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Abs t rac t .  In this paper, genetic programming (GP) is employed to 
model learning and adaptation in the overlapping generations model, 
one of the most popular dynamic economic models. Using a model of 
inflation with multiple equilibria as an illustrative example, we show 
that our GP-based agents are able to coordinate their actions to achieve 
the Pareto-superior equilibrium (the low-inflation steady state) rather 
than the Pareto-inferior equilibrium (the high-inflation steady state). 
We also test the robustness of this result with different initial conditions, 
economic parameters, and GP control parameters. 

1 I n t r o d u c t i o n  

While there are several approaches to introducing dynamic general equilibrium 
structures to economics, the overlapping generations model (hereafter, OLG) ,  
proposed by Allais (1947) and Samuelson (1958}, may be regarded as the most 
popular in current macroeconomics. 

Despite its popularity, one of the technical issues which remain unsolved 
in the O L G  is how expectations and learning take place in this overlapping- 
generations structure. In the early 80's, the assumptions of perfect foresight 
and rational expectations were adopted to simplify the analysis. Recent research 
trends tend to relax these assumptions and have contributed to the literature 
of bounded rationality. While models of bounded rationality abound, they are 
not equally promising in accounting for real observations. By Lucas' criterion 

* This paper is an abbreviated version of Chen and Yeh (1998). Research support 
from NSC grant NSC. 86-2415-H-004-022 is gratefully acknowledged. The authors 
are grateful to David Fogel and one anonymous referee for painstaking reviews and 
many helpful suggestions. This paper is devoted to the memory of Mr. Paul Lin with 
Sun Fast International Corp., who had been a great supporter for our research for 
many years. To many people's grief, he died at the age of 38 on September 30, 1997 
of liver cancer. 
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(Lucas, 1986), one of the most promising model classes is from a research group 
called agent-based computational economics (ACE)  (Tesfatsion, 1996) 1, of which 
Arifovic (1995) is a typical example. In her studies, Arifovic applied genetic al- 
gorithms (GAs)  to modeling the learning and adaptat ion in the O L G .  She 
further compared the simulation results based on GAs with those from labora- 
tories with human subjects, and she concluded tha t  GAs were superior to other 
learning schemes, such as the recursive least squares 2. 

Given the contribution of Arifovic (1995, 1996), our purpose is to move one 
step further, i.e., within the framework A C E ,  we a t tempt  to use a more general 
version of G A s  to model learning and adaptat ion in the O L G .  The technique 
we use is genetic programming ( G P ) .  The significance of replacing G A s  with 
G P  in the economic context has been documented in Chen and Yeh (1996), but 
we would like to review it here in the specific context of the O L G  model. 

In many  interesting O L G s ,  "expectations" refer to the expectations (fore- 
casts) of endogenous state variables in the future. For example, in Sargent and 
Wallace (1982), the endogenous state variable is the inflation rate. Call these 
variables expectations variables. Then a model of bounded rationali ty should 
make expectations of these state variables explicit. However, to our best knowl- 
edge, in almost all applications of G A s  to the O L G ,  this par t  is completely 
missing. Instead, it is other endogenous variables on which adaptive models are 
built. For example, in Arifovic (1995, 1996), it is the demand for money and for- 
eign assets. There is nothing wrong with these applications; however, in terms 
of the distinction made by Marimon and Sunder (1994), what  we learned from 
these studies is, at best, learning how to optimize, not learning how to forecast. 
If we want to know how agents '  expectations evolve when the assumption of per- 
fect foresight or rat ional  expectations is relaxed, then the above works certainly 
fail to serve this purpose. 

The only exception known to us is Bullard and Duffy (1994). In tha t  paper,  
GAs were applied to modeling the expectations of the inflation rate. However, 
in their model what learning agents learn is a just a number of the inflation 
rate rather  than a regularity about the motion of the inflation rate, which is a 
function. We consider it too restrictive to learn just a number. Therefore, in this 
paper,  we would like to generalize Bullard and Duffy's evolution of "beliefs" from 
a sequence of populations of numbers to a sequence of populations of functions, 
and genetic programming serves as a convenient tool to make this extension. 

2 T h e  O v e r l a p p i n g  G e n e r a t i o n s  M o d e l  

2.1 T h e  M a i n  M o d e l  

Our model can be described as follows: 

- It consists of overlapping generations of two-period-lived agents. 

1 There is a web page on A C E  maintained by Leigh Tesfatsion. 
http://www.econ.iast ate.edu/tesfatsi/abe.htm. 

2 Laboratory studies on this issue can be found in Marimon and Sunder (1994). 

See 
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- At time t, N young agents axe born. Each of them lives for two periods 
(t, t + 1). At time t, each of them is endowed with e I units of a perishable 
consumption good, and with e 2 units at time t + 1 (e 1 > e 2 > 0). 

- An agent born at time t consumes in both periods, c~ is the consumption in 
the first period (t), and e~ the second period (t + 1). 

- All agents have identical preference given by 3 

U(c~, c~) = ln(c~ + 1) + ln(c~ + :) 0 )  

- In addition to the perishable consumption good, there is an asset called 
money circulated in the society. The nominal money supply at time t, de- 
noted by Ht, is exogenously determined by the government and is held dis- 
tributively by the old generation at time t. For convenience, we shall define 
he to be -~ ,  i.e., the nominal per capita money supply. 

This simple O L G  gives rise to the following agent's maximization problem 
at time t: 

max ln(c~,~ + 1) + ln(c2,r -{- 1) (2) 

s . t .  c :  mi,~ c 2 = e ~ rm'---A-*, (3) 
i , ~ + ~ = e l ,  ~,~ + P~+I 

where mi,~ represents the nominal money balances that  agent i acquires at time 
period t and spends in the time period t q- 1, and Pt denotes the nominal price 
level at t ime period t. Since P~+I is not available at period t, what agents actually 
can do is to maximize their expected utility E(U(c~, c~)) by regarding Pt+: as a 
random variable, where E(.)  is the expectation operator. Because of the special 
nature of the utility function and budget constraints, the first-order conditions 
for this expected utility maximization problem reduce to the certainty equivalence 
form (4): 

t 

C 1 
2 ( ~- i,$q-1 ~- i,t-bl i,* : el e2~re ~r e -- i) (4) 

P~+~ 
where ~re{,~+: is agent i 's expectation of the inflation rate 7r~+i(: I'~ J" This 
solution tells us the optimal decision of savings for agent i given her expectation 
of the inflation rate, ~r e i ,~-kl"  

Suppose the government deficit is all financed through seignorage, then we 
can derive the dynamics (time series) of nominal price {Pt} and inflation rate 
{~r~} from Equation (4). To see this, let us denote the savings of agent i at time 
t by si,~. Clearly, 

By Equation (3), we know that  

mi,, = si,~P,, Yi, t. (6) 

a The reason to add the constant here is to avoid evaluating In(0), which can happen 
in the first period when agents choose to save all e ~. 
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In equilibrium, the nominal aggregate money demand must equal nominal money 
supply, i.e., 

N 

~ r n i , t  = H t =  Ht - l  +dtPt, Vt. (7) 
i = 1  

The second equality says that  the money supply at period t is the sum of the 
money supply at period t - 1 and the nominal deficit at period t, dtPt. This 
equality holds because we assume the government deficits are all financed by 
seignorage. Furthermore, let us assume that  government spending is a fixed 
proportion p of aggregate savings and, for reasons clarified below, the government 
is assumed to have a constant revenue k, or simply 

N 

= p s , , ,  - k.  ( s )  
i = l  

Summarizing Equations (6)-(8), we get 

N N N 

+ (9) 
i = 1  i = 1  i = 1  

Hence, the price dynamics are governed by the following equation: 

C, =1 
rt -- pt_--, - (1 - p) )-~N (10) ~=, si,t + k 

Now suppose that each agent has perfect foresight, i.e., 

e r~, t = ~rt, Vi, t. (11) 

Then by substituting the first-order condition (4) into Equation (9), we can 
have 

(l-p)Npt((e*-Tr,+,e2)+ 1-Ir,+,): NPt_,((e*-rte2)+ l-~r,)-Ptk, (12) 

With Equation (12) rearranged, the paths of equilibrium inflation rates under 
perfect foresight dynamics are 

(1 - p ) N ( ( e  1 - ~ , + l e ~ )  + 1 - ~ t + l )  = ~ ( ( e l  _ ~ , e 2 )  + 1 -  ~ )  - k. (13) 

At steady state (~rt+, = ~rt), Equation (13) has two real stationary solutions 
(fixed points), a low-inflation stationary equilibrium, r~,  and a high-inflation 
one, ~r~/, given by 

. A- x/A 2 - 4(1- p)(1 + e l ) ( 1 +  e2)N 2 
~rL = 2(I -- p)(l + e2)N ' (14) 

. A + x/A 2 - 4(1 - p)N2(1 + el)(1 + e2)N 2 
lrH = 2(1 -- p)(1 + e2)N , (15) 

where A = (1 + e2)N + ( 1 -  p)(1 + e l ) N +  2k. 
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Table 1. Stationary, Inflation Rates and Utilities under Different Values of k 

k 0.1 1.0 10 20 50 
7r~ 1.2495 1.2450 1.2036 1.1630 1.0646 
lr~ 2.5010 2.5100 2.5964 2.68702.9354 
U~ 2.4205 2.4217 2.4333 2.4456 ].4795 
U~ 2.3026 2.3026 2.3029 2.3039 ,~.3090 

For all cases of ks, e 1 ---- 4, e 2 ---- 1, and p -- 0.2. U~ refers to the utility of agents in the 
low-inflation steady state, whereas U~ refers to the utility of agents in the high-inflation 
steady state. 

2.2 D i s c u s s i o n  

By Equation (10), the reason to add a parameter k in Equation (8) is quite 
clear. Without  a positive k, it is possible that r~ can go to infinity if aggregate 
savings are 0. However, adding the constant k is harmless. First, ]~ has a simple 
economic interpretation, i.e., the non-tax revenue. Second, if ~r~ can converge to 
either one of these two equilibria for all values of k, then we can well approximate 
the economy studied by Arifovic {1994) by choosing a sufficiently small k. For 
example, k is set to be 0.1 in this paper for most simulations. 

2.3 M u l t i p l e  E q u i l i b r i a  in t h e  M o d e l  

The result of multiple equilibria, the existence of two stationary solutions, 
in this class of models is well known. These two stationary solutions differ not 
only in the inflation rate but also in the welfare implication. Agents ~ welfare 
under the high inflation rate ~r~ is inferior to that under the low inflation rate 

* 71"* * ~-L, i.e., U~ <: U~. To see the difference, pairs of ( L, U~} and (~-H, U~) are 
listed in Table 1 with respect to different values of k. Due to this difference, 
the steady state corresponding to the high inflation rate is called the Pareto- 
inferior equilibrium, and the steady state corresponding to the low inflation rate 
is called the Pareto-superior equilibrium. Given these equilibria with different 
welfare implications, will learning agents be able to pick up the good one rather 
than be trapped in the bad one? In this paper, we shall conduct three series of 
experiments to answer this question. 

3 G P - b a s e d  A g e n t s  i n  t h e  O L G  

This section provides a brief description of the way we apply genetic program- 
ming to modeling the expectations of the inflation rate in the O L G  model. Let 
GP~, a population of trees, represent a collection of agents' expectations of the 
inflation rate at time period t. The agent i born at time t, i -- 1, ..., N, makes 
a decision about savings using the forecasting function, gp~,~ (gpi,~ C GP~), a 
parse tree written over the function set and terminal set given in Table 2. In this 
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Table  2. Tableau of GP-Based Adaptation 

Number of agents born in each period 250 
25 (Y), 25 (O) Number of trees created by the full method 

Number of trees created by the grow method 
Function set 

25 (Y), 25 (O) 
{+, - ,  X, %, Exp, Rlog, sin, cos~ 

Terminal set {Irt-1, Irt-2, . . . , rt-lO, R}  
Number of trees created by reproduction p, x 250 
Number of trees created by crossover pc x 250 
Number of trees created by mutation p,~ x 250 
Probability of mutation 0.0033 
Maximum depth of tree 17 
Probability of leaf selection under crossover 0.5 
Number of generations 1000 
Maximum number in the domain of Exp 1700 
Criterion of fitness Utilities 

"Y" stands for the initial young generation and "O" stands for the initial old generation. 
The number of trees created by full method or grow method is the number of trees 
initialized in Generation 0 in cases where the depth of tree is 2, 3, 4, 5, or 6. For details, 
see Koza (1992). 

paper,  all simulations conducted are based on the terminal  set which includes 
the ephemeral  r a n d o m  floating-point constant  R ranging  over the interval [-9.99, 
9.99] and the inflation rate  lagged up to 10 periods, i.e., ~rt-1,...,~r,-10. Thus,  the 
forecasting functions tha t  agents m a y  use are the linear and nonl inear  functions 

of ~'t_ 1,...,?r,_ 10. 

The decoding of a parse tree gPi,, gives the forecasting funct ion used by agent 
i at t ime period t, i.e., ~r~,,+l(/2t_l ) w h e r e / ) t - 1  is the informat ion of the past  
inflation rates up to ~r,-1. Evaluat ing ~r~,,+l(/2,_l) at  the real izat ion o f / 2 , - 1  
will give the inflation rate  predicted by agent i at t ime period t + 1, i.e., ~r~,t+ 1. 
The f i tness of a parse tree gpi,t is de termined by the value of the agent ' s  utilities 
gained at the end of her life based on Equat ion  (1), i.e., Ui,, = U(el, t, ci,,).2 

Each fitness value Ui,, is then normalized.  The normalized fitness value Ai,t 
is given in Equat ion  (16). 

0 6 )  - 

It  is clear tha t  the normalized fitness is a probability measure. Moreover, Ai,t is 
greater for a bet ter  parse tree gPi,t. Once Ai,t is determined,  GPt+2 is generated 
f rom GPt by three pr imary  genetic operators ,  i.e., reproduction, crossover, and 
mutation. The implementa t ion  of these three operators  is detailed in Chen and 
Yeh {1998). 
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4 Exper imenta l  Designs  

The parameters  of most  of the O L G s  simulated in this paper  are based on the 
setup: e 1 = 4, e 2 -- 1, p -- 0.2, k = 0.1. By this set of parameters ,  ~r~ -- 1.2495, 
and ~r~ = 2.5010. These values are also shown in the second column of Table 1. 

To see whether  or not GP-based  agents can coordinate to converge to  the 
Pare to-super ior  equilibrium, the O L G  is simulated by feeding it wi th  four sets 
of initial values of {7r-1, ..., r - 10} .  These four sets of initial values are chosen so 
tha t  {~r-1, ..., 7r-10} are r andomly  distr ibuted over the ranges (1.10, 1.20}, (1.25, 
1.35}, (3.30, 4.30} and (4.50, 5.50}. Clearly, the first two sets, Sets 1 and 2, are 

*" Set 1 is below r~ ,  and Set 2 above it. chosen to be the neighborhoods of rL,  
Sets 3 and 4 are chosen far higher than  r ~ .  This design enables us to check bo th  
the local and global stabil i ty of r~ .  We number  the experiments corresponding 
to these four different sets of initial values as Exper iments  1, 2, 3 and 4. 

A related test for the global stabil i ty is to conduct  a pe r tu rba t ion  test. We 
first run the O L G  model  under  the original chosen parameters .  If it converges 
to rL,* we shall per turb  ~r L* by changing the values of some parameters ,  and see 
whether  or not  the new Ir~ will be selected again. In this paper,  we consider 
the case in which k is changed f rom 0.1 to 10. This pe r tu rba t ion  test shall be 
numbered  as Exper iment  5. 

Exper iments  1-5 are designed to test the global stabil i ty of Ir~. However, a 
typical  quest ion frequently raised is whether  or not  these results are sensitive 
to the genetic operators  used. To answer this question, we consider four sets 
of (p,., Pc, Pro). For Exper iments  1-5, Pr = 0.12, Pc -- 0.68, and P m =  0.20. We 
then consider the significance of each genetic opera tor  in Exper iments  6-8. In 
Exper iment  6, only reproduct ion  is used, i.e., pr -- 1,pc -- 0, and pm = 0. 
Similarly, Pc -- 1 in Exper iment  7, and pm -- 1 in Exper iment  8. 

5 Simulat ions  Results  

For each design, five runs were implemented.  Since results are quite similar 
among  the five simulations for each design, we only report  one of the results for 
each design here and the full details can be found in Chen and Yeh (1998). The 
basic statist ics of each simulation are summarized  in Table 3 and the plot of the 
whole t ime series of ~rt is exhibited in Figures 1-8. 

From Table 3, we can make the following conclusions. 

- GP-based  agents are able to coordinate  with each other  to  converge to the 
low-inflat ionary s ta t ionary  equilibrium. The evidence shows tha t  in all the 
simulations,  except the one wi th  s t ruc tura l  change, ~r~ converges to a small  
ne ighborhood  of ~ (~ -- 1.2495). 

�9 As a corollary, the evidence also shows tha t  the convergence to ~r~ is 
insensitive to the initial condition.  The initial rates of inflation in Ex- 
periments  3 and 4 are quite far away from ~r~ and are closer to ~r~/. 
However, this does not make ~r~ converge to ~r~, and ~r~, being one of 
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T a b l e  3. Results of Experiments 1-8: 

Experiment ~ G~ U ~v 

1 1.2495 0.0018 2.4205 0.0006 

2 1.2495 0.0020 2.4204 0.0008 

3 1.2495 0.0021 2.4204 0.0008 

4 1.2495 0.0018 2.4205 0.0006 

5 1.2036 0.0047 2.4332 0.0012 

6 1.2495 0.0000 2.4205 0.0000 

7 1.2495 0.0000 2.4205 0.0000 

8 1.2495 0.0093 2.4201 !0.0033 

= the mean inflation rate of a simulation (from Generation 501 to 1000). 
~ = the standard deviation of 7rt of a simulation (from Generation 501 to 1000). 

= the mean welfare of a simulation (from Generation 501 to, 1000), where 

v~  = ~,~"~ 2 5 0  

5u = the s tandard deviation of Ut of a simulation (from Generation 501 to 1000). 

the  s t a t i o n a r y  equi l ib r ia  in the  per fec t - fores ight :  se tup,  can h a r d l y  be 
reached  in this  A C E  setup.  B o u n d s  o n  r a t i o n M i t y  d o  c h a n g e  e q u i -  
l i b r i a  i n  e c o n o m i c  s y s t e m s .  In our  case ,  t h e  equ i l ib r ium wi th  high 
inflat ion and low ut i l i t ies  is e l imina ted .  

Fu r the rmore ,  G P - b a s e d  agents  axe capab le  of  converging to  the  new low- 
in f la t ionary  s t a t i o n a r y  equ i l ib r ium af ter  the  p e r t u r b a t i o n :  {n E x p e r i m e n t  
5, ~ --- 1.2036, which is exac t ly  the  ~r~ under  k = 10. F r o m  F igure  5, we 
can also see t h a t  the  t r ans i t ion  speed f rom the  old equ i l ib r ium to the  
new one is very fast .  

- W h e t h e r  or  not  r~ will  converge to  a niche of r ~  does not  d e p e n d  on the 
choice of the  pa i r  (pr,Pc,Pm} (Pr +Pc-{-Pro = 1), as can be seen f rom Exper -  
iments  6-8. Using only  one of these genet ic  ope ra to r s  is sufficient to  achieve 
the  same resul t  (See Table  3). Nevertheless ,  there  is a difference between 
the  r e p r o d u c t i o n  and crossover ope ra to r s  and  the  m u t a t i o n  ope ra to r .  F rom 
Figures  6-7 or  the  co r respond ing  ~ in Table  3, we can see t h a t  if  only  the  
r e p r o d u c t i o n  or  crossover o p e r a t o r  is employed,  then  the  convergence to  ~r~ 
is strict in the  sense t h a t  Ir~ : ~r~ Vt a s  t is large  enough.  But ,  th is  s t r ic t  
convergence resul t  d i s appea r s  when only  the  m u t a t i o n  o p e r a t o r  is appl ied .  
This  can also be seen f rom Figure  8 and the  co r respond ing  5~ in Table  3. In 
fact ,  se t t ing  pm = 1 resul ts  in the  h ighest  value of 6,~ among  o the r  setups .  
Therefore ,  the  f luc tua t ions  of ~rt observed in mos t  of the  expe r imen t s  are 
due to  the  m u t a t i o n  ope ra to r .  
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6 Conc lud ing  Remarks  

In this paper, we provide a concrete example to demonstrate how genetic pro- 
gramming can be applied to modeling learning and expectations in the OLG.  
Our simulations indicate that the main feature observed in the laboratory with 
human subjects, namely, agents being able to coordinate their actions to achieve 
the Pareto-superior equilibrium, can be replicated by these GP-based agents. 
The agent-based approach suggested here is more general than those used in the 
earlier studies and may be considered as a basis for studying other O L G s  where 
learning and adaptation play a crucial role for the determination of equilibrium. 
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Figure I : Equil ibrium Inflation Rate  in Each  
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Generat ion 

1.6 

1.4 ~ . _  

~i 1.2 1 1 [  . . . .  
. , p ,  

i 0.8 - 
0.6 

0.4 - 

0.2 

0 

Generat ion 

, II L6  

Figure 7 : Equi l ibr ium Inflation Ra te  In Each  
Genera t ion  

I II 
1.4 ~ 
1.2 ~I, 

Z - 

0.8 - 
~ 0.6 - 

0.4 - 

0.2 + 

0 t 

Genera t ion  

- - - Theoret ical  Low Inflation Rate  - - A c t u a l  Inflation Ra te  l] I - - -  Theoretical  LoW Inflation Rate  - - A c t u a l  Inflat ion Rate  Ij 
I 

Figure 4 : Equil ibrium Inflation Rate In Each 
Generat ion 

I . s  r 

i+ . 4  
1.4 � 9  

~ 1.2 

Z ~ I T F  
~ 0.8 

~ 0.6 

0.4 

0.2 

0 

Figure 8 : Equi l ibr ium Inflation Ra te  In Each  
Genera t ion  

II 1.6 

1.4 

..fl ~ 1.2 m" . . . . . . . . . . . . .  -+" ::+i 

0.8 

~ 0 . 6  

0.4 

0.2 

0 ' ' , , , , , , , I 

Generation ! Generat ion 

,it i _ _ . T h e o r e f l c a l L o w l n f l a R a n R a t e  - - A c t u a l  In f la f lon  Rate il - - -Theore t ica l  Low Inflation Rate  - - A c t u a l  Inflation Ra te  ~lJ 


