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Abstract

In this thesis, we give another approach to prove Catalan identity,
(n+2)Cpi1 = (4n + 2)Cy. In the past we use the method of computation to show

Catalan Identity, in this thesis we choose a combinatorial proof of the Catalan iden-

tity.
This thesis is primary using the functions from C,,  totally bad path to C,, dot-

ted good path, and from C,,; 1 good path to C,; dotted totally bad path.

Keywords: Catalan Identity
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Chapter 1

Introduction

Definition 1.1. A segment is either an east(e) or a north(n). A path consists of consecutive

segments.
Definition 1.2. An (n,n) path is a path with n e’s and 1 n’s segments.

Definition 1.3. A good path means that all segments are below diagonal ¥ = x. A bad path is
a path that is not a good path.

Note : A bad path has at least one segment above diagonal y = x.
Definition 1.4. A totally bad path means that all segments are above diagonal y = x.

Catalan numbers are the number of good paths from the origin to the point (1, 11), and we define

1

T C%”, for n > 0. In this thesis, we focus on a combinatorial

Catalan number, C,, by C,, =
proof of a Catalan identity,

(n+2)Cuy1 = (41 +2)Cy. [6]



In general, we obtain this formula by

(n +2)C,%’f{2
a2
_ (@2n+2)
 (n+D!(n+1)!
(2n+1)(2n)!(2n+2)
(n+1)nnl(n+1)
 2(2n+1)(2n)1(2n 4 2)
(n+1)nn!(2n +2)
(4n +2)(2n)!
(n+41)n!n!
(4n+2)C2"

(1’1 + 2)Cn+1 =

It is well-known that the number of paths with n + 1 flaws, which has n 4- 1 east and n 4 1 north
segments above the diagonal y = x, is equal to the number of such paths with 7 flaws, which is
equal to the number of such paths with n — 1 flaws, and so on. In other words, we have split up

the set of all paths into n + 2 equally sized classes. Since there are Cﬁ'}flz paths, we obtain the

desired formula C,,. = (niz) C,%’f{z. So the left side (1 +2)Cp1q = Cﬁ’ﬂz.
By Pascal Identity, C1 %% = cantl + Cif{l

S—~— ——
Paths starting with north . Paths starting with east

On the right-hand side, (41 +2)C, =2(2n+1)C, = (2n+1)C, +  (2n+1)Cy

S— S——
Dotted good paths  Dotted totally bad paths
In Chapter 2, we give a bijective proof between ”Paths start with north” and ”Dotted good paths”.

In Chapter 3, we give a bijective proof between “’Paths start with east” and ”Dotted totally bad
paths”.
Therefore, we complete the proof of (1 + 2)C, 11 = (4n + 2)C, combinatorially.

For more details, we refer to [1-5,7-10]



Chapter 2

Paths Start with North

Definition 2.1. The set X; consists of all (1 + 1,7 + 1) paths which have at least one flaw.
Each path in X; can be factorized into GT?Q. The set Y7 consists of all (n + 1,n + 1) paths
which has at most n flaws.

Define a function f; from X; into Y7 by the following:

1. Starting from the bottom left, (0, 0), follow the path until it first travels above the diagonal
Y= x.
2. Continue to follow the path until it touches the diagonal y = x again. Denote by ?, the

[N

first such segment that touches the diagonal y = x, in fact, ¢ must be an east segment.

3. Swap the portion of the path before e with portion after .

ie. fi(GTeQ) =QeGT,
where G is an (7,7) good path, 0 < i < n+1, Tisa (j,j + 1) totally bad path, 0 < j <
n — i, the east segment e is the first east which touches the diagonal y = x, and Q is an

(n—i—j,n—i—j)path.

NOTE: After using fi, the flaws of path P decrease one.
i.e. If P hask flaws, k > 1, then f1(P) has k — 1 flaws.



To show fi (GT?Q) = Q?GT by graph, we have:

Figure 2.1: GTeQ

Fix e and switch GT with Q, we have:

Figure 2.2: QéGT



Theorem 2.2. Let P = GT e Q is an (n+ 1,1 + 1) path. Define f, : Xy — Yi
by fi(GTeQ) = QeGT, where G is an (i,i) good path, 0 < i < n+1, Tisa (j,j+1)
totally bad path, 0 < j < n — i, the east segment e is the first east which touches the diagonal

y=uxand Qisan (n —i—j,n—i— j) path. The function f is one-to-one and onto.

Proof. Claim: f; is one-to-one.

LetP = GT?Q, P = G/T/?Q/, where T isaan (I, + 1) totally bad path, G isa (k, k) good
path, and Q isan (n —k — I, n — k — I) path.

fi(GTeQ) = fi(GT eQ) = QeGT=Q eG'T.

Claim: T=T
Casel: | > j
y=x y=x
./ Tf I‘I.'/..IV .
T/ ~
4 ° J
) _.i., _ o G Q ! -i.— B
Q | ¢
Figure 2.3: QéGT Figure 2.4: Q/é’G/T/

When we start on (1 + 1,1 + 1), trace back the path.

We let two path both trace back to the point (n — j + 1,1 — j 4 1), in the next step, the path in
Figure 2.3 is below the diagonal y = x, but the path in Figure 2.4 is still above the diagonal
y=x.

This is a contradiction, as two paths are the same.



Case2: I < j

y=x y=x
T - T, I.‘":. |
é * é ,.”' Gl’
¢ . ¢ Q' '_‘_
Figure 2.5: QéGT Figure 2.6: QG T

When we start on (1 +1,n + 1), trace back the path.

We let two paths both trace back to the point (n — I + 1,7 — [ + 1), in the next step, the path
in Figure 2.6 is below the diagonal y = x, but the path in Figure 2.5 is still above diagonal
Yy = X.

This is a contradiction, as two paths are the same.

Thus, we have proved that | = j.

S T=T.

Claim: G = G .

Casel: i >k



T I‘ ‘:‘;
“ iy
| ]
s
Q A ’ e
g G Q P P
> N

Figure 2.7: QeéGT Figure 2.8: QéG' T’

We both starton (n — j + 1,1 — j).
Since i > k, when we let the path in Figure 2.8 trace back to (n —j —k+1,n — j — k), the
next segment is ?, but the path in Figure 2.7 is not .

This is a contradiction, as two paths are the same.

Case2: i < k



[ (@*} —i+Ln—j—1i o G

|
\1m

L m—j—i+lm—j—i)

Figure 2.9: QéG' T’ Figure 2.10: QeGT

We both starton (n — j + 1,1 — j).

Since i < k, when we let the path in Figure 2.10 trace back to (n —j —i+1,n — j — i), the
next segment is not ?, but the path in Figure 2.9 is .

This is a contradiction, as two paths are the same.

Thus, we have proved that i = k.

. G=G.

Since T=T and G = G'.

" QeCGT=Q eGT =Qe=Q¢

Q=0 =GCTeQ=GTeQ

.". f1 is one-to one.

Claim: f; is onto.

i.e. For any path in Y7, which has at most n flaws, we choose the last east leaving the diagonal
y = x, denoted by &, then we switch the portions before é and after &. We can get a new path
with at least one flaw, and the path is in Xj.

To show by graph:



y=x y =x
/ R
8 (
Tz : ~ - preimage under f; ,'.!'l
e by
R::,..- é )
| "._‘,.H”
.
. . reimage under R
Figure 2.11: RéS g 8 f1> SéR
To show by formula:
reimage under
Q = Res Premaseunder figsp _ p,

where  has at most n flaws, P has at least one flaw.
In fact, if Q has k flaws, P has k + 1 flaws.
So, for every path Q in Y7, we can find a path P in X7 such that f;(P) = Q.

Therefore, f; is one-to-one and onto.

NOTE: Let f; ! be the inverse function of f;.

Lemma 2.3. The first east e touching the diagonal y = x in Xj is below the diagonal y = x

in Y1 after using f1.

Proof. Let P = SeR, where S is a (j,j + 1) path, cisa (1,0) east path, and R is an (n —
j,n —j) path.

After using f1, we swap R and S, since R is an (1 — j, n — j) path, the next segment ¢ is below
the diagonal y = x.

Thus, we have proved that the first east e touching the diagonal y = x in X; and it is below the

9



diagonal y = x in Y7 after using f;.

]

Lemma 2.4. The last east € leaving from diagonal y = x in Y1 is the first east B touching the
diagonal y = x in Xj.
ie. If? is the first east touching the diagonal y = x in Xj, then e is the last east leaving the

diagonal y = x in Y.

Figure 2.12: Lemma?2.4

Proof. Since ¢ is the first east touching the diagonal y = x, we can observe that there is a empty
area enclosed by the first north that leaves the diagonal y = x, denoted by ;, the diagonal y = x,
?, and the diagonal y = x + 1.

After swapping two portions, another empty is enclosed by ?, the diagonal vy = x, ;, and the
diagonal ¥ = x — 1, so that there is no east segment can touch the diagonal y = x between B
and 71.

And the remain segments which are behind 71 are at most touching the diagonal ¥ = x but not
be below the diagonal y = x. Therefore, the last east € leaving from diagonal y = x in Y7 is the

first east e touching the diagonal y = x in Xj. O

Definition 2.5. The set A consists of all paths which first segment is north, and the first touch-
ing the diagonal y = x east is marked.

The set By consists of all paths which are good path.

10



Define g1 from A into By by g1(P) = fl(k) (P), where P has k flaws, andfl(k) =fiofio..0f.
e—_

k
Example 2.6. The following example is one of g1(P):
e
> > > r— —- pr—
A A iz 'y A
A 1 A 7 A 1 A
A i ,” A A
< R -
€ . e —E
D —— — — - 2> >

Figure 2.13: n =3

Lemma 2.7. In g1(P), after using the first f1, the first east which is denoted by ?, connects

with the first segment of P in Aq. And this part will not be separated afterward.

Proof. First, we prove the first part.
Since using f1 will swap the portion berfore and after e, and the first segment of path is north,
after using f1, e connects with the north segment.

Thus, we have proved.

Next, we prove the second part.

Notice that after using the first f1, the part of ¢ and the north segment is below the diagonal
Yy =x.

There is another first touching the diagonal y = x east, and the part is in a (j, j) path after that
east, in the next step, we use f1 again, so this part will be swapped to before that east, since it is
(j, ) path, the part is still below the diagonal y = x.

Therefore, no matter how many times we use f1, e connects with the first segment of P in Aj

and they are not be separated afterward. []

11



Theorem 2.8. g is one-to-one and onto.

Proof. Claim: g is one-to-one.

g1(P) = g1(Q) = fP(P) = fM(Q), where P has k flaws and Q has J flaws.
Casel: k< h

2P = A7(Q) = ARV (P) = AR (Q)

"." f1 is one-to-one.

AP = ().

ART2P) = AF2(Q) = A2 (P) = A"7P(Q). since f; is one-to-one.
Use this way for k — 1 times, we have £ (P) = 1"~ “"(Q) = (" P (Q))
=P =f""9Q)

The first e of P is above the diagonal y = x, but the first e of £\ *(Q) is below the diagonal
y = x by Lemma 2.7.

This is a contradiction.

Case2: k > Iy

9y = 2 = ARV @) = A" (Q)

" f1 is one-to-one.

AP = 7).

AT @) = ARP(Q) = A2 (P) = A7 (Q). since f; is one-to-one.
Use this way for 7 — 1 times, we have "~V (P) = (£ (P)) = f1(Q)

= Py =@

The first e of Q is above the diagonal y = x, but the first ¢ of £\* ") (P) is below the diagonal
y = x by Lemma 2.7.

This is a contradiction.

Case3: k=nh

£y = £2(Q) = ARV P) = AUV (Q)

= &) = 5D (Q) (- £ is one-to-one.)

Use this way for k — 1 times, we have f1(P) = f1(Q) = P =Q

Therefore, g is one-to-one.

12



Claim: g is onto.
Given Q € B;.
Define fl(_k) = ffl off1 o.. offl.

J/

g

k
f1 1(Q) is a preimage of Q under f; and f; '(Q) has 1 flaw.

We can use this way for 7 + 1 times, until the segment e is above the diagonal y = x by Lemma
2.7.
So we have fl_(”H) (Q) = P, where P has n + 1 flaws, P € A;.

Thus, g1 is onto. Therefore, g1 is one-to-one and onto. O

Definition 2.9. The set Cy consists of all (1, 7) paths which are replaced the marked east and
the next north segment in By with a dot, and all paths in By are (n + 1,1 + 1) path.

Let /11 be the function from By into Cj.

ie. P=RenSisan (n+1,n+ 1) path, where R and S are all good paths.

hi(P) =hi(RenS) =ReS

Theorem 2.10. /1 is one-to-one and onto.

Proof. 1t s clearly obvious that h; is one-to-one and onto.
GivenQ = Re S € (.

We can change e into en.

Thus, Re S = Re S € By.

Therefore, h11 is one-to-one and onto. O

13



Chapter 3

Paths Start with East

Definition 3.1. The set X, consists of all (12 + 1, n + 1) paths which have at most # flaw.
Each path in X; can be factorized into TGE\Q. The set Y consists of all (n + 1,n + 1) paths
which has at least one flaws.

Define a function f, from X5 into Y5 by the following:

1. Starting from the bottom left, (0, 0), follow the path until it first travels below the diagonal
Y= x.

2. Continue to follow the path until it touches the diagonal y = x again. Denote by ;, the

[N

first such segment that touches the diagonal y = x, in fact, 7 must be an north segment.

3. Swap the portion of the path before 7 with portion after n.

ie. £(TGnQ) = QnTG,
where T is an (i, 1) totally bad path,0 <i <n+1,Gisa(j+1,j) good path,0 < j <n —1i,
the north segment 71 is the first north touching diagonal y = x,and Qisan (n —i —j,n —i—j)

path.

NOTE: After using f», the flaws of path P increase one.
i.e. if P has k flaws, k < n, then f,(P) has k + 1 flaws.

14



To show fz(TG;Q) = QE\TG by graph, we have:

Figure 3.1: TGHQ

Fix 1 and switch TG with Q, we have:

Figure 3.2: Qi TG

15




Theorem 3.2. Let P = TGnQ isan (n+ 1,n + 1) path. Define f5: Xo — Y,
by f-(TGnQ) = QnTG, where T is an (i, ) totally bad path, 0 < i < n+1, Gisa (j+1,])
good path, 0 < j < n — i, the north segment n is the first north which touches the diagonal

y=uxand Qisan (n —i— j,n —i— j) path. The function f is one-to-one and onto.

Proof. Claim: f; is one-to-one.

Let P = TG;Q, P = T/G/;Q/, where G isaan (I +1,1) good path, T is a (k, k) totally
bad path, and Q' is an (n —k — I, n — k — 1) path.

If /(TGnQ) = f(T'GnQ) = QnTG=QnTG.

Claim: G = G .

Casel: | > j

e ,"’
S L f G’
T! P /

Figure 3.3: QiTG Figure 3.4: Q/ﬁT/G/

When we start on (1 + 1,1 + 1), trace back the path.

We let two paths both trace back to the point (n — j,n — j 4 1), in the next step, the path in
Figure 3.3 is above the diagonal y = x, but the path in Figure 3.4 is still below diagonal
y=x.

This is a contradiction, as two paths are the same.

16



Case2: I < j

Figure 3.5: QT G Figure 3.6: Qi TG

When we start on (1 +1,n + 1), trace back the path.

Ww let two paths both trace back to the point (n — [,n — [ + 1), in the next step, the path in
Figure 3.5 is above the diagonal y = x, but the path in Figure 3.6 is still below diagonal y = x.
This is a contradiction,as two paths are the same.

Thus, we have proved that | = j.

- G=G.
Claim: T =T .
Casel: i >k

17



T e - G T . 4;/ g
b i —km—j—k o i fn—
<(n J—kn—j-k+1) ﬁpgn j—kn—j—k+1)
Figure 3.7: QiTG Figure 3.8: QlﬁT/G/

We both starton (n — j,n — j+1).

Since i > k, when we let the path in Figure 3.8 trace to (n — j — k,n — j — k + 1), the next
segment is n , but the path in Figure 3.7 is not .

This is a contradiction,as two paths are the same.

Case2: i < k

18



""_:’_,-"' ".I Gr ’:',’é
T e s G T’ . :L/-, Vs
ﬁl’ﬁ,(ﬁ':j—i,n—j—ul) I.‘;q E;:,’-"}—i,n—j—i+1)
0 ) Q ,
Figure 3.9: QiTG Figure 3.10: Q/ﬁT/G/

We both starton (n — j + 1,1 — j).

Since i < k, when we let the path in Figure 3.10 trace back to (n — j —i,n —j — i+ 1), the
next segment is not ;, but the path in Figure 3.9 is ﬁ,.

This is a contradiction, as two paths are the same.

Thus, we have proved that i = k.

S T=T.

Since G =G and T =T

QTG =QnTG =Qn=Qn

Q=0 =TGnQ=TG6nQ

.". f2 is one-to one.

Claim: f; is onto.

i.e. For any path in Y5, which has at least one flaw, we choose the last north leaving the diagonal
y = x, denoted by 71, then we switch the portions before 71 and after 77. We can get a new path
with at most 7 flaws which is in X5.

To show by graph:

19



preimage under f,
——— _— »

=
[0

preimage under fo
\
7

Figure 3.11: RAS SAR

To show by formula:

preimage under f
\

Q = RAS SAR = P,

where Q has at least one flaw, P has at most n flaws.

In fact, if Q has k flaws, P has k — 1 flaws.

So, for every path Q in Y3, we can find a path P in X, such that f,(P) = Q.
Therefore, f, is one-to-one and onto.

]

Lemma 3.3. The first north n touching the diagonal y = x in X is above the diagonal y = x

in Yy after using f».

Proof. Let P = SnR, where S is a (j+1,j) path, nisa (0,1) north path, and R is an (n —
j,n —j) path.

After using f, we swap R and S, since R is an (1 — j, n — ) path, the next segment ; is above
the diagonal y = x.

Thus, we have proved that the first north n touching the diagonal y = x in X; and it is above

the diagonal y = x in Y, after using f5.

20



Lemma 3.4. The last north it leaving from diagonal y = x in Y is the first north n touching
the diagonal y = x in Xj.
re. If 1 is the first north touching the diagonal y = x in X», then 7 is the last north leaving the

diagonal y = x in Y>.

Figure 3.12: Lemma3.7 2nd part

Proof. Since 7 is the first north touching the diagonal y = x, we can observe that there is a
empty area enclosed by the first east that leaves the diagonal y = x, denoted by ?, the diagonal
Yy =X, ﬁ, and the diagonal y = x — 1.

After swapping two portions, another empty area is enclosed by ﬁ, the diagonal y = x, ?, and
the diagonal ¥ = x + 1, so that there is no north segment can touch the diagonal y = x between
nande.

And the remain segments which are behind e are at most touching the diagonal ¥ = x but not
be above the diagonal y = x. Therefore, the last north 7 leaving from diagonal y = x in Y’ is

the first north 1 touching the diagonal y = x in Y>. U

Definition 3.5. The set A; consists of all paths which first segment is east, and the first touching
the diagonal y = x north is marked.
The set By consists of all paths which are totally bad path.

Define g, from Aj into By by g2 (P) = f(k)(P),wherePhaskﬂaws, andf(k) = frofro..ofo.
ee—
k

21



Example 3.6. The following example is one of g»(P):

v
R 7

N
A 4
Y

\
\ 4

R 4
A 4
4

7
7
4 >
Sl
—>
5

Figure 3.13: n =3

Lemma 3.7. In ¢»(P), after using the first fa, the first north which is denoted by ; connects

with the first segment of P in Ay. And this part will not be separated afterward.

Proof. First, we prove the first part.
Since using f, will swap the portion berfore and after 7, and the first segment of path is east,
after using fp, n connects with the east segment.

Thus, we have proved.

Then we prove the second part.

Notice that after using the first f, the part of 7 and the east segment is above the diagonal
y=x.

There is another first touching the diagonal y = x north, and the part is in a (j, j) path after that
north, in the next step, we use f, again, so this part will be swapped to before that north and
since it is (j, j) path, the part is still above the diagonal y = x.

Therefore, no matter how many times you use fo, ; connects with the first segment of P in A,

and they are not be separated afterward. ]
Theorem 3.8. g7 is one-to-one and onto.

Proof. Claim: g5 is one-to-one.

2(P) = (Q) = fz(k) (P) = fz(h) (Q), where P has k flaws and Q has / flaws.

22



Casel: k< h

Ay = £ = AHV(P) = AV (Q)

" f» is one-to-one.

APy = £7().

AT P) = £ETPQ) = £ (P) = £172(Q). Since f; is one-to-one.
Use this way for k — 1 times, we have f2(P) = f3'~*"(Q) = A(A"(Q))
=P=£""Q)

The first 71 of P is below the diagonal y = x, but the first  of £{" ) (Q) is above the diagonal
y = x by Lemma 3.7.

This is a contradiction.

Case2: k> h

Ay = £2(Q) = KAV @) = AAV(Q)

" f» is one-to-one.

~RVP) = A7),

AAHTAP) = LA7PQ) = AP (P) = £77(Q). Since f, is one-to-one.
Use this way for i — 1 times, we have £i""""(P) = £,(£5(p)) = £,(Q)

= AP =Q

The first n of Q is below the diagonal y = x, but the first 11 of £A ") (P) is above the diagonal
y = x by Lemma 3.7.

This is a contradiction.

Case3: k=

AP) = A7(Q) = LA @) = AR Q)

= 5Dy = fD(Q) (.- f, is one-to-one.)

Use this way for k — 1 times, we have f>(P) = fo(Q) = P = Q

Therefore, g» is one-to-one.

Claim: g is onto.

Given Q € B,.

Define f3 ) = f;lo fylo. o ;L

k

23



Since f, 1(Q) is a preimage of Q under f, and fa 1(Q) has n — 1 flaw.

We can use this way for 77 + 1 times, until the segment 71 is below the diagonal y = x by Lemma
3.7.

So we have fz_(”H) (Q) = P, where P has no flaw, P € Aj.

Thus, g> is onto. Therefore, g» is one-to-one and onto. [

Definition 3.9. The set C, consists of all (1, 1) paths which are replaced the marked north and
the next east segment in B, with a dot, and all paths in B, are (n + 1,7 4 1) path.

Let /15 be the function from B, into Cs.

ie. P=RneSisan (n+1,n+ 1) path, where R and S are all totally bad paths.

ha(P) = hy(RneS) = ReS

Theorem 3.10. Ky is one-to-one and onto.

Proof. 1t is clearly obvious that /5 is one-to-one and onto.
GivenQ =R e S € C,.

We can change e into ne.

Thus, Re S = RneS € B,.

Therefore, h; is one-to-one and onto. ]
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Chapter 4

Summary

In this thesis, we prove the Catalan identity in a combinatorial way. We split the paths into
. { . . h
two portions according to the first segment. Then we construct the functions in A LEN B =5 C;

which the first segment is north.

91 h1

Figure 4.1: Ay &, By h—1> C

And the other functions in Aj 82, B, =5 C, which the first segment is east.

25



92 hz

. h
Figure 4.2: A; LEN B, = C»

In chapter 3, we can also use reflection along the diagonal y = x to prove the paths with
east segment, since the paths in chapter 3 is reflection along the diagonal y = x to the paths
in chapter 2. But it will be less clear. In this thesis, we can obverse more details and easier to

understand.
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Appendix A

Some examples of Catalan identity

(n+2)Coy1 = (4n+2)Cy

27



n = 2, the first segment is north.
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