Q is an (n-i-j,n-i-j) path.

NOTE: After using f_1 , the flaws of path P decrease one.

i.e. If *P* has k flaws, $k \ge 1$, then $f_1(P)$ has k - 1 flaws.

To show $f_1(GT\overrightarrow{e}Q) = Q\overrightarrow{e}GT$ by graph, we have:

Figure 2.1: $GT\vec{e}Q$ Fix \overrightarrow{e} and switch GT with Q, we have:

Figure 2.2: $Q\vec{e}GT$

Theorem 2.2. Let $P = GT\overrightarrow{e}Q$ is an (n+1,n+1) path. Define $f_1: X_1 \longrightarrow Y_1$ by $f_1(GT\overrightarrow{e}Q) = Q\overrightarrow{e}GT$, where G is an (i,i) good path, $0 \le i \le n+1$, T is a (j,j+1) totally bad path, $0 \le j \le n-i$, the east segment \overrightarrow{e} is the first east which touches the diagonal y = x, and Q is an (n-i-j,n-i-j) path. The function f_1 is one-to-one and onto.

Proof. Claim: f_1 is one-to-one.

Let $P = GT\overrightarrow{e}Q$, $P' = G'T'\overrightarrow{e}Q'$, where T' is a an (l, l+1) totally bad path, G' is a (k, k) good path, and Q' is an (n-k-l, n-k-l) path.

 $f_1(GT\overrightarrow{e}Q) = f_1(G'T'\overrightarrow{e}Q') \Rightarrow Q\overrightarrow{e}GT = Q'\overrightarrow{e}G'T'.$

Claim: T = T'

Case1: l > j

Figure 2.3: $Q\vec{e}GT$

Figure 2.4: $Q'\vec{e}G'T'$

When we start on (n + 1, n + 1), trace back the path.

We let two path both trace back to the point (n - j + 1, n - j + 1), in the next step, the path in *Figure* 2.3 is below the diagonal y = x, but the path in *Figure* 2.4 is still above the diagonal y = x.

This is a contradiction, as two paths are the same.

Figure 2.5: $Q\vec{e}GT$

Figure 2.6: $Q'\vec{e}G'T'$

When we start on (n+1, n+1), trace back the path.

We let two paths both trace back to the point (n - l + 1, n - l + 1), in the next step, the path in *Figure* 2.6 is below the diagonal y = x, but the path in *Figure* 2.5 is still above diagonal y = x.

This is a contradiction, as two paths are the same.

Thus, we have proved that l = j.

T = T'.

Claim: G = G'.

Case1: i > k

Figure 2.7: $Q\vec{e}GT$

Figure 2.8: $Q'\vec{e}G'T'$

We both start on (n - j + 1, n - j).

Since i > k, when we let the path in Figure 2.8 trace back to (n - j - k + 1, n - j - k), the next segment is \overrightarrow{e} , but the path in Figure 2.7 is not \overrightarrow{e} .

This is a contradiction, as two paths are the same. Chengchi University

Case2: i < k

Figure 2.9: $Q'\vec{e}G'T'$

Figure 2.10: QeGT

We both start on (n - j + 1, n - j).

Since i < k, when we let the path in Figure 2.10 trace back to (n - j - i + 1, n - j - i), the next segment is not \overrightarrow{e} , but the path in Figure 2.9 is \overrightarrow{e} .

This is a contradiction, as two paths are the same. Chengchi Unive

Thus, we have proved that i = k

$$\therefore G = G'$$
.

Since T = T' and G = G'.

$$\therefore Q\overrightarrow{e}GT = Q'\overrightarrow{e}G'T' \Rightarrow Q\overrightarrow{e} = Q'\overrightarrow{e}$$

$$\therefore Q = Q' \Rightarrow GT\overrightarrow{e}Q = G'T'\overrightarrow{e}Q'$$

 $\therefore f_1$ is one-to one.

Claim: f_1 is onto.

i.e. For any path in Y_1 , which has at most n flaws, we choose the last east leaving the diagonal y = x, denoted by \hat{e} , then we switch the portions before \hat{e} and after \hat{e} . We can get a new path with at least one flaw, and the path is in X_1 .

To show by graph:

Figure 2.11: $R\hat{e}S \xrightarrow{preimage \ under \ f_1} S\hat{e}R$

To show by formula:

$$Q = R\hat{e}S \xrightarrow{preimage \ under \ f_1} S\hat{e}R = P,$$

where Q has at most n flaws, P has at least one flaw.

In fact, if Q has k flaws, P has k + 1 flaws.

So, for every path Q in Y_1 , we can find a path P in X_1 such that $f_1(P) = Q$.

Therefore, f_1 is one-to-one and onto.

NOTE: Let f_1^{-1} be the inverse function of f_1 .

Lemma 2.3. The first east \overrightarrow{e} touching the diagonal y = x in X_1 is below the diagonal y = x in Y_1 after using f_1 .

Proof. Let $P = S\overrightarrow{e}R$, where S is a (j, j + 1) path, \overrightarrow{e} is a (1, 0) east path, and R is an (n - j, n - j) path.

After using f_1 , we swap R and S, since R is an (n-j, n-j) path, the next segment \overrightarrow{e} is below the diagonal y = x.

Thus, we have proved that the first east \vec{e} touching the diagonal y = x in X_1 and it is below the

diagonal y = x in Y_1 after using f_1 .

Lemma 2.4. The last east \hat{e} leaving from diagonal y = x in Y_1 is the first east \vec{e} touching the diagonal y = x in X_1 .

i.e. If \overrightarrow{e} is the first east touching the diagonal y = x in X_1 , then \overrightarrow{e} is the last east leaving the diagonal y = x in Y_1 .

Figure 2.12: Lemma2.4

Proof. Since \overrightarrow{e} is the first east touching the diagonal y = x, we can observe that there is a empty area enclosed by the first north that leaves the diagonal y = x, denoted by \overrightarrow{n} , the diagonal y = x, \overrightarrow{e} , and the diagonal y = x + 1.

After swapping two portions, another empty is enclosed by \overrightarrow{e} , the diagonal y=x, \overrightarrow{n} , and the diagonal y=x-1, so that there is no east segment can touch the diagonal y=x between \overrightarrow{e} and \overrightarrow{n} .

And the remain segments which are behind n are at most touching the diagonal y = x but not be below the diagonal y = x. Therefore, the last east \hat{e} leaving from diagonal y = x in Y_1 is the first east \vec{e} touching the diagonal y = x in X_1 .

Definition 2.5. The set A_1 consists of all paths which first segment is north, and the first touching the diagonal y = x east is marked.

The set B_1 consists of all paths which are good path.

Define g_1 from A_1 into B_1 by $g_1(P) = f_1^{(k)}(P)$, where P has k flaws, and $f_1^{(k)} = \underbrace{f_1 \circ f_1 \circ ... \circ f_1}_{k}$.

Example 2.6. The following example is one of $g_1(P)$:

Figure 2.13: n = 3

Lemma 2.7. In $g_1(P)$, after using the first f_1 , the first east which is denoted by \overrightarrow{e} , connects with the first segment of P in A_1 . And this part will not be separated afterward.

Proof. First, we prove the first part.

Since using f_1 will swap the portion berfore and after \overrightarrow{e} , and the first segment of path is north, after using f_1 , \overrightarrow{e} connects with the north segment.

Thus, we have proved.

Next, we prove the second part.

Notice that after using the first f_1 , the part of \overrightarrow{e} and the north segment is below the diagonal y = x.

There is another first touching the diagonal y = x east, and the part is in a (j, j) path after that east, in the next step, we use f_1 again, so this part will be swapped to before that east, since it is (j, j) path, the part is still below the diagonal y = x.

Therefore, no matter how many times we use f_1 , \overrightarrow{e} connects with the first segment of P in A_1 and they are not be separated afterward.

Theorem 2.8. g_1 is one-to-one and onto.

Proof. Claim: g_1 is one-to-one.

$$g_1(P) = g_1(Q) \Rightarrow f_1^{(k)}(P) = f_1^{(h)}(Q)$$
, where P has k flaws and Q has h flaws.

Case1: k < h

$$f_1^{(k)}(P) = f_1^{(h)}(Q) \Rightarrow f_1(f_1^{(k-1)}(P)) = f_1(f_1^{(h-1)}(Q))$$

 $\therefore f_1$ is one-to-one.

$$f_1^{(k-1)}(P) = f_1^{(h-1)}(Q).$$

$$f_1(f_1^{(k-2)}(P)) = f_1(f_1^{(k-2)}(Q)) \Rightarrow f_1^{(k-2)}(P) = f_1^{(k-2)}(Q)$$
, since f_1 is one-to-one.

Use this way for k - 1 times, we have $f_1(P) = f_1^{(h-(k-1))}(Q) = f_1(f_1^{(h-k)}(Q))$

$$\Rightarrow P = f_1^{(h-k)}(Q)$$

 $\Rightarrow P = f_1 \qquad (Q)$ The first \overrightarrow{e} of P is above the diagonal y = x, but the first \overrightarrow{e} of $f_1^{(h-k)}(Q)$ is below the diagonal

y = x by Lemma 2.7.

This is a contradiction.

Case2: $k > h_1$

$$f_1^{(k)}(P) = f_1^{(h)}(Q) \Rightarrow f_1(f_1^{(k-1)}(P)) = f_1(f_1^{(h-1)}(Q))$$

 $\therefore f_1$ is one-to-one.

:
$$f_1$$
 is one-to-one.
: $f_1^{(k-1)}(P) = f_1^{(h-1)}(Q)$.

$$f_1(f_1^{(k-2)}(P)) = f_1(f_1^{(h-2)}(Q)) \Rightarrow f_1^{(k-2)}(P) = f_1^{(h-2)}(Q)$$
, since f_1 is one-to-one.

Use this way for h-1 times, we have $f_1^{(k-(h-1))}(P) = f_1(f_1^{(k-h)}(P)) = f_1(Q)$

$$\Rightarrow f_1^{(k-h)}(P) = Q$$

The first \overrightarrow{e} of Q is above the diagonal y = x, but the first \overrightarrow{e} of $f_1^{(k-h)}(P)$ is below the diagonal y = x by Lemma 2.7.

This is a contradiction.

Case3: k = h

$$f_1^{(k)}(P) = f_1^{(h)}(Q) \Rightarrow f_1(f_1^{(k-1)}(P)) = f_1(f_1^{(h-1)}(Q))$$

 $\Rightarrow f_1^{(k-1)}(P) = f_1^{(h-1)}(Q) \ (\because f_1 \text{ is one-to-one.})$

Use this way for k-1 times, we have $f_1(P) = f_1(Q) \Rightarrow P = Q$

Therefore, g_1 is one-to-one.

Claim: g_1 is onto.

Given $Q \in B_1$.

Define
$$f_1^{(-k)} = \underbrace{f_1^{-1} \circ f_1^{-1} \circ \dots \circ f_1^{-1}}_{k}$$
.

 $f_1^{-1}(Q)$ is a preimage of Q under f_1 and $f_1^{-1}(Q)$ has 1 flaw.

We can use this way for n+1 times, until the segment \overrightarrow{e} is above the diagonal y=x by Lemma 2.7.

So we have $f_1^{-(n+1)}(Q) = P$, where P has n+1 flaws, $P \in A_1$.

Thus, g_1 is onto. Therefore, g_1 is one-to-one and onto.

Definition 2.9. The set C_1 consists of all (n, n) paths which are replaced the marked east and the next north segment in B_1 with a dot, and all paths in B_1 are (n+1, n+1) path.

Let h_1 be the function from B_1 into C_1 .

i.e. $P = R \stackrel{\rightharpoonup}{e} nS$ is an (n+1, n+1) path, where R and S are all good paths.

$$h_1(P) = h_1(R\overrightarrow{e}\overrightarrow{n}S) = R \bullet S$$

Theorem 2.10. h_1 is one-to-one and onto.

Proof. It is clearly obvious that h_1 is one-to-one and onto. Chengchi University

Given $Q = R \bullet S \in C_1$.

We can change \bullet into $\overrightarrow{e} \overrightarrow{n}$.

Thus, $R \bullet S \Rightarrow R\overrightarrow{e}\overrightarrow{n}S \in B_1$.

Therefore, h_1 is one-to-one and onto.

Chapter 3

Paths Start with East

Definition 3.1. The set X_2 consists of all (n+1, n+1) paths which have at most n flaw.

Each path in X_2 can be factorized into \overrightarrow{TGnQ} . The set Y_2 consists of all (n+1, n+1) paths which has at least one flaws.

Define a function f_2 from X_2 into Y_2 by the following:

- 1. Starting from the bottom left, (0,0), follow the path until it first travels below the diagonal y = x.
- 2. Continue to follow the path until it touches the diagonal y = x again. Denote by \vec{n} , the first such segment that touches the diagonal y = x, in fact, \vec{n} must be an north segment.
- 3. Swap the portion of the path before \overline{n} with portion after \overline{n} .

i.e.
$$f_2(TG\overrightarrow{n}Q) = Q\overrightarrow{n}TG$$
,

where T is an (i,i) totally bad path, $0 \le i \le n+1$, G is a (j+1,j) good path, $0 \le j \le n-i$, the north segment \overrightarrow{n} is the first north touching diagonal y=x, and Q is an (n-i-j,n-i-j) path.

NOTE: After using f_2 , the flaws of path P increase one.

i.e. if *P* has k flaws, $k \le n$, then $f_2(P)$ has k + 1 flaws.

To show $f_2(TG\overrightarrow{n}Q) = Q\overrightarrow{n}TG$ by graph, we have:

Figure 3.2: $Q\vec{n}TG$

Theorem 3.2. Let $P = TG\overrightarrow{n}Q$ is an (n+1,n+1) path. Define $f_2: X_2 \longrightarrow Y_2$ by $f_2(TG\overrightarrow{n}Q) = Q\overrightarrow{n}TG$, where T is an (i,i) totally bad path, $0 \le i \le n+1$, G is a (j+1,j) good path, $0 \le j \le n-i$, the north segment \overrightarrow{n} is the first north which touches the diagonal y = x, and Q is an (n-i-j,n-i-j) path. The function f_2 is one-to-one and onto.

Proof. Claim: f_2 is one-to-one.

Let $P = TG\overrightarrow{n}Q$, $P' = T'G'\overrightarrow{n}Q'$, where G' is a an (l+1,l) good path, T' is a (k,k) totally bad path, and Q' is an (n-k-l,n-k-l) path.

If $f_2(TG\overrightarrow{n}Q) = f_2(T'G'\overrightarrow{n}Q') \Rightarrow Q\overrightarrow{n}TG = Q'\overrightarrow{n}T'G'$.

Claim: G = G'.

Case1: l > j

Figure 3.3: $Q\vec{n}TG$

Figure 3.4: $Q'\vec{n}T'G'$

When we start on (n + 1, n + 1), trace back the path.

We let two paths both trace back to the point (n - j, n - j + 1), in the next step, the path in *Figure* 3.3 is above the diagonal y = x, but the path in *Figure* 3.4 is still below diagonal y = x.

This is a contradiction, as two paths are the same.

Figure 3.5: $Q'\vec{n}T'G'$

Figure 3.6: $Q\vec{n}TG$

When we start on (n+1, n+1), trace back the path.

Ww let two paths both trace back to the point (n - l, n - l + 1), in the next step, the path in *Figure* 3.5 is above the diagonal y = x, but the path in *Figure* 3.6 is still below diagonal y = x. This is a contradiction, as two paths are the same.

Thus, we have proved that l = j.

$$\therefore G = G'$$
.

Claim: T = T'.

Case1: i > k

Figure 3.7: $Q\vec{n}TG$

Figure 3.8: $Q'\vec{n}T'G'$

We both start on (n - j, n - j + 1).

Since i > k, when we let the path in Figure 3.8 trace to (n - j - k, n - j - k + 1), the next segment is \overrightarrow{n} , but the path in *Figure 3.7* is not \overrightarrow{n} .

This is a contradiction, as two paths are the same. Chengchi Univer

Case2: i < k

Figure 3.9: $Q\vec{n}TG$

Figure 3.10: $Q'\vec{n}T'G'$

We both start on (n - j + 1, n - j).

Since i < k, when we let the path in Figure 3.10 trace back to (n - j - i, n - j - i + 1), the next segment is not \vec{n} , but the path in Figure 3.9 is \vec{n} ,.

This is a contradiction, as two paths are the same. Chengchi Unive

Thus, we have proved that i = k

$$T = T'$$
.

Since G = G' and T = T'.

$$\therefore \overrightarrow{Qn}TG = \overrightarrow{Q'n}T'G' \Rightarrow \overrightarrow{Qn} = \overrightarrow{Q'n}$$

$$\therefore Q = Q' \Rightarrow TG\overrightarrow{n}Q = T'G'\overrightarrow{n}Q'$$

 \therefore f_2 is one-to one.

Claim: f_2 is onto.

i.e. For any path in Y_2 , which has at least one flaw, we choose the last north leaving the diagonal y = x, denoted by \hat{n} , then we switch the portions before \hat{n} and after \hat{n} . We can get a new path with at most n flaws which is in X_2 .

To show by graph:

Figure 3.11: $R\hat{n}S \xrightarrow{preimage \ under \ f_2} S\hat{n}R$

To show by formula:

$$Q = R\hat{n}S \xrightarrow{preimage \ under \ f_2} S\hat{n}R = P,$$

where Q has at least one flaw, P has at most n flaws.

In fact, if Q has k flaws, P has k-1 flaws.

So, for every path Q in Y_2 , we can find a path P in X_2 such that $f_2(P) = Q$.

Therefore, f_2 is one-to-one and onto.

Lemma 3.3. The first north \overrightarrow{n} touching the diagonal y = x in X_2 is above the diagonal y = x in Y_2 after using f_2 .

Proof. Let $P = S\overrightarrow{n}R$, where S is a (j+1,j) path, \overrightarrow{n} is a (0,1) north path, and R is an (n-j,n-j) path.

After using f_2 , we swap R and S, since R is an (n-j, n-j) path, the next segment \overrightarrow{n} is above the diagonal y = x.

Thus, we have proved that the first north n touching the diagonal y = x in X_2 and it is above the diagonal y = x in Y_2 after using f_2 .

Lemma 3.4. The last north \hat{n} leaving from diagonal y = x in Y_2 is the first north \vec{n} touching the diagonal y = x in X_2 .

i.e. If \overrightarrow{n} is the first north touching the diagonal y = x in X_2 , then \overrightarrow{n} is the last north leaving the diagonal y = x in Y_2 .

Figure 3.12: Lemma3.7 2nd part

Proof. Since \vec{n} is the first north touching the diagonal y = x, we can observe that there is a empty area enclosed by the first east that leaves the diagonal y = x, denoted by \vec{e} , the diagonal y = x, \vec{n} , and the diagonal y = x - 1.

After swapping two portions, another empty area is enclosed by \vec{n} , the diagonal y=x, \vec{e} , and the diagonal y=x+1, so that there is no north segment can touch the diagonal y=x between \vec{n} and \vec{e} .

And the remain segments which are behind \overrightarrow{e} are at most touching the diagonal y=x but not be above the diagonal y=x. Therefore, the last north \hat{n} leaving from diagonal y=x in Y^i is the first north \overrightarrow{n} touching the diagonal y=x in Y_2 .

Definition 3.5. The set A_2 consists of all paths which first segment is east, and the first touching the diagonal y = x north is marked.

The set B_2 consists of all paths which are totally bad path.

Define g_2 from A_2 into B_2 by $g_2(P) = f^{(k)}(P)$, where P has k flaws, and $f^{(k)} = \underbrace{f_2 \circ f_2 \circ ... \circ f_2}_{k}$.

Example 3.6. The following example is one of $g_2(P)$:

Figure 3.13: n = 3

Lemma 3.7. In $g_2(P)$, after using the first f_2 , the first north which is denoted by n, connects with the first segment of P in A_2 . And this part will not be separated afterward.

Proof. First, we prove the first part.

Since using f_2 will swap the portion berfore and after \overrightarrow{n} , and the first segment of path is east, after using f_2 , \overrightarrow{n} connects with the east segment.

Thus, we have proved.

Then we prove the second part.

Notice that after using the first f_2 , the part of \vec{n} and the east segment is above the diagonal y = x.

There is another first touching the diagonal y = x north, and the part is in a (j, j) path after that north, in the next step, we use f_2 again, so this part will be swapped to before that north and since it is (j, j) path, the part is still above the diagonal y = x.

Therefore, no matter how many times you use f_2 , \overrightarrow{n} connects with the first segment of P in A_2 and they are not be separated afterward.

Theorem 3.8. g_2 is one-to-one and onto.

Proof. Claim: *g*₂ is one-to-one.

 $g_2(P) = g_2(Q) \Rightarrow f_2^{(k)}(P) = f_2^{(h)}(Q)$, where P has k flaws and Q has h flaws.

Case1: k < h

$$f_2^{(k)}(P) = f_2^{(h)}(Q) \Rightarrow f_2(f_2^{(k-1)}(P)) = f_2(f_2^{(h-1)}(Q))$$

 \therefore f_2 is one-to-one.

$$\therefore f_2^{(k-1)}(P) = f_2^{(h-1)}(Q).$$

$$f_2(f_2^{(k-2)}(P)) = f_2(f_2^{(k-2)}(Q)) \Rightarrow f_2^{2(k-2)}(P) = f_2^{(k-2)}(Q)$$
. Since f_2 is one-to-one.

Use this way for k - 1 times, we have $f_2(P) = f_2^{(h-(k-1))}(Q) = f_2(f_2^{(h-k)}(Q))$

$$\Rightarrow P = f_2^{(h-k)}(Q)$$

The first \overrightarrow{n} of P is below the diagonal y = x, but the first \overrightarrow{n} of $f_2^{(h-k)}(Q)$ is above the diagonal y = x by Lemma 3.7.

This is a contradiction.

Case2: k > h

Case2: k > h

$$f_2^{(k)}(P) = f_2^{(h)}(Q) \Rightarrow f_2(f_2^{(k-1)}(P)) = f_2(f_2^{(h-1)}(Q))$$

 $\therefore f_2$ is one-to-one.

$$\therefore f_2^{(k-1)}(P) = f_2^{(h-1)}(Q).$$

$$f_2(f_2^{(k-2)}(P)) = f_2(f_2^{(h-2)}(Q)) \Rightarrow f_2^{(k-2)}(P) = f_2^{(h-2)}(Q)$$
. Since f_2 is one-to-one.

Use this way for h - 1 times, we have $f_2^{(k-(h-1))}(P) = f_2(f_2^{(k-h)}(P)) = f_2(Q)$

$$\Rightarrow f_2^{(k-h)}(P) = Q$$

The first \overrightarrow{n} of Q is below the diagonal y = x, but the first \overrightarrow{n} of $f_2^{(k-h)}(P)$ is above the diagonal y = x by Lemma 3.7 y = x by Lemma 3.7.

This is a contradiction.

Case3: k = h

$$f_2^{(k)}(P) = f_2^{(h)}(Q) \Rightarrow f_2(f_2^{(k-1)}(P)) = f_2(f_2^{(h-1)}(Q))$$

 $\Rightarrow f_2^{(k-1)}(P) = f_2^{(h-1)}(Q) \ (\because f_2 \text{ is one-to-one.})$

Use this way for k-1 times, we have $f_2(P) = f_2(Q) \Rightarrow P = Q$

Therefore, g_2 is one-to-one.

Claim: g_2 is onto.

Given $Q \in B_2$.

Define
$$f_2^{(-k)} = \underbrace{f_2^{-1} \circ f_2^{-1} \circ \dots \circ f_2^{-1}}_{k}$$
.

Since $f_2^{-1}(Q)$ is a preimage of Q under f_2 and $f_2^{-1}(Q)$ has n-1 flaw.

We can use this way for n + 1 times, until the segment \vec{n} is below the diagonal y = x by Lemma 3.7.

So we have $f_2^{-(n+1)}(Q) = P$, where P has no flaw, $P \in A_2$.

Thus, g_2 is onto. Therefore, g_2 is one-to-one and onto.

Definition 3.9. The set C_2 consists of all (n, n) paths which are replaced the marked north and the next east segment in B_2 with a dot, and all paths in B_2 are (n + 1, n + 1) path.

Let h_2 be the function from B_2 into C_2 .

i.e. $P = R \vec{n} \vec{e} S$ is an (n+1, n+1) path, where R and S are all totally bad paths.

$$h_2(P) = h_2(R\overrightarrow{n}\overrightarrow{e}S) = R \bullet S$$

Theorem 3.10. h_2 is one-to-one and onto.

Proof. It is clearly obvious that h_2 is one-to-one and onto.

Given $Q = R \bullet S \in C_2$.

We can change \bullet into $\overrightarrow{n} \overrightarrow{e}$.

Thus, $R \bullet S \Rightarrow R \overrightarrow{n} \overrightarrow{e} S \in B_2$.

Therefore, h_2 is one-to-one and onto.

Chapter 4

Summary

In this thesis, we prove the Catalan identity in a combinatorial way. We split the paths into two portions according to the first segment. Then we construct the functions in $A_1 \xrightarrow{g_1} B_1 \xrightarrow{h_1} C_1$ which the first segment is north.

Figure 4.1: $A_1 \xrightarrow{g_1} B_1 \xrightarrow{h_1} C_1$

And the other functions in $A_2 \xrightarrow{g_2} B_2 \xrightarrow{h_2} C_2$ which the first segment is east.

Figure 4.2: $A_2 \xrightarrow{g_2} B_2 \xrightarrow{h_2} C_2$

In chapter 3, we can also use reflection along the diagonal y = x to prove the paths with east segment, since the paths in chapter 3 is reflection along the diagonal y = x to the paths in chapter 2. But it will be less clear. In this thesis, we can obverse more details and easier to understand.

Appendix A

Some examples of Catalan identity

n = 2, the first segment is north.

n = 2, the first segment is east.

Bibliography

- [1] Ronald Alter. Some remarks and results on Catalan numbers. pages 109–132, 1971.
- [2] Ronald Alter and K. K. Kubota. Prime and prime power divisibility of Catalan numbers. *J. Combinatorial Theory Ser. A*, 15:243–256, 1973.
- [3] Federico Ardila. Catalan numbers. *Math. Intelligencer*, 38(2):4–5, 2016.
- [4] Young-Ming Chen. The Chung-Feller theorem revisited. *Discrete Math.*, 308(7):1328–1329, 2008.
- [5] Ömer E gecioğlu. A Catalan-Hankel determinant evaluation. In *Proceedings of the Fortieth Southeastern International Conference on Combinatorics, Graph Theory and Computing*, volume 195, pages 49–63, 2009.
- [6] R. Johnsonbaugh. Discrete Mathematics. Pearson/Prentice Hall, 2009.
- [7] Thomas Koshy. *Catalan numbers with applications*. Oxford University Press, Oxford, 2009.
- [8] Tamás Lengyel. On divisibility properties of some differences of the central binomial coefficients and Catalan numbers. *Integers*, 13:Paper No. A10, 20, 2013.
- [9] Youngja Park and Sangwook Kim. Chung-Feller property of Schröder objects. *Electron*. *J. Combin.*, 23(2):Paper 2.34, 14, 2016.
- [10] Matej 'Crepin'sek and Luka Mernik. An efficient representation for solving Catalan number related problems. *Int. J. Pure Appl. Math.*, 56(4):589–604, 2009.