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ABSTRACT: Green Water Footprint (GWF) is a recently developed indicator to identify the utilization and 
availability of the fresh water resource provided for agricultural products. Based on it accounting for rainwater 
evapotranspiration, a MODIS Global Terrestrial Evapotranspiration Data Set (MOD16) is applied to estimate GWF 
for its capable presenting global evapotranspiration status with high accuracy, wide coverage and long-term 
monitoring. Although the MOD16 product offers aforementioned advantages, current drawback is mainly on its data 
available time is too slow, for which announced data is about one-year late. This paper therefore aims to overcome 
the drawbacks and develop a regression method considering multiple variables including weather parameters and 
Normalized Difference Vegetation Index (NDVI) values in order to improve that the current MOD16 cannot reflect 
a more near real-time GWF. To demonstrate feasibility of the method we proposed, three representative agricultural 
areas in Taitung County mainly used for rice planting were selected as the studied sites. The analyzing data covered 
a prolonged period (from 2003 to 2012) and our regression model further distinguished the first and second cropping 
seasons in the ten years. The results of stepwise regression analysis reported that temperature and NDVI were 
significant variables related to MOD16. R2 values of models derived from the 1st and 2nd cropping data were 0.65 and 
0.64, respectively. The regression models were also verified by 10 years’ out-of-samples, and the results indicated 
that overall accuracy of the prediction was above 85%. Since the modelled evapotranspiration value was reliable, it 
was then used to compute the rice green water footprint of the two cropping seasons. Based on the model, even 
without values of the latest MOD16, the GWF of rice producing over the same area in 2013 and 2014 were estimated. 
The potential of a near real-time estimation of GWF of rice was demonstrated. 
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1.  INTRODUCTION 
 
Water Footprint is an indicator introduced by Hoekstra (2003) to identify the usage and distribution of the fresh water 
resource. Based on the water resource and usage, it can be classified into three categories, including blue, green and 
gray water footprints. In which blue water footprint indicates the volume of fresh surface and groundwater, green 
water footprint means the volume of precipitation on land that does not run off or recharge the groundwater but is 
stored in the soil or temporarily stays on top of the soil or vegetation, and grey water footprint is freshwater pollution 
amount that can be associated with the production of a product over its full supply chain. Through the understanding 
of the three types of the water footprint, the total amount of water used for the production of any products can be 
estimated. As the volume of water resource is high related with global environmental and climate change, the 
monitoring and management of water resource becomes a highly important issue all over the world. Water footprint 
capable of providing total volume of used water therefore becomes a useful indicator to help governments to manage 
the water resource and also to inform citizen the water consumption amount. 
 
Among all the products, crop is a type of product needs large amount of water and hence the volume of consumed 
water for cropping has been an essential topic for water resource management. From previous studies it was reported 
that most of the water for growing crops come from blue water footprint. However it was also noticed that green 
water contributed for crop growth was ignored. In order to comprehensively understand the total amount of water 
used during the whole crop growing period, it is critical to identify the amount of green water of crops (Chou et al., 
2011). As rice is the most important crops in the daily lives in Asian countries, the computation of green water 
footprint (GWF) of rice was conducted in this paper. 
 



Green water footprint is referred to the total rainwater evapotranspiration (ET) plus the amount of water incorporating 
in a product. As the amount existed in the products is only 0.1% ~ 1% of the evapotranspiration value, the 
evapotranspiration value itself can be used to represent green water footprint (Hoekstra et al., 2011). 
Evapotranspiration from field can be either directly measured by some instruments at a single position, or indirectly 
estimated by models based on empirical formulas using data on climates, soil properties and crop characteristics as 
input. However, these methods are costly, redundant and inconvenient, and inaccurate due to the emergence of 
extreme weather. To overcome these limitations, estimation of evapotranspiration has been developed using remote 
sensing technology. The most recent product called “MODIS Global Terrestrial Evapotranspiration Data Set 
(MOD16)” developed by NASA and USGS in 2011 was one of the remote sensed results showing capability of high 
measurement accuracy, wide spatial coverage and long-term monitoring. Due to the advantages, MOD16 data was 
proposed as the tool to estimate evapotranspiration and then to compute green water footprint of rice cropping over 
test site. 
 
Although the MOD16 product is of great benefit, it is limited by its low temporal resolution, for which it indicates 
that the data published on-line is about one year delayed. As a result the near real time GWF cannot be derived. To 
address the issue, a regression method with a number of variables including weather parameters and Normalized 
Difference Vegetation Index (NDVI) values were applied to model the MOD16. Through the stepwise regression, 
the best predictor combination used to identify MOD16 was achieved. To demonstrate the method proposed was 
feasible, three main townships in Taitung County producing rice were selected as the test site for assessing the 
estimation of GWF using MOD16 and regression method. The data used for analysis covered the period of 2003 to 
2012 and the regression modelling was performed separately based on the 1st and 2nd cropping seasons. The data 
employed and the modelling method are introduced detailed in the Sections 3 and 4 respectively. The resultant GWF 
of the rice over the test site is reported in the Section 5 and possible improvement can be conducted are discussed in 
the end. 
 
2. STYDY AREA 
 
Due to a large area of rice paddies and also complete coverage of MOD16 data, three townships, including Chihshang, 
Guanshan and Luye, in Taitung County in the eastern Taiwan were selected as the study area (shown in Figure 1). 
These townships located in Taitung Rift Valley plain are at an eastern longitude between 121°05’00” and 121°15’20”, 
and a northern latitude between 22°50’00” and 23°10’00”. The overall area is approximately 23,000 ha, and the range 
of each rice paddy is about 6,500 – 7,000 ha. With its abundant and pure water and rich soil, this area becomes the 
most important granary of Taitung County (Huang et al., 2003). Regarding the weather condition, due to the natural 
terrain effect, it was noted that the temperature of this area is lower than the southeast towns. In addition, although 
this area is close to the Pacific Ocean however it is not affected by ocean currents so that the precipitation and 
humidity remains stable, although the temperature difference between day and night time is significant. 
 

 
Figure 1. Study area and the corresponding MOD16 data (river area was removed) in July 2012. 

 
3. METARIALS 
 
3.1 MOD16 
 
The MODIS Global Terrestrial Evapotranspiration Data Set (MOD16) provides evapotranspiration value within a 



regular 1 km2 ground grid cell with an 8-day, monthly and annual temporal intervals. The MOD16 ET datasets were 
estimated based on the Penman-Monteith equation and then improved using Mu et al. (2011)’s algorithm, which 
involved ET difference between day and night, simplified calculation of vegetation cover fraction, added surface 
stomatal conductance, aerodynamic resistance, wet canopy, soil heat flux, other key environment variables, and etc. 
(Mu et al., 2013). The MOD16 ET was further validated with ET measured at eddy flux towers and ET estimated 
from 232 watersheds and therefore a reliable dataset. The monthly MOD16 in July 2012 over the study area is 
demonstrated in Figure 1. This data was treated as the dependent variable in the regression model applied later. 
 
3.2 MCD12Q1 
 
As the rice paddies were the main focus in this paper, the MODIS Land Cover Type product (MCD12Q1) was 
introduced to support the selection of cropland. The MCD12Q1 contains five land cover classification schemes with 
a 500 m2 spatial resolution and updates the product in a yearly basis. From which the IGBP global vegetation 
classification scheme was applied. It identifies 17 land cover classes, including 11 natural vegetation classes, three 
developed and mosaicked land classes, and three non-vegetated land classes. In order to represent the main land cover 
types over the study area, the 17 land cover classes were re-classified into water, forest, cropland, built-up and barren 
classes. The grids of cropland class were extracted for sampling and modelling in this study. 
 
3.3 Weather factors 
 
The magnitude of ET was directly affected by weather condition therefore a series of weather factors were employed 
as independent variables in the regression model. Mean temperature, precipitation, mean wind speed, mean sunshine 
duration and mean relative humidity collected from 14 observation stations around the test site were collected. 
Subsequently the Natural Neighbor interpolation was applied to produce gridded weather data. In order to match the 
size and position of ET grid for regression modelling, it was worthwhile noting that the weather data was interpolated 
into the grid array corresponding to the MOD16 grid system. The resultant maps of weather data are shown in Fig. 
2(a)-(e). 
 
3.4 MOD13Q1 
 
The magnitude of ET was also influenced by land cover. Considering the rice growth phenomenon varies during the 
growing period, the NDVI value updated monthly through the global MODIS vegetation indices (MOD13Q1) was 
used to represent the trend of growth of rice (refer to Fig. 2(f)). The value was introduced as an independent variable 
reflecting land cover change in the regression model. 
 

 
Figure 2. Interpolated maps of weather factors in July 2012 over the test site: (a) mean temperature; (b) mean 
precipitation; (c) mean wind speed; (d) mean sunshine duration; (e) mean relative humidity; and (f) NDVI. 

 
4. METHODOLOGY 
 
4.1 Model Development 
 
Stepwise regression is a semi-automated process of building a model by successively adding or removing variables 
based solely on the t-statistics of their estimated coefficients. Every value of the independent variable x is associated 
with a value of the dependent variable y. Formally, the model can be described as bellow:  
 

Y ൌ ଴ߚ	 ൅	ߚଵ ଵܺ ൅	ߚଶܺଶ ൅ ⋯൅	ߚ௡ܺ௡                                                      (4.1) 

(a) (b) (c) (d) (e) (f) 



where, Y is the dependent variable, ଵܺ ,…, 	ܺ௡  are independent variables, ߚଵ ,…, ௡ߚ	  are regression coefficients 
correspondent to each independent variable. 

During the model building procedures, variable selection is intended to select the “best” subset of predictors in order 
to remove the redundant predictors, eliminate the collinearity among predicted variables and explain the data in the 
simplest way. Stepwise procedure is a combination of the forward and backward selection techniques so that after 
each step in which a variable was added, all candidate variables in the model are checked to see if their significance 
has been reduced below the specified tolerance level. If a nonsignificant variable is found, it is removed from the 
model (Johnson and Wichern, 2002; SAS Institute Inc., 2008). In this study, the significance level used for adding 
and removing variables was 0.05 and 0.1, respectively. 

 
Stepwise regression has been commonly used in sociology, ecology, and hydrology modeling (Fox, 1991; Huberty, 
1989; Ramoelo et al., 2012; Balaghi et al., 2008; Fedorko et al., 2005). Applications where several quantities are to 
be predicted using a common set of predictor variables are becoming increasingly important in various disciplines 
(Breiman & Friedman, 1997; Bilodeau & Brenner, 1999). Recent studies further integrated remotely sensed 
information and stepwise regression algorithm on natural resources management and land-use/land cover assessment. 
For example, Ramoelo et al. (2012) developed biomass prediction models by applying bootstrapped stepwise 
regression based on a combination of vegetation index and environmental or ancillary variables. Balaghi et al. (2008) 
established stepwise regression models to forecast the yields at provincial and national levels based on dekadal (10-
daily) NDVI, dekadal rainfall sums and average monthly air temperatures. Fedorko et al. (2005) proposed a method 
to improve landscape-pollution interaction regression models through the inclusion of a variable that describes the 
spatial distribution of a land type with respect to the pattern of runoff within a drainage catchment. However, no 
research focuses on the water footprint estimations for crop cultivation. 

 
Paddy rice is the staple diet in most Asian countries. This study is the first study to model green water consumption 
for paddy rice growth using remote sensing techniques. In the study area, the 1st crop and 2nd crop periods ranged 
from January to June, and July to December, respectively. Due to climatic difference, separated models were 
developed for these two cropping periods. We used evapotranspiration estimated from MODIS MOD16 products for 
representing green water consumptions by paddy cultivations at 1 km spatial resolution. Monthly MOD16 ET data 
collected from 2003 to 2012 were adopted as the dependent variable. Independent  variables were  selected using 
representations of a range of well-established factors related to ET (Chow et al., 1988), including meteorological 
factors like air temperature, precipitation, wind speed, day light hours, and vegetation status. On-site observations 
obtained from weather stations were applied to estimate the spatial variation of these meteorological factors within 
the study site using natural neighbor interpolation. The amount of vegetation in the study site was obtained from 
MODIS NDVI (MOD13). In this study, NDVI depicts paddy’s growth which affect water vapors released from 
plantations. R2 and adjusted R2 were applied to examine the goodness of fit of the developed models. Through the 
stepwise procedures, important factors related to ET could be identified, and regression models of ET in 1st and 2nd 
cropping season would be built.  
 
4.2 Model Validation 
 
We used the ‘out-of-sample forecasting’ to evaluate the model performance. The whole dataset (78 pure paddy rice 
pixels per month, about 78km2 ground area) is divided into two subsets. The first set (70 pure paddy rice pixels per 
month, about 70km2 ground area) is for model fitting and is called ‘in-sample’ whereas the second set (8 pure paddy 
rice pixels per month, about 8 km2 ground area; Figure 3) consists of data used to evaluate the forecasting performance 
and is called ‘out-of-sample’. We than used the regression models built based on the in-sample observations, to 
estimate the ET values of the out-of-sample observations. The predictions of out-of-sample were compared with the 
MOD16 ET, then the overall accuracy of models validation was evaluated. The equation of the overall accuracy was 
calculated as follows: 
 

ܣܱ  ൌ 1 െ ሺ|ܧ݁ݎ݌ ଵܶ௢௥ଶ െ ܧ ெܶை஽ଵ଺|/ܧ ெܶை஽ଵ଺ሻ                                          (4.2) 

where, OA is the overall accuracy, ܧ݁ݎ݌ ଵܶ௢௥ଶ is the predicted ET values, ܧ ெܶை஽ଵ଺ is the ET value from MOD16. 

In this study, we first applied out-of-sample forecasting to validate the models developed based on the data from 2003 
to 2012. Moreover, MOD16 ET in 2013 and 2014 were further collected and compared with the predictions from the 
developed models. 

  



 
Figure 3. Spatial distribution of out-of-sample grids 

 
4.3 Estimation of Green Water Footprint 
 
According to the Water Footprint Assessment Manual (Hoekstra et al., 2011), all process water footprints are 
supposed per unit of product, namely in water per mass. Usually the process water footprints in agriculture or forestry 
as m3/ton, which is equivalent to liter/kg. The green component in the process water footprint of growing a crop or 
tree (ܹܨ௣௥௢௖,௚௥௘௘௡, m3/ton) is calculated as the green component in crop water use (݊݁݁ݎܷܹ݃ܥ, m3/ha) divided by the 
crop yield (ܻ, ton/ha): 
 

݊݁݁ݎ݃,ܿ݋ݎ݌ܨܹ ൌ
݊݁݁ݎܷܹ݃ܥ

ܻ
	 ሾvolume/massሿ                                                      (4.3) 

 
The green component in crop water use (݊݁݁ݎܷܹ݃ܥ, m3/ha) is calculated by accumulation of daily evapotranspiration 
 :over the complete growing period (mm/day ,ܶܧ)
 

݊݁݁ݎܷܹ݃ܥ ൌ 10 ൈ ∑ ݊݁݁ݎ݃ܶܧ
݌1݃
݀ൌ1 	ሾvolume/areaሿ                                            (4.4) 

 
in which ݊݁݁ݎ݃ܶܧ  represents green water evapotranspiration. The factor 10 is meant to covert water depths in 
millimeters into water volumes per land surface in m3/ha. The summation is done over the period from the day of 
planting (day 1) to the day of harvest (1݃݌ stands for length of growing period in days). Since different crop varieties 
can have substantial differences in the length of the growing period, this factor can significantly influence the 
calculated crop water use. 
 
Due to the high cost of measuring evapotranspiration directly, evapotranspiration can be estimated by means of a 
model based on empirical formulas in general. However, it’s also hard to estimated evapotranspiration of ‘green water’ 
or ‘blue water’ individually, the CROPWAT model developed by the Food and Agriculture Organization of United 
Nations (FAO, 2010) is an alternative way to model evapotranspiration of green water and blue water. This model 
offers two options to calculate evapotranspiration: one option is the ‘crop water requirement option’ (assumed that 
there are no water limitations to crop growth), and it calculates: (i) crop water requirements (CWU) during the full 
length of the growing period under particular climatic circumstances; (ii) effective precipitation over the same period; 
(iii) irrigation requirement. The other option is the ‘irrigation schedule option’ (allowing the specification of the 
actual irrigation over the growing period), and it does not work with the concept of effective precipitation. Instead, 
the model includes a soil water balance which keeps track of the soil moisture content over time using a daily time 
step. On account of this reason, ‘irrigation schedule option’ requires input data on soil type, and it will much more 
complex than the ‘crop water requirement option’. Therefore this study used the ‘crop water requirement option’ to 
model and estimate green water evapotranspiration. 
 
The crop water requirement is the water needed for evapotranspiration under ideal growth conditions, and ‘ideal 
conditions’ means that adequate soil water is maintained by rainfall and irrigation so that it is does not limit plant 



growth and crop yield. Basically, it is calculated by multiplying the reference crop evapotranspiration (ܧ ଴ܶ) by the 
crop coefficient (ܭ஼): ܴܹܥ ൌ ஼ܭ ൈ ܧ ଴ܶ ൌ ܧ ஼ܶ. It is assumed that the crop water requirements are fully met, so that 
actual crop evapotranspiration (ܧ ஼ܶ) will be equal to the crop water requirement: ܧ ஼ܶ ൌ   .ܴܹܥ
 
The reference crop evapotranspiration (ܧ ଴ܶ) is the evapotranspiration rate from a reference surface without short of 
water. The reference surface represents a hypothetical surface with extensive green grass cover with specific standard 
characteristics and therefore the only factors affecting ܧ ଴ܶ are climate parameters. Consequently the actual crop 
evapotranspiration (ܧ ஼ܶ ) is must calculated by multiplying ܧ ଴ܶ  by ܭ஼ . Nevertheless, this study would use the 
‘MODIS Global Terrestrial Evapotranspiration Data Set’ (MOD16) which is equal to the actual crop 
evapotranspiration on crop land. In other words, this study used the MOD16 data in the study area where are all crop 
lands, and it meant that the MOD16 data was no necessary to multiply ܭ஼  as well as was the actual crop 
evapotranspiration. 
 
Effective precipitation ( ௘ܲ௙௙) is the part of the total amount of precipitation that is retained by the soil in order that it 
is potentially available for meeting the water need of the crop. It is often less than the total precipitation because not 
all precipitation can actually be appropriated by the crop, such as surface run-off or percolation. There are various 
ways to estimate effective precipitation based on the total amount of precipitation; USDA SCS method (addressed 
by the United States Department of Agriculture, Soil Conservation Service) is often used. 
 
The irrigation requirement (ܴܫ ) is calculated as the difference between crop water requirement and effective 
precipitation. The irrigation requirement is zero if effective precipitation is larger than the crop water requirement: 
ܴܫ ൌ ,ሺ0	ݔܽ݉ ܴܹܥ െ ௘ܲ௙௙ሻ, which is assumed that the irrigation requirements are fully met. Green Water Footprint 
ܧ) ௚ܶ௥௘௘௡), namely evapotranspiration of precipitation, can be equal to the minimum of total crop evapotranspiration 
ܧ) ஼ܶ) and effective precipitation ( ௘ܲ௙௙): 
 

ܧ ௚ܶ௥௘௘௡ ൌ min൫ܧ ஼ܶ, ௘ܲ௙௙൯			ሾlength/timeሿ                                                   (4.5) 
 
As mentioned above, Green Water Footprint of rice can be calculated by: 
 

௥௜௖௘,௚௥௘௘௡ܨܹ ൌ
ଵ଴ൈ௠௜௡൛ா்಴,௉೐೑೑ൟൈ஺

௒
                                                           (4.6) 

 
This study would use MOD16 data and value estimated by stepwise regression model as the actual crop 
evapotranspiration (ܧ ஼ܶ), instead of past calculation by multiplying the reference crop evapotranspiration (ܧ ଴ܶ) by 
the crop coefficient (ܭ஼). Effective precipitation ( ௘ܲ௙௙) would be estimated by USDA SCS method: 
 

௘ܲ௙௙ ൌ ሼ ௧ܲ௢௧௔௟ ൈ ሺ125 െ 0.2 ൈ ௧ܲ௢௧௔௟ሻሽ/125, ௧ܲ௢௧௔௟ ൑ 250	݉݉ 

௘ܲ௙௙ ൌ 125 ൅ 0.1 ൈ ௧ܲ௢௧௔௟, ௧ܲ௢௧௔௟ ൐ 250	݉݉                                               (4.7) 
 
in which ௧ܲ௢௧௔௟ represents the total amount of precipitation. On the other hand, the amount of water incorporating in 
rice is very low, so that the calculation of equation (4.6) stands for Green Water Footprint of rice. 
 
5. RESULTS 
 
5.1 Stepwise Regression for ET 
 
A total number of 4200 samples were applied for model development. Table 1 and Table 2 show the results of the 
developed regression models. Adjusted R2 values of regression models derived from the 1st and 2nd cropping season 
were 0.65 and 0.64 respectively, and indicated that the developed models had an intermediate-high explanatory power 
for paddy ET variation. Both these models reached the 0.05 significance level (p ൌ .000). The results of stepwise 
procedures reported that ‘temperature’ and ‘NDVI’ were significant predictors to ET. Both variables were positive 
associated with ET. Temperature was more important than NDVI since its standardized coefficient was larger in both 
models. On the other hand, the rest of the four weather variables including precipitation, mean wind speed, mean 
sunshine duration, and mean relative humidity did not reach the statistical significance, therefore been excluding from 
the models. The developed regression models of 1st and 2nd cropping seasons are showed as the following equations: 
 

ܧ ଵܶ ൌ െ24.731 ൅ 4.887T ൅ 22.821NDVI                                                (5.1) 
 



ܧ ଶܶ ൌ െ56.149 ൅ 5.704T ൅ 29.813NDVI                                                (5.2) 
 
in which ܧ ଵܶ  represents evapotranspiration over 1st cropping season; ܧ ଶܶ  represents evapotranspiration over 2nd 
cropping season; ܶ	represents mean monthly temperature; NDVI represents monthly NDVI.  
 

Table 1. ANOVA of stepwise regression 
Model R R2 adjusted R2 Std. Error of the estimate F Sig. 

1st Cropping Season .803 .645 .645 14.499 4216.524 .000
2nd Cropping Season .798 .637 .637 16.073 4076.948 .000

 
Table 2. Coefficients of the developed ET models 

1st Cropping Season 2nd Cropping Season 

Entered 
Variable 

Unstandardized 
Coefficients 

Standardized 
Coefficients Sig.

Entered 
Variable 

Unstandardized 
Coefficients 

Standardized 
Coefficients Sig.

B Std. Error β B Std. Error β 
(Constant) -24.731 1.231  .000 (Constant) -56.149 1.655  .000

Temp. 4.887 .069 0.716 .000 Temp. 5.704 .070 0.737 .000
NDVI 22.821 1.483 0.155 .000 NDVI 29.813 1.465 0.184 .000

 
5.2 Results of Out-of-sample Forecasting 
 
For each cropping season of each year, 48 out-of-sample were used to verify the model predictions. The results are 
showed in Table 3. The averaged overall accuracy from 2003 to 2012 was above 0.85 indicated that the developed 
models could provide highly accurate ET predictions. Table 4 showed the model validations based on ET data from 
2013 to 2014, and similar results were obtained in accuracy assessment (0.87 and 0.86 for 2013 and 2014, 
respectively). This result again demonstrated the applicability of our models.   
 

Table 3. Overall accuracy from 2003-2012 validation 
Model 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Avg.
1st crop 0.886 0.879 0.875 0.872 0.879 0.874 0.877 0.751 0.795 0.889 0.857
2nd crop 0.850 0.860 0.850 0.846 0.862 0.885 0.870 0.832 0.792 0.882 0.853

 
Table 4. Overall accuracy from 2013-2014 validation 

Model 2013 2014 Avg.
1st crop 0.854 0.889 0.872
2nd crop 0.848 0.864 0.856

 
5.3 Result of Estimation of Green Water Footprint 
 
Since the ET value has been precisely estimated through regression model, it was then used to compute GWF of rice 
over the test site in 1st and 2nd cropping seasons between 2003 and 2012. The result was compared against the GWF 
calculated using the MOD16 product. As listed in Table 5, the estimation accuracy of GWF achieves 0.993 and 0.999 
respectively in the two cropping season, validating the reliability of the proposed method for deriving GWF. In order 
to compute the overall GWF volume, the harvested area was calculated and the yield per cropping season was 
collected from the Agriculture and Food Agency, Council of Agriculture, Executive Yuan in Taiwan. The results of 
1st and 2nd cropping season of rice Green Water Footprint are shown in Table 5 and their trend in the period of 2003-
2012 are shown in Figure 4. 
 
Table 5. Comparison of the 1st and 2nd crop of rice Green Water Footprint derived from MOD16 and modelled ET 

value based on the regression models (unit: m3/ton) 
Cropping 
Season Calculation 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Ave. Overall 

Accuracy

1st crop 
MOD16 279.6 311 403.2 433.2 266.2 419.1 305.6 297.4 335.1 421.9 347.2

0.993
Regression Model 279.6 311 391.3 421.2 268.7 416.6 314.9 306 357.7 428.6 349.6

2nd crop 
MOD16 834.2 853.7 1137 909.3 1128 985.7 1045 960.3 1153 773.3 977.9

0.999
Regression Model 868.6 828.4 1048 862.8 1168 980.5 1008 990.8 1248 762.2 976.6

 



 
Figure 4. Trend of 1st and 2nd crop of rice Green Water Footprint in the period of 2003-2012 

 
The results of the calculation and trend showed that 2nd crop of rice Green Water Footprint obviously larger than 1st 
crop of rice Green Water Footprint. The average of 1st crop of rice Green Water Footprint was 347.2 m3/ton; the 
average of 2nd crop of rice Green Water Footprint was 977.9 m3/ton. Comparing the estimation of MOD16 with 
regression models, both were of similar trends no matter in 1st crop or 2nd crop, and the overall accuracy was quite 
high. The results indicated that the usage of MOD16 evapotranspiration data set and the application of stepwise 
regression analysis was feasible for estimating GWF. 
 
6. CONCLUSION 
 
MOD16 evapotranspiration data was an ideal product for estimating green water footprint. However, it was limited 
by its temporal delay of announcement of data accessibility. Therefore this paper aimed to provide an alternative 
method to compute green water footprint. To achieve this, we applied stepwise regression modelling method to 
establish a model capable of computing accurate ET value. The model was then successfully used to estimate the 
GWF of rice and hence the reliability was proved as well. In addition, this study tried to predict evapotranspiration 
in 2013 and 2014 by the regression model, the overall accuracy of estimation in 2013 and 2014 achieved 87% and 
86% respectively. All the results indicated that the usage of MOD16 data and stepwise regression modelling could 
accurately and immediately evaluate Green Water Footprint of rice. Since the method was proved reliable, it can be 
applied to measure GWF of various agricultural products. Moreover, the GWF itself can be treated as an indicator 
for agricultural irrigation and water resource management. 
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