國立政治大學 應用數學系碩士學位論文

一個卡特蘭等式的組合證明

A Combinatorial Proof of a Catalan Identity

碩士班學生：劉映君 撰指導教授：李陽明 博士中華民國106年6月16日

國立政治大學應用數學系

劉映君君所撰之碩士學位論文
一個卡特蘭等式的組合證明
 A Combinatorial Proof of a Catalan Identity

業經本委員會番議通過論文考試委員會委員：

指尊教授：
系主任：

中華民國106年6月16日

致謝

感謝這三年來中所有指導過我的老師，還有系上幇助過我的學長姐及同學們，幫助我順利完成學業。

首先感謝我的指導教授李陽明老師，謝謝老師對於我所投入的時間及心血，無論是平常上課，準備論文以及最後的論文修改，因為有老師的耐心指導，才能有這篇論文的誕生

接著要感謝的是我最愛的家人，讀研究所的這三年來總是讓他們操煩，而且上研究所後與家人相處的時間減少許多，但他們仍給於我精神上的關懐，並給我很多支持與協助。

最後，感謝研究所的同學們，在我面對困難的時候伸出援手，也陪伴我度過這三年的研究所生活

中文摘要

在這篇論文裡，我們探討卡塔蘭等式 $(n+2) C_{n+1}=(4 n+2) C_{2}$ 的證明方法。以往都是用計算的方式來呈現卡塔蘭等式的由來，但我們選擇用組合的方法來證明卡塔蘭等式。

這篇論文主要是應用 C_{n+1} 壞路徑對應到打點 C_{n} 好路徑以及 C_{n+1} 好路徑對應到打點 C_{n} 壞路徑的方式來證明卡特蘭等式

關鍵字：卡塔蘭等式

Abstract

In this thesis, we give another approach to prove Catalan identity, $(n+2) C_{n+1}=(4 n+2) C_{2}$. In the past we use the method of computation to show Catalan Identity, in this thesis we choose a combinatorial proof of the Catalan identity.

This thesis is primary using the functions from C_{n+1} totally bad path to C_{n} dotted good path, and from C_{n+1} good path to C_{n} dotted totally bad path.

Keywords: Catalan Identity

Contents

口試委員會審定書 i ii 14
4 Summary 25
A Some examples of Catalan identity $(n+2) C_{n+1}=(4 n+2) C_{n}$ 27
Bibliography 30

List of Figures

2.1 GT $\vec{e} Q$ 4
2.2 $Q \vec{e} G T$ 4
2.3 $Q \vec{e} G T$ 5
$2.4 Q^{\prime} \vec{e} G^{\prime} T^{\prime}$ 5
2.5 $Q \vec{e} G T$ 6
$2.6 Q^{\prime} \vec{e} G^{\prime} T^{\prime}$ 6
2.7 $Q \vec{e} G T$ 7
$2.8 Q^{\prime} \vec{e} G^{\prime} T^{\prime}$ 7
$2.9 Q^{\prime} \vec{e} G^{\prime} T^{\prime}$ 8
2.10 $Q \vec{e} G T$ 8
2.11 RêS $\xrightarrow{\text { preimage under } f_{1}}$ SêR 9
2.12 Lemma2.4 10
$2.13 n=3$ 11
3.1 TG $\vec{n} Q$ 15
3.2 Q $\vec{n} T G$ 15
3.3 Q $\vec{n} T G$ 16
$3.4 Q^{\prime} \vec{n} T^{\prime} G^{\prime}$ 16
$3.5 Q^{\prime} \vec{n} T^{\prime} G^{\prime}$ 17
3.6 Q $\vec{n} T G$ 17
3.7 Q $\vec{n} T G$ 18
$3.8 Q^{\prime} \vec{n} T^{\prime} G^{\prime}$ 18
3.9 Q $\vec{n} T G$ 19
$3.10 Q^{\prime} \vec{n} T^{\prime} G^{\prime}$ 19
3.11 $R \hat{n} S \xrightarrow{\text { preimage under } f_{2}} S \hat{n} R$ 20
3.12 Lemma3.7 2nd part 21
$3.13 n=3$ 22
$4.1 \quad A_{1} \xrightarrow{g_{1}} B_{1} \xrightarrow{h_{1}} C_{1}$ 25
$4.2 \quad A_{2} \xrightarrow{g_{2}} B_{2} \xrightarrow{h_{2}} C_{2}$ 26

Chapter 1

Introduction

政 治

Definition 1.1. A segment is either an east(e) or a north(n). A path consists of consecutive segments.

Definition 1.2. An (n, n) path is a path with n e's and n n's segments.

Definition 1.3. A good path means that all segments are below diagonal $y=x$. A bad path is a path that is not a good path.

Note : A bad path has at least one segment above diagonal $y=x$.

Definition 1.4. A totally bad path means that all segments are aboye diagonal $y=x$.

Catalan numbers are the number of good paths from the origin to the point (n, n), and we define Catalan number, C_{n}, by $C_{n}=\frac{1}{n+1} C_{n}^{2 n}$, for $n \geq 0$. In this thesis, we focus on a combinatorial proof of a Catalan identity,
$(n+2) C_{n+1}=(4 n+2) C_{n} .[6]$

In general, we obtain this formula by

$$
\begin{aligned}
(n+2) C_{n+1} & =\frac{(n+2) C_{n+1}^{2 n+2}}{n+2} \\
& =\frac{(2 n+2)!}{(n+1)!(n+1)!} \\
& =\frac{(2 n+1)(2 n)!(2 n+2)}{(n+1) n!n!(n+1)} \\
& =\frac{2(2 n+1)(2 n)!(2 n+2)}{(n+1) n!n!(2 n+2)} \\
& =\frac{(4 n+2)(2 n)!}{(n+1) n!n!} \\
& =\frac{(4 n+2) C_{n}^{2 n}}{n+1}=(4 n+2) C_{n}
\end{aligned}
$$

It is well-known that the number of paths with $n+1$ flaws, which has $n+1$ east and $n+1$ north segments above the diagonal $y=x$, is equal to the number of such paths with n flaws, which is equal to the number of such paths with $n-1$ flaws, and so on. In other words, we have split up the set of all paths into $n+2$ equally sized classes. Since there are $C_{n+1}^{2 n+2}$ paths, we obtain the desired formula $C_{n+1}=\frac{1}{(n+2)} C_{n+1}^{2 n+2}$. So the left side $(n+2) C_{n+1}=C_{n+1}^{2 n+2}$.
By Pascal Identity, $C_{n+1}^{2 n+2}=0 / \underbrace{C_{n}^{2 n+1}}_{\text {Paths starting with north }}+\underbrace{C_{n+1}^{2 n+1}}_{\text {Paths starting with east }}$
On the right-hand side, $(4 n+2) C_{n}=2(2 n+1) C_{n}=\underbrace{(2 n+1) C_{n}}_{\text {Dotted good paths }}+\underbrace{(2 n+1) C_{n}}_{\text {Dotted totally bad paths }}$. In Chapter 2, we give a bijective proof between "Paths start with north" and "Dotted good paths". In Chapter 3, we give a bijective proof between "Paths start with east" and "Dotted totally bad paths".

Therefore, we complete the proof of $(n+2) C_{n+1}=(4 n+2) C_{n}$ combinatorially.
For more details, we refer to [1-5, 7-10]

Chapter 2

Paths Start with North

Definition 2.1. The set X_{1} consists of all $(n+1, n+1)$ paths which have at least one flaw.
Each path in X_{1} can be factorized into $G T \stackrel{\rightharpoonup}{e} Q$. The set Y_{1} consists of all $(n+1, n+1)$ paths which has at most n flaws.

Define a function f_{1} from X_{1} into Y_{1} by the following:

1. Starting from the bottom left, $(0,0)$, follow the path until it first travels above the diagonal $y=x$.
2. Continue to follow the path until it touches the diagonal $y=x$ again. Denote by \vec{e}, the first such segment that touches the diagonal $y=x$, in fact, \vec{e} must be an east segment.
3. Swap the portion of the path before $\stackrel{\rightharpoonup}{e}$ with portion after $\stackrel{\rightharpoonup}{e}$.
i.e. $f_{1}(G T \vec{e} Q)=Q \vec{e} G T$,
where G is an (i, i) good path, $0 \leq i \leq n+1, T$ is a $(j, j+1)$ totally bad path, $0 \leq j \leq$ $n-i$, the east segment \vec{e} is the first east which touches the diagonal $y=x$, and Q is an ($n-i-j, n-i-j$) path.

NOTE: After using f_{1}, the flaws of path P decrease one.
i.e. If P has k flaws, $k \geq 1$, then $f_{1}(P)$ has $k-1$ flaws.

To show $f_{1}(G T \vec{e} Q)=Q \vec{e} G T$ by graph, we have:

Fix \vec{e} and switch $G T$ with Q, we have:

Figure 2.2: $Q \vec{e} G T$

Theorem 2.2. Let $P=G T \vec{e} Q$ is an $(n+1, n+1)$ path. Define $f_{1}: X_{1} \longrightarrow Y_{1}$
by $f_{1}(G T \stackrel{\rightharpoonup}{e} Q)=Q \vec{e} G T$, where G is an (i, i) good path, $0 \leq i \leq n+1, T$ is a $(j, j+1)$ totally bad path, $0 \leq j \leq n-i$, the east segment \vec{e} is the first east which touches the diagonal $y=x$, and Q is an $(n-i-j, n-i-j)$ path. The function f_{1} is one-to-one and onto.

Proof. Claim: f_{1} is one-to-one.
Let $P=G T \stackrel{\rightharpoonup}{e} Q, P^{\prime}=G^{\prime} T^{\prime} \stackrel{\rightharpoonup}{e} Q^{\prime}$, where T^{\prime} is a an $(l, l+1)$ totally bad path, G^{\prime} is a (k, k) good path, and Q^{\prime} is an $(n-k-l, n-k-l)$ path.
$f_{1}(G T \vec{e} Q)=f_{1}\left(G^{\prime} T^{\prime} \stackrel{\rightharpoonup}{e} Q^{\prime}\right) \Rightarrow Q \stackrel{\rightharpoonup}{e} G T=Q^{\prime} \stackrel{\rightharpoonup}{e} G^{\prime} T^{\prime}$.
Claim: $T=T^{\prime}$
Case1: $l>j$

Figure 2.3: $Q \vec{e} G T$

Figure 2.4: $Q^{\prime} \vec{e} G^{\prime} T^{\prime}$

When we start on $(n+1, n+1)$, trace back the path.
We let two path both trace back to the point $(n-j+1, n-j+1)$, in the next step, the path in Figure 2.3 is below the diagonal $y=x$, but the path in Figure 2.4 is still above the diagonal $y=x$.

This is a contradiction, as two paths are the same.

Figure 2.5: $Q \vec{e} G T$

When we start on $(n+1, n+1)$, trace back the path.
We let two paths both trace back to the point $(n-l+1, n-l+1)$, in the next step, the path in Figure 2.6 is below the diagonal $y=x$, but the path in Figure 2.5 is still above diagonal $y=x$.

This is a contradiction, as two paths are the same.
Thus, we have proved that $l=j$.
$\therefore T=T^{\prime}$.
Claim: $G=G^{\prime}$.
Case1: $i>k$

Figure 2.7: $Q \vec{e} G T$
Figure 2.8: $Q^{\prime} \vec{e} G^{\prime} T^{\prime}$

We both start on $(n-j+1, n-j)$.
Since $i>k$, when we let the path in Figure 2.8 trace back to $(n-j-k+1, n-j-k)$, the next segment is \vec{e}, but the path in Figure 2.7 is not \vec{e}.

This is a contradiction, as two paths are the same.
Case2: $i<k$

Figure 2.9: $Q^{\prime} \vec{e} G^{\prime} T^{\prime}$

We both start on $(n-j+1, n-j)$.
Since $i<k$, when we let the path in Figure 2.10 trace back to $(n-j-i+1, n-j-i)$, the next segment is not \vec{e}, but the path in Figure 2.9 is \vec{e}.

This is a contradiction, as two paths are the same.
Thus, we have proved that $i=k$.
$\therefore G=G^{\prime}$.
Since $T=T^{\prime}$ and $G=G^{\prime}$.
$\because Q \vec{e} G T=Q^{\prime} \vec{e} G^{\prime} T^{\prime} \Rightarrow Q \vec{e}=Q^{\prime} \vec{e}$
$\therefore Q=Q^{\prime} \Rightarrow G T \vec{e} Q=G^{\prime} T^{\prime} \stackrel{\rightharpoonup}{e} Q^{\prime}$
$\therefore f_{1}$ is one-to one.
Claim: f_{1} is onto.
i.e. For any path in Y_{1}, which has at most n flaws, we choose the last east leaving the diagonal $y=x$, denoted by \hat{e}, then we switch the portions before \hat{e} and after \hat{e}. We can get a new path with at least one flaw, and the path is in X_{1}.

To show by graph:

Figure 2.11: RêS $\xrightarrow{\text { preimage under } f_{1}}$ SêR

To show by formula:
$Q=R \hat{e} S \xrightarrow{\text { preimage under } f_{1}} S \hat{e} R=P$,
where Q has at most n flaws, P has at least one flaw.
In fact, if Q has k flaws, P has $k+1$ flaws.
So, for every path Q in Y_{1}, we can find a path P in X_{1} such that $f_{1}(P)=Q$.
Therefore, f_{1} is one-to-one and onto.

NOTE: Let f_{1}^{-1} be the inverse function of f_{1}.

Lemma 2.3. The first east $\stackrel{\rightharpoonup}{e}$ touching the diagonal $y=x$ in X_{1} is below the diagonal $y=x$ in Y_{1} after using f_{1}.

Proof. Let $P=S \vec{e} R$, where S is a $(j, j+1)$ path, \vec{e} is a $(1,0)$ east path, and R is an $(n-$ $j, n-j)$ path.

After using f_{1}, we swap R and S, since R is an $(n-j, n-j)$ path, the next segment \vec{e} is below the diagonal $y=x$.
Thus, we have proved that the first east \vec{e} touching the diagonal $y=x$ in X_{1} and it is below the
diagonal $y=x$ in Y_{1} after using f_{1}.

Lemma 2.4. The last east \hat{e} leaving from diagonal $y=x$ in Y_{1} is the first east \vec{e} touching the diagonal $y=x$ in X_{1}.
i.e. If \vec{e} is the first east touching the diagonal $y=x$ in X_{1}, then \vec{e} is the last east leaving the diagonal $y=x$ in Y_{1}.

Figure 2.12: Lemma2. 4

Proof. Since \vec{e} is the first east touching the diagonal $y=x$, we can observe that there is a empty area enclosed by the first north that leaves the diagonal $y=x$, denoted by \vec{n}, the diagonal $y=x$, e, and the diagonal $y=x+1$.
After swapping two portions, another empty is enclosed by \vec{e}, the diagonal $y=x, \vec{n}$, and the diagonal $y=x-1$, so that there is no east segment can touch the diagonal $y=x$ between \vec{e} and \vec{n}.

And the remain segments which are behind \vec{n} are at most touching the diagonal $y=x$ but not be below the diagonal $y=x$. Therefore, the last east \hat{e} leaving from diagonal $y=x$ in Y_{1} is the first east \vec{e} touching the diagonal $y=x$ in X_{1}.

Definition 2.5. The set A_{1} consists of all paths which first segment is north, and the first touching the diagonal $y=x$ east is marked.

The set B_{1} consists of all paths which are good path.

Define g_{1} from A_{1} into B_{1} by $g_{1}(P)=f_{1}^{(k)}(P)$, where P has k flaws, and $f_{1}^{(k)}=\underbrace{f_{1} \circ f_{1} \circ \ldots \circ f_{1}}_{k}$.

Example 2.6. The following example is one of $g_{1}(P)$:

Figure 2.13: $n=3$

Lemma 2.7. In $g_{1}(P)$, after using the first f_{1}, the first east which is denoted by \vec{e}, connects with the first segment of P in A_{1}. And this part will not be separated afterward.

Proof. First, we prove the first part.
Since using f_{1} will swap the portion berfore and after \vec{e}, and the first segment of path is north, after using f_{1}, \vec{e} connects with the north segment.

Thus, we have proved.

Next, we prove the second part.
Notice that after using the first f_{1}, the part of \vec{e} and the north segment is below the diagonal $y=x$.

There is another first touching the diagonal $y=x$ east, and the part is in a (j, j) path after that east, in the next step, we use f_{1} again, so this part will be swapped to before that east, since it is (j, j) path, the part is still below the diagonal $y=x$.
Therefore, no matter how many times we use f_{1}, \vec{e} connects with the first segment of P in A_{1} and they are not be separated afterward.

Theorem 2.8. g_{1} is one-to-one and onto.

Proof. Claim: g_{1} is one-to-one.
$g_{1}(P)=g_{1}(Q) \Rightarrow f_{1}^{(k)}(P)=f_{1}^{(h)}(Q)$, where P has k flaws and Q has h flaws.
Case1: $k<h$
$f_{1}^{(k)}(P)=f_{1}^{(h)}(Q) \Rightarrow f_{1}\left(f_{1}^{(k-1)}(P)\right)=f_{1}\left(f_{1}^{(h-1)}(Q)\right)$
$\because f_{1}$ is one-to-one.
$\therefore f_{1}^{(k-1)}(P)=f_{1}^{(h-1)}(Q)$.
$f_{1}\left(f_{1}^{(k-2)}(P)\right)=f_{1}\left(f_{1}^{(h-2)}(Q)\right) \Rightarrow f_{1}^{(k-2)}(P)=f_{1}^{(h-2)}(Q)$, since f_{1} is one-to-one.
Use this way for $k-1$ times, we have $f_{1}(P)=f_{1}^{(h-(k-1))}(Q)=f_{1}\left(f_{1}^{(h-k)}(Q)\right)$
$\Rightarrow P=f_{1}^{(h-k)}(Q)$
The first \vec{e} of P is above the diagonal $y=x$, but the first \vec{e} of $f_{1}^{(h-k)}(Q)$ is below the diagonal $y=x$ by Lemma 2.7.

This is a contradiction.
Case2: $k>h_{1}$
$f_{1}^{(k)}(P)=f_{1}^{(h)}(Q) \Rightarrow f_{1}\left(f_{1}^{(k-1)}(P)\right)=f_{1}\left(f_{1}^{(h-1)}(Q)\right)$
$\because f_{1}$ is one-to-one.
$\therefore f_{1}^{(k-1)}(P)=f_{1}^{(h-1)}(Q)$.
$f_{1}\left(f_{1}^{(k-2)}(P)\right)=f_{1}\left(f_{1}^{(h-2)}(Q)\right) \Rightarrow / f_{1}^{(k-2)}(P)=f_{1}^{(h-2)}(Q)$, since f_{1} is one-to-one.
Use this way for $h-1$ times, we have $f_{1}^{(k-(h-1))}(P)=f_{1}\left(f_{1}^{(k-h)}(P)\right)=f_{1}(Q)$
$\Rightarrow f_{1}^{(k-h)}(P)=Q$
The first \vec{e} of Q is above the diagonal $y=x$, but the first \vec{e} of $f_{1}^{(k-h)}(P)$ is below the diagonal $y=x$ by Lemma 2.7.

This is a contradiction.
Case3: $k=h$
$f_{1}^{(k)}(P)=f_{1}^{(h)}(Q) \Rightarrow f_{1}\left(f_{1}^{(k-1)}(P)\right)=f_{1}\left(f_{1}^{(h-1)}(Q)\right)$
$\Rightarrow f_{1}^{(k-1)}(P)=f_{1}^{(h-1)}(Q)\left(\because f_{1}\right.$ is one-to-one. $)$
Use this way for $k-1$ times, we have $f_{1}(P)=f_{1}(Q) \Rightarrow P=Q$
Therefore, g_{1} is one-to-one.

Claim: g_{1} is onto.
Given $Q \in B_{1}$.
Define $f_{1}^{(-k)}=\underbrace{f_{1}^{-1} \circ f_{1}^{-1} \circ \ldots \circ f_{1}^{-1}}_{k}$.
$f_{1}^{-1}(Q)$ is a preimage of Q under f_{1} and $f_{1}^{-1}(Q)$ has 1 flaw.
We can use this way for $n+1$ times, until the segment \vec{e} is above the diagonal $y=x$ by Lemma
2.7.

So we have $f_{1}^{-(n+1)}(Q)=P$, where P has $n+1$ flaws, $P \in A_{1}$.
Thus, g_{1} is onto. Therefore, g_{1} is one-to-one and onto.

Definition 2.9. The set C_{1} consists of all (n, n) paths which are replaced the marked east and the next north segment in B_{1} with a dot, and all paths in B_{1} are $(n+1, n+1)$ path.

Let h_{1} be the function from B_{1} into C_{1}.
i.e. $P=R \vec{e} \vec{n} S$ is an $(n+1, n+1)$ path, where R and S are all good paths.
$h_{1}(P)=h_{1}(R \vec{e} \vec{n} S)=R \bullet S$

Theorem 2.10. h_{1} is one-to-one and onto.

Proof. It is clearly obvious that h_{1} is one-to-one and onto.
Given $Q=R \bullet S \in C_{1}$.
We can change \bullet into $\vec{e} \vec{n}$.
Thus, $R \bullet S \Rightarrow R \vec{e} \vec{n} S \in B_{1}$.
Therefore, h_{1} is one-to-one and onto.

Chapter 3

Paths Start with East

Definition 3.1. The set X_{2} consists of all $(n+1, n+1)$ paths which have at most n flaw.
Each path in X_{2} can be factorized into $T G \vec{n} Q$. The set Y_{2} consists of all $(n+1, n+1)$ paths which has at least one flaws.

Define a function f_{2} from X_{2} into Y_{2} by the following:

1. Starting from the bottom left, $(0,0)$, follow the path until it first travels below the diagonal $y=x$.
2. Continue to follow the path until it touches the diagonal $y=x$ again. Denote by \vec{n}, the first such segment that touches the diagonal $y=x$, in fact, \vec{n} must be an north segment.
3. Swap the portion of the path before $\stackrel{\rightharpoonup}{n}$ with portion after $\stackrel{\rightharpoonup}{n}$.
i.e. $f_{2}(T G \vec{n} Q)=Q \stackrel{\rightharpoonup}{n} T G$,
where T is an (i, i) totally bad path, $0 \leq i \leq n+1, G$ is a $(j+1, j)$ good path, $0 \leq j \leq n-i$, the north segment $\stackrel{\rightharpoonup}{n}$ is the first north touching diagonal $y=x$, and Q is an $(n-i-j, n-i-j)$ path.

NOTE: After using f_{2}, the flaws of path P increase one.
i.e. if P has k flaws, $k \leq n$, then $f_{2}(P)$ has $k+1$ flaws.

To show $f_{2}(T G \vec{n} Q)=Q \stackrel{\rightharpoonup}{n} T G$ by graph, we have:

Fix \vec{n} and switch $T G$ with Q, we have:
Figure 3.1: $T G \vec{n} Q$

Figure 3.2: $Q \vec{n} T G$

Theorem 3.2. Let $P=T G \vec{n} Q$ is an $(n+1, n+1)$ path. Define $f_{2}: X_{2} \longrightarrow Y_{2}$
by $f_{2}(T G \vec{n} Q)=Q \vec{n} T G$, where T is an (i, i) totally bad path, $0 \leq i \leq n+1, G$ is $a(j+1, j)$ good path, $0 \leq j \leq n-i$, the north segment \vec{n} is the first north which touches the diagonal $y=x$, and Q is an $(n-i-j, n-i-j)$ path. The function f_{2} is one-to-one and onto.

Proof. Claim: f_{2} is one-to-one.
Let $P=T G \stackrel{\rightharpoonup}{n} Q, P^{\prime}=T^{\prime} G^{\prime} \stackrel{\rightharpoonup}{n} Q^{\prime}$, where G^{\prime} is a an $(l+1, l)$ good path, T^{\prime} is a (k, k) totally bad path, and Q^{\prime} is an $(n-k-l, n-k-l)$ path.
If $f_{2}(T G \stackrel{\rightharpoonup}{n} Q)=f_{2}\left(T^{\prime} G^{\prime} \stackrel{\rightharpoonup}{n} Q^{\prime}\right) \Rightarrow Q \stackrel{\rightharpoonup}{n} T G=Q^{\prime} \stackrel{\rightharpoonup}{n} T^{\prime} G^{\prime}$.
Claim: $G=G^{\prime}$.
Casel: $l>j$

Figure 3.3: $Q \vec{n} T G$

Figure 3.4: $Q^{\prime} \vec{n} T^{\prime} G^{\prime}$

When we start on $(n+1, n+1)$, trace back the path.
We let two paths both trace back to the point $(n-j, n-j+1)$, in the next step, the path in Figure 3.3 is above the diagonal $y=x$, but the path in Figure 3.4 is still below diagonal $y=x$.

This is a contradiction, as two paths are the same.

Case2: $l<j$

Figure 3.5: $Q^{\prime} \vec{n} T^{\prime} G^{\prime}$

When we start on $(n+1, n+1)$, trace back the path.
Ww let two paths both trace back to the point $(n-l, n-l+1)$, in the next step, the path in
Figure 3.5 is above the diagonal $y=x$, but the path in Figure 3.6 is still below diagonal $y=x$.
This is a contradiction, as two paths are the same.
Thus, we have proved that $l=j$.
$\therefore G=G^{\prime}$.
Claim: $T=T^{\prime}$.
Case1: $i>k$

Figure 3.7: $Q \vec{n} T G$
Figure 3.8: $Q^{\prime} \vec{n} T^{\prime} G^{\prime}$

We both start on $(n-j, n-j+1)$.
Since $i>k$, when we let the path in Figure 3.8 trace to $(n-j-k, n-j-k+1)$, the next segment is \vec{n}, but the path in Figure 3.7 is not \vec{n}.

This is a contradiction, as two paths are the same.
Case2: $i<k$

Figure 3.9: $Q \vec{n} T G$

Figure 3.10: $Q^{\prime} \vec{n} T^{\prime} G^{\prime}$

We both start on $(n-j+1, n-j)$.
Since $i<k$, when we let the path in Figure 3.10 trace back to $(n-j-i, n-j-i+1)$, the next segment is not \vec{n}, but the path in Figure 3.9 is \vec{n},

This is a contradiction, as two paths are the same.
Thus, we have proved that $i=k$.
$\therefore T=T^{\prime}$.
Since $G=G^{\prime}$ and $T=T^{\prime}$.
$\because Q \stackrel{\rightharpoonup}{n} T G=Q^{\prime} \stackrel{\rightharpoonup}{n} T^{\prime} G^{\prime} \Rightarrow Q \vec{n}=Q^{\prime} \vec{n}$
$\therefore Q=Q^{\prime} \Rightarrow T G \stackrel{\rightharpoonup}{n} Q=T^{\prime} G^{\prime} \stackrel{\rightharpoonup}{n} Q^{\prime}$
$\therefore f_{2}$ is one-to one.
Claim: f_{2} is onto.
i.e. For any path in Y_{2}, which has at least one flaw, we choose the last north leaving the diagonal $y=x$, denoted by \hat{n}, then we switch the portions before \hat{n} and after \hat{n}. We can get a new path with at most n flaws which is in X_{2}.

To show by graph:

Figure 3.11: Rn̂S $\xrightarrow{\text { preimage under } f_{2}} S \hat{n} R$

To show by formula:
$Q=R \hat{n} S \xrightarrow{\text { preimage under } f_{2}} S \hat{n} R=P$,
where Q has at least one flaw, P has at most n flaws.
In fact, if Q has k flaws, P has $k-1$ flaws.
So, for every path Q in Y_{2}, we can find a path P in X_{2} such that $f_{2}(P)=Q$.
Therefore, f_{2} is one-to-one and onto.

Lemma 3.3. The first north \vec{n} touching the diagonal $y=x$ in X_{2} is above the diagonal $y=x$ in Y_{2} after using f_{2}.

Proof. Let $P=S \vec{n} R$, where S is a $(j+1, j)$ path, \vec{n} is a $(0,1)$ north path, and R is an $(n-$ $j, n-j)$ path.
After using f_{2}, we swap R and S, since R is an $(n-j, n-j)$ path, the next segment \vec{n} is above the diagonal $y=x$.
Thus, we have proved that the first north \vec{n} touching the diagonal $y=x$ in X_{2} and it is above the diagonal $y=x$ in Y_{2} after using f_{2}.

Lemma 3.4. The last north \hat{n} leaving from diagonal $y=x$ in Y_{2} is the first north \vec{n} touching the diagonal $y=x$ in X_{2}.
i.e. If \vec{n} is the first north touching the diagonal $y=x$ in X_{2}, then $\stackrel{\rightharpoonup}{n}$ is the last north leaving the diagonal $y=x$ in Y_{2}.

Figure 3.12: Lemma3.7 2nd part

Proof. Since \vec{n} is the first north touching the diagonal $y=x$, we can observe that there is a empty area enclosed by the first east that leaves the diagonal $y=x$, denoted by \vec{e}, the diagonal $y=x, \vec{n}$, and the diagonal $y=x-1$.
After swapping two portions, another empty area is enclosed by \vec{n}, the diagonal $y=x, \vec{e}$, and the diagonal $y=x+1$, so that there is no north segment can touch the diagonal $y=x$ between \vec{n} and \vec{e}.

And the remain segments which are behind \vec{e} are at most touching the diagonal $y=x$ but not be above the diagonal $y=x$. Therefore, the last north \hat{n} leaving from diagonal $y=x$ in $Y^{\text {; }}$ is the first north \vec{n} touching the diagonal $y=x$ in Y_{2}.

Definition 3.5. The set A_{2} consists of all paths which first segment is east, and the first touching the diagonal $y=x$ north is marked.

The set B_{2} consists of all paths which are totally bad path.
Define g_{2} from A_{2} into B_{2} by $g_{2}(P)=f^{(k)}(P)$, where P has k flaws, and $f^{(k)}=\underbrace{f_{2} \circ f_{2} \circ \ldots \circ f_{2}}_{k}$.

Example 3.6. The following example is one of $g_{2}(P)$:

Figure 3.13: $n=3$

Lemma 3.7. In $g_{2}(P)$, after using the first f_{2}, the first north which is denoted by \vec{n}, connects with the first segment of P in A_{2}. And this part will not be separated afterward.

Proof. First, we prove the first part.
Since using f_{2} will swap the portion berfore and after \vec{n}, and the first segment of path is east, after using f_{2}, \vec{n} connects with the east segment.

Thus, we have proved.

Then we prove the second part.
Notice that after using the first f_{2}, the part of \vec{n} and the east segment is above the diagonal $y=x$.

There is another first touching the diagonal $y=x$ north, and the part is in a (j, j) path after that north, in the next step, we use f_{2} again, so this part will be swapped to before that north and since it is (j, j) path, the part is still above the diagonal $y=x$.
Therefore, no matter how many times you use f_{2}, \vec{n} connects with the first segment of P in A_{2} and they are not be separated afterward.

Theorem 3.8. g_{2} is one-to-one and onto.
Proof. Claim: g_{2} is one-to-one.
$g_{2}(P)=g_{2}(Q) \Rightarrow f_{2}^{(k)}(P)=f_{2}^{(h)}(Q)$, where P has k flaws and Q has h flaws.

Case1: $k<h$
$f_{2}^{(k)}(P)=f_{2}^{(h)}(Q) \Rightarrow f_{2}\left(f_{2}^{(k-1)}(P)\right)=f_{2}\left(f_{2}^{(h-1)}(Q)\right)$
$\because f_{2}$ is one-to-one.
$\therefore f_{2}^{(k-1)}(P)=f_{2}^{(h-1)}(Q)$.
$f_{2}\left(f_{2}^{(k-2)}(P)\right)=f_{2}\left(f_{2}^{(h-2)}(Q)\right) \Rightarrow f_{2}^{2(k-2)}(P)=f_{2}^{(h-2)}(Q)$. Since f_{2} is one-to-one.
Use this way for $k-1$ times, we have $f_{2}(P)=f_{2}^{(h-(k-1))}(Q)=f_{2}\left(f_{2}^{(h-k)}(Q)\right)$
$\Rightarrow P=f_{2}^{(h-k)}(Q)$
The first \vec{n} of P is below the diagonal $y=x$, but the first \vec{n} of $f_{2}^{(h-k)}(Q)$ is above the diagonal $y=x$ by Lemma 3.7.

This is a contradiction.
Case2: $k>h$
$f_{2}^{(k)}(P)=f_{2}^{(h)}(Q) \Rightarrow f_{2}\left(f_{2}^{(k-1)}(P)\right)=f_{2}\left(f_{2}^{(h-1)}(Q)\right)$
$\because f_{2}$ is one-to-one.
$\therefore f_{2}^{(k-1)}(P)=f_{2}^{(h-1)}(Q)$.
$f_{2}\left(f_{2}^{(k-2)}(P)\right)=f_{2}\left(f_{2}^{(h-2)}(Q)\right) \Rightarrow f_{2}^{(k-2)}(P)=f_{2}^{(h-2)}(Q)$. Since f_{2} is one-to-one.
Use this way for $h-1$ times, we have $f_{2}^{(k-(h-1))}(P)=f_{2}\left(f_{2}^{(k-h)}(P)\right)=f_{2}(Q)$
$\Rightarrow f_{2}^{(k-h)}(P)=Q$
The first \vec{n} of Q is below the diagonal $y=x$, but the first \vec{n} of $f_{2}^{(k-h)}(P)$ is above the diagonal $y=x$ by Lemma 3.7.

This is a contradiction.
Case3: $k=h$
$f_{2}^{(k)}(P)=f_{2}^{(h)}(Q) \Rightarrow f_{2}\left(f_{2}^{(k-1)}(P)\right)=f_{2}\left(f_{2}^{(h-1)}(Q)\right)$
$\Rightarrow f_{2}^{(k-1)}(P)=f_{2}^{(h-1)}(Q)\left(\because f_{2}\right.$ is one-to-one. $)$
Use this way for $k-1$ times, we have $f_{2}(P)=f_{2}(Q) \Rightarrow P=Q$
Therefore, g_{2} is one-to-one.
Claim: g_{2} is onto.
Given $Q \in B_{2}$.
Define $f_{2}^{(-k)}=\underbrace{f_{2}^{-1} \circ f_{2}^{-1} \circ \ldots \circ f_{2}^{-1}}_{k}$.

Since $f_{2}^{-1}(Q)$ is a preimage of Q under f_{2} and $f_{2}^{-1}(Q)$ has $n-1$ flaw.
We can use this way for $n+1$ times, until the segment \vec{n} is below the diagonal $y=x$ by Lemma 3.7.

So we have $f_{2}^{-(n+1)}(Q)=P$, where P has no flaw, $P \in A_{2}$.
Thus, g_{2} is onto. Therefore, g_{2} is one-to-one and onto.

Definition 3.9. The set C_{2} consists of all (n, n) paths which are replaced the marked north and the next east segment in B_{2} with a dot, and all paths in B_{2} are $(n+1, n+1)$ path.

Let h_{2} be the function from B_{2} into C_{2}.
i.e. $P=R \vec{n} \vec{e} S$ is an $(n+1, n+1)$ path, where R and S are all totally bad paths.
$h_{2}(P)=h_{2}(R \vec{n} \vec{e} S)=R \bullet S$

Theorem 3.10. h_{2} is one-to-one and onto.

Proof. It is clearly obvious that h_{2} is one-to-one and onto.
Given $Q=R \bullet S \in C_{2}$.
We can change \bullet into $\vec{n} \vec{e}$.
Thus, $R \bullet S \Rightarrow R \vec{n} \vec{e} S \in B_{2}$.
Therefore, h_{2} is one-to-one and onto.

Chapter 4

Summary

政 治

In this thesis, we prove the Catalan identity in a combinatorial way. We split the paths into two portions according to the first segment. Then we construct the functions in $A_{1} \xrightarrow{g_{1}} B_{1} \xrightarrow{h_{1}} C_{1}$ which the first segment is north.

Figure 4.1: $A_{1} \xrightarrow{g_{1}} B_{1} \xrightarrow{h_{1}} C_{1}$

And the other functions in $A_{2} \xrightarrow{g_{2}} B_{2} \xrightarrow{h_{2}} C_{2}$ which the first segment is east.

Figure 4.2: $A_{2} \xrightarrow{g_{2}} B_{2} \xrightarrow{h_{2}} C_{2}$

In chapter 3, we can also use reflection along the diagonal $y=x$ to prove the paths with east segment, since the paths in chapter 3 is reflection along the diagonal $y=x$ to the paths in chapter 2. But it will be less clear. In this thesis, we can obverse more details and easier to understand.

Appendix A

Some examples of Catalan identity
$(n+2) C_{n+1}=(4 n+2) C_{n}$
$n=1$

$n=2$, the first segment is north.

$n=2$, the first segment is east.

Bibliography

[1] Ronald Alter. Some remarks and results on Catalan numbers. pages 109-132, 1971.
[2] Ronald Alter and K. K. Kubota. Prime and prime power divisibility of Catalan numbers. J. Combinatorial Theory Ser. A, 15:243-256, 1973.
[3] Federico Ardila. Catalan numbers. Math. Intelligencer, 38(2):4-5, 2016.
[4] Young-Ming Chen. The Chung-Feller theorem revisited. Discrete Math., 308(7):13281329, 2008.
[5] Ömer Egecioğlu. A Catalan-Hankel determinant evaluation. In Proceedings of the Fortieth Southeastern International Conference on Combinatorics, Graph Theory and Computing, volume 195, pages 49-63, 2009.
[6] R. Johnsonbaugh. Discrete Mathematics. Pearson/Prentice Hall, 2009.
[7] Thomas Koshy. Catalan numbers with applications. Oxford University Press, Oxford, 2009.
[8] Tamás Lengyel. On divisibility properties of some differences of the central binomial coefficients and Catalan numbers. Integers, 13:Paper No. A10, 20, 2013.
[9] Youngja Park and Sangwook Kim. Chung-Feller property of Schröder objects. Electron. J. Combin., 23(2):Paper 2.34, 14, 2016.
[10] Matej Crepiňsek and Luka Mernik. An efficient representation for solving Catalan number related problems. Int. J. Pure Appl. Math., 56(4):589-604, 2009.

