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a b s t r a c t

Central dominance (CD) introduced in Gollier (1995, Journal of Economic Theory) is a risk concept that
differs from stochastic dominance (SD) in an important way. In particular, CD implies a deterministic
comparative static of a change in decision when risk changes, but SD does not have such an implication.
In this paper, we propose the first test of central dominance, which amounts to checking a functional
inequality. We derive the asymptotic distribution of a lower bound of the proposed test and suggest
a bootstrap procedure to compute the critical values. We also conduct simulations to evaluate the
performance of this test. Our empirical study finds clear evidence of CD relations between the S&P 500
index return distributions during 2001–2013 and results in unambiguous implications for investment
decisions.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

A major building block of modern risk theory is the notion of
stochastic dominance (SD) introduced in Hadar and Russell (1969),
Hanoch and Levy (1969), and Rothschild and Stiglitz (1970); see
Levy (1992) for a survey. It is well known that SD can determine
a preference ordering of different risks. In particular, Rothschild
and Stiglitz (1970) show that all risk-averse agents, i.e., those with
increasing and concave utility functions, prefer risk A to risk B
if, and only if, the distribution associated with A second-order
stochastically dominates that of B. Yet, SD does not imply a change
in demandwhen risk changes. For example, Rothschild and Stiglitz
(1971) find that risk-averse agents need not reduce their demand
for a risky assetwhen its risk increases in the sense of second-order
SD; also see Eeckhoudt and Gollier (2000) for a numerical example.
Thus, SD offers limited practical direction for adjusting investment
decisions after the distribution of risk changes.

Among many researchers that try to link risk and demand
directly,1 Gollier (1995) makes an important contribution by
introducing the new concept, ‘‘central dominance’’ (CD), and

∗ Corresponding author.
E-mail address: occhuang@whu.edu.cn (O-C. Chuang).

1 See, e.g., Sandmo (1971), Eeckhoudt and Hansen (1980), Meyer and Ormiston
(1985), Black and Bulkley (1989), Landsberger and Meilijson (1990), Dionne and
Gollier (1992), Eeckhoudt and Gollier (1995), Gollier (1995, 1997), and Tzeng
(2001).
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shows that risk-averse investors demand less of a risky asset
if, and only if, its risk increases (the associated distribution
being dominated) in the sense of CD. Hollifield and Kraus (2009)
further elaborate on this idea and analyze the condition under
which a demand-reducing change in risk makes all risk-averse
investors worse off. It must be emphasized that, while CD implies a
deterministic comparative static of a change in decision when the
risk (distribution) changes, SD does not have a similar implication.
It has also been shown that second-order SD is neither sufficient
nor necessary for CD (Gollier, 1995).

Despite the practical relevance of CD, testing CD has not
been considered in the literature, to the best of our knowledge.
According to Gollier (1995), CD is defined as the existence of some
parameter such that a functional inequality holds; yet, it is not easy
to construct a test for an inequality constraint. The study of CD has
been limited partly because there has been no test of CD available.2
This paper intends to fill this gap and proposes a test of CD.We first
transform the functional inequality in the definition of CD into an
equality and then construct a test on this equality condition based
on themaximumof an integral process.3 Wederive the asymptotic

2 The study of SD suffers from a similar difficulty. Note that testing SD, which
also requires checking an inequality constraint, has received more attention only
recently; see, e.g., Anderson (1996), Davidson and Duclos (1997, 2000), Barrett and
Donald (2003), Linton et al. (2005), Horváth et al. (2006), Bennett (2007), Linton
et al. (2010), and Donald and Hsu (2016).
3 Chen and Szroeter (2009) and Linton et al. (2010) also construct tests by

transforming moment inequalities into equalities.
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distribution of the proposed test and suggest a bootstrap procedure
to compute the critical values. Simulations are then conducted to
evaluate the performance of this test.

In the empirical study, we apply the proposed test to the
daily return distributions of the S&P 500 index from 2001 to
2013. Our empirical study finds clear evidence of CD relations
during that period of time and results in unambiguous implications
for investment decisions. We find, for example, that the return
distributions in 2003, 2004, 2006 and 2010 centrally dominate,
respectively, those in 2004, 2005, 2007 and 2011. These findings
suggest that the optimal investment amounts in 2004, 2005, 2007
and 2011 should be lower than what they were in the previous
year. We also find that the return distributions in 2006, 2010, 2012
and 2013 centrally dominate, respectively, those in 2005, 2009,
2011 and 2012, so that the optimal investment amounts in 2006,
2010, 2012 and 2013 should be higher than what they were in the
previous year.

This paper is organized as follows. In Section 2, we review the
conditions and properties of CD; examples are also provided to
illustrate the difference between SD and CD. In Section 3, we in-
troduce the proposed test and establish its asymptotic properties.
Monte Carlo simulation results are reported in Section 4. An empir-
ical study on S&P 500 index return distributions based on the pro-
posed test is presented in Section 5. Section 6 concludes the paper.
All proofs are collected in the Appendix.

2. Central dominance

2.1. Theory

Consider a representative agent who faces the optimal decision
problem with respect to a change in risk. We follow the setup in
Gollier (1995), and make the following assumptions.

Assumption 1. Assume that:
1. The individual has an increasing, concave, and twice differ-
entiable von Neumann–Morgenstern utility function u(z(α, x)),
where z(α, x) is a payoff function.
2. The payoff of the individual has the form z(α, x) = αx + z0,
which is determined by a decision variable α and a risk variable x,
where z0 is an exogenous parameter.
3. The range of α is normalized to [0, 1]. The random variable x is
defined on [a, b]with a < 0 < b and has a continuous distribution
function F with E[x] > 0.4

The first condition of Assumption 1 ensures that the individual
is risk averse. In the second condition, we choose a particular
form of the payoff function which entails the standard portfolio
problem, the problem of a competitive firm with a constant
marginal cost, and the insurance problem. For more details and
examples, see Gollier (1995). Note that the third condition is
required to avoid a boundary solution for α.

When the distribution function F is known to the individual,
he/she chooses the optimal α∗(u; F) to maximize his/her expected
utility. The following proposition due to Gollier (1995) gives a
deterministic change in the optimal decision after a certain change
in risk.

4 The assumption of bounded support for x, while ruling out unbounded
distributions, is made for simplicity. Although this is a limitation of our result,
we note that similar conditions are also frequently adopted in testing functional
inequalities, such as tests of SD, see, e.g. Barrett and Donald (2003) and Donald and
Hsu (2016).
Proposition 2.1. All individuals have their α∗(u; F) ≥ α∗(u;G)
after the change in the risk distribution from F to G if, and only if,
there exists γ ∈ R such that

γ T (x; F) ≥ T (x;G), for all x ∈ [a, b]. (1)

Here T (x; F) =
 x
a tdF(t), and T (x;G) =

 x
a tdG(t).

Proposition 2.1 provides a necessary and sufficient condition,
hereafter Condition (1), for all individuals to decrease their
decision variable after a change in risk from distribution F to G.
When Condition (1) holds, we say that F centrally dominates G,

denoted as F
CD
≻ G.5

Since

T (x; F) =

 x

a
tdF(t) = EF [t|t ≤ x]F(x),

T (x; F) could be viewed as the conditional expectation of t given
t ≤ x multiplied by the probability of t ≤ x. It follows that
Condition (1) can be rewritten as:

There exists a real number γ satisfying

γ EF [t|t ≤ x]F(x) ≥ EG[t|t ≤ x]G(x), for all x ∈ [a, b].

This is a continuum of the conditional moment inequality plus an
existence condition.

2.2. Example: Investment decision

CD and SD are two distinct concepts. CD implies a deterministic
change in the optimal decision variable, but SD does not have
similar implications. The following example illustrates that SD and
CD do not imply each other.

Consider a traditional portfolio problem: there are two assets in
the market, one is risk free with the rate of return rf and the other
is risky with the rate of return y, where y ∈ [y, ȳ]. An investor with
initial wealth W chooses to invest α in the risky asset. The final
wealth of this individual is then

α(1 + y) + (W − α)(1 + rf ) = α(y − rf ) + W (1 + rf )
= αx + z0,

where x = y − rf is the excess return and z0 = W (1 + rf ).
Let F andG represent twodistributions of the excess returnwith

F
CD
≻ G, which means that there exists a real number γ satisfying

γ

 x

a
tdF(t) ≥

 x

a
tdG(t), for all x ∈ [a, b],

where a = y−rf and b = ȳ−rf . In addition, let u(·) be an increasing
and concave utility function of the investor. The objective of the
investor under distribution F is to choose an α to maximize the
expected utility:

EF [u (αx + z0)] . (2)

Thus, the first-order condition of the problem (2) can be written as

EF

xu′ (αx + z0)


= 0.

By integration by parts, the first-order condition can be further
rewritten as

u′ (αb + z0) T (b; F) −

 b

a
αu′′ (αx + z0) T (x; F)dx = 0. (3)

5 In Gollier (1995), it is stated that ‘‘G is centrally riskier than F ’’ and is denoted as
F CR Gwhen Condition (1) holds. For more discussions, examples, and illustrations
about this proposition, see Gollier (1995).
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Then, by Proposition 2.1, we have α∗(u; F) ≥ α∗(u;G), which
suggests that the optimal amount invested in the risky asset should
be higher for distribution F than for distribution G. By contrast,
Eeckhoudt and Gollier (2000) provide a numerical example for
portfolio selection and show that an increase in risk in the sense
of first-order SD and second-order SD does not imply a decrease in
the demand for a risk-averse individual.

3. Test for central dominance

In this section, we propose a test for the null hypothesis F
CD
≻ G

against the alternative hypothesis F
CD
⊁ G. A bootstrap procedure is

also proposed to compute the critical values.

3.1. The proposed test

We first make the following assumption on γ in Condition (1).

Assumption 2. γ in Condition (1) is in C, a compact subset of R
specified by researchers.

This assumption is convenient for checking the existence
condition of γ and deriving the asymptotic results. It can be seen
that γ has a natural lower and upper bounds determined by F and
G. To see this, note that a < 0 < b implies T (x; F) < 0 when
x is close enough to a, and that E[x] > 0 implies T (b; F) > 0.
That is, T (x; F) must alternate in sign by Assumption 1. Another
way to verify that T (x; F) alternates in sign is through the first-
order condition of the problem. Take the investment decision in
Section 2.2 as an example. By Assumption 1, we have u′ > 0,
u′′ < 0 and α > 0. From the first-order condition (3), T (x; F) must
alternate in sign to support the existence of an interior solution.
Thus, {x : T (x; F) < 0} and {x : T (x; F) > 0} are both nonempty
sets, and we have the following bounds for γ under Condition (1):

inf
{x:T (x;F)<0}

T (x;G)

T (x; F)
≥ γ ≥ sup

{x:T (x;F)>0}

T (x;G)

T (x; F)
.

AsC can be chosen to be as large as possible, this assumption is not
really restrictive.

Given the distribution functions F and G, let µ(γ , x) =

γ T (x; F) − T (x;G). Then, for some γ0 ∈ C, γ0T (x; F) ≥ T (x;G)
for all x ∈ [a, b] is equivalent to µ(γ0, x) ≥ 0 for all x ∈ [a, b]. In
this case, Q (γ0) = 0, where

Q (γ ) =

 b

a
min{µ(γ , x), 0}dx. (4)

The results below are straightforward:

Proposition 3.1. The function Q (γ ) defined in Eq. (4) satisfies:
(a) Q (γ ) ≤ 0 for all γ ∈ R;
(b) Q (γ ) is continuous in γ ;
(c) Q (γ0) = 0 if, and only if, γ0T (x; F) ≥ T (x;G), for all x ∈ [a, b];

(d) F
CD
≻ G if, and only if,maxγ∈C Q (γ ) = 0.

By Proposition 3.1(d), the existence condition in Proposition 2.1
can be transformed into the equality condition:maxγ∈C Q (γ ) = 0.

Thus, F
CD
≻ G if, and only if,

Γ = {γ ∈ C : Q (γ ) = 0}

is a non-empty set.More canbe said aboutΓ , as shown in the result
below.

Lemma 3.2. When F
CD
≻ G, Γ is either a singleton or a closed interval.
Consider now the following assumption regarding data sam-
ples.

Assumption 3. {x1i}
N1
i=1 and {x2j}

N2
j=1 are random samples taken

from, respectively, the distributions F and G such that
limN1,N2→∞ N2/(N1 + N2) = λ, λ ∈ (0, 1).

The assumption of a random sample is quite strong and
excludes dependent and heterogeneous data, such as time series
data. It is possible to relax this assumption and allow for data with
weak dependence (e.g., α-mixing); see, e.g., Linton et al. (2005). To
reduce technicality, we do not pursue this generalization in this
paper.

Let the empirical distribution functions of F(x) and G(x) be,
respectively,

F̂N1(x) =
1
N1

N1
i=1

I{x1i ≤ x}, and ĜN2(x) =
1
N2

N2
j=1

I{x2j ≤ x},

where I{A} denotes the indicator function of the event A. Also
define the empirical processes of T (x; F) and T (x;G) as:

T (x; F̂N1) =
1
N1

N1
i=1

x1iI{x1i ≤ x},

T (x; ĜN2) =
1
N2

N2
j=1

x2jI{x2j ≤ x}.

Then, µ̂N1,N2(γ , x) := γ T (x; F̂N1) − T (x; ĜN2). The proposed test
statistic is based on the sample counterpart of maxγ∈C Q (γ ):

ŜN1,N2 =


N1N2

N1 + N2
max
γ∈C

Q̂N1,N2(γ )

=


N1N2

N1 + N2
max
γ∈C

 b

a
min{µ̂N1,N2(γ , x), 0}dx. (5)

By the functional central limit theorem, as N1,N2 → ∞,
√
N1[F̂N1 − F ]  B1(F(x)) := BF and

√
N2[ĜN2 − G]  B2(G(x)) :=

BG, where  denotes weak convergence, and B1 and B2 are two
independent Brownian bridges. Note that BF and BG are mean zero
Gaussian processes defined on [a, b]with the covariance functions:
E[BF (x1)BF (x2)] = F(x1 ∧ x2) − F(x1)F(x2), and E[BG(x1)BG(x2)] =

G(x1 ∧ x2) − G(x1)G(x2).6 Moreover, the following limiting results
hold:

Lemma 3.3. As N1,N2 → ∞,
N1[T (x; F̂N1) − T (x; F)]  T (x; BF ),
N2[T (x; ĜN2) − T (x;G)]  T (x; BG),

where T (x; BF ) and T (x; BG) are two Gaussian processes with mean
zero and respective covariance functions:

E[T (x1; BF )T (x2; BF )]

=

 x1∧x2

a
t2dF(t) −

 x1

a
tdF(t)

 x2

a
tdF(t),

E[T (x1; BG)T (x2; BG)]

=

 x1∧x2

a
t2dG(t) −

 x1

a
tdG(t)

 x2

a
tdG(t).

6 For a more detailed discussion about the asymptotic properties of empirical
processes, see Kosorok (2008).
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When Γ = {γ ∗
} is a singleton (Lemma 3.2), from Lemma 3.3

we have
N1N2

N1 + N2
[µ̂N1,N2(γ

∗, x) − µ(γ ∗, x)]

=
√

λγ ∗

N1[T (x; F̂N1) − T (x; F)]

−
√
1 − λ


N2[T (x; ĜN2) − T (x;G)] + oP(1)

 
√

λγ ∗T (x; BF ) −
√
1 − λT (x; BG), (6)

where oP(1) holds uniformly on [a, b]. The limit of ŜN1,N2 follows
from (6) and the continuous mapping theorem. It is worth
mentioning that, in the limit, the integral over [a, b] in (5) is
essentially determined by the integral over the set:

B0
γ ∗ = {x ∈ [a, b] : µ(γ ∗, x) = 0},

which is also known as the ‘‘contact set’’ of γ ∗T (x; F) and T (x;G).7

The result below shows that, when Γ is a singleton, we can find
the asymptotic distribution of a lower bound for ŜN1,N2 ; otherwise,
ŜN1,N2 is degenerate at zero in the limit.

Theorem 3.4. When F
CD
≻ G, we have one of the following results:

(a) If Γ is a singleton {γ ∗
}, then 0 ≥ ŜN1,N2 ≥


N1N2
N1+N2

Q̂N1,N2(γ
∗)

and
N1N2

N1 + N2
Q̂N1,N2(γ

∗)

d
−→


B0

γ ∗

min
√

λγ ∗T (x; BF ) −
√
1 − λT (x; BG), 0


dx.

(b) If Γ is a closed interval: [γ , γ̄ ], then ŜN1,N2

a.s.
−→ 0.

Since
√

(N1N2)/(N1 + N2)Q̂N1,N2(γ
∗) is a lower bound of ŜN1,N2 ,

we have, as N1,N2 → ∞,

P(ŜN1,N2 ≤ cδ) ≤ P


N1N2

N1 + N2
Q̂N1,N2(γ

∗) ≤ cδ


= δ,

where cδ is the δ-percentile of the asymptotic distribution in
Theorem 3.4(a). Thus, by letting ŜN1,N2 reject the null hypothesis
when it is less than the critical value, we obtain a conservative test
for the null hypothesis. To see Theorem 3.4(b), we first note that, if
the contact set B0

γ ∗ turns out to be of measure zero, ŜN1,N2 would
converge to zerowith a probability of one by Theorem3.4(a).When
Γ is a closed interval, it can be shown that there are at most
countably many γ in Γ such that their respective contact sets
have a positivemeasure. In otherwords, there are still uncountably
many γ with contact sets of measure zero. As a result, the sample
counterpart of maxγ∈C Q (γ ) converges to zero.

On the other hand, when F does not centrally dominate G, Γ
is an empty set. The result below shows that the proposed test
diverges to minus infinity and hence can reject the null hypothesis
with a probability approaching one.

Theorem 3.5. When F
CD
⊁ G, ŜN1,N2 diverges to −∞ in probability.

7 Similar results can be found in the literature, e.g., Hansen (2005), Chernozhukov
et al. (2007), Chen and Szroeter (2009), and Andrews and Soares (2010) for finite
dimensional moment inequality tests, and Linton et al. (2010) and Donald and Hsu
(2016) for functional inequality tests.
3.2. Bootstrapping the critical values

In this section, we show how the δ-percentile of the asymptotic
distribution in Theorem 3.4(a) can be obtained by bootstrapping.
The bootstrap procedure is:

1. When maxγ∈C Q̂N1,N2(γ ) ≠ 0, let

γ̂ ∗
= argmax

γ∈C
Q̂N1,N2(γ );

otherwise, accept the null hypothesis (a trivial case).
2. Take a sequence {cN1,N2}with cN1,N2 → 0 and

√
N1N2/(N1 + N2)

cN1,N2 → ∞ as N1,N2 → ∞,8 and define

B̂0
γ̂ ∗ = {x ∈ [a, b] : |µ̂N1,N2(γ̂

∗, x)| < cN1,N2}.

3. For b = 1, . . . , B, draw {x∗

1i,b}
N1
i=1 with replacement from

{x1i}
N1
i=1 and draw {x∗

2j,b}
N2
j=1 with replacement from {x2j}

N2
j=1. Then

compute Ŝ∗

N1,N2,b
based on the bootstrapped samples {x∗

1i,b}
N1
i=1

and {x∗

2j,b}
N2
j=1, where

Ŝ∗

N1,N2,b =


N1N2

N1 + N2


B̂0

γ̂ ∗

min

µ̂∗

N1,N2,b(γ̂
∗, x)

− µ̂N1,N2(γ̂
∗, x), 0


dx.

4. The bootstrapped critical values for a test of size δ are computed
as

c∗

δ,N1,N2,B ≡ sup

t :

1
B

B
b=1

I{Ŝ∗

N1,N2,b > t} ≥ 1 − δ


.

The null hypothesis is then rejected if ŜN1,N2 < c∗

δ,N1,N2,B
. Note

that in bootstrapping the critical values, the integral in Ŝ∗

N1,N2,b

is taken over the estimated contact set B̂0
γ̂ ∗ , which usually helps

improve the test power.
Let c∗

δ,N1,N2,∞
denote the limit of the bootstrapped critical value,

c∗

δ,N1,N2,B
, when B tends to infinity. This would be the proper critical

value asymptotically if Γ is a singleton. Yet, if Γ is a closed
interval, both ŜN1,N2 and c∗

δ,N1,N2,∞
would converge to 0. To prevent

the critical value from converging to 0, we introduce a negative
number c0, its magnitude however small, and set cĎδ,N1,N2

=

c∗

δ,N1,N2,∞
+ c0.9 We show below that the proposed test based on

cĎδ,N1,N2
has proper size asymptotically, and the test can reject the

null hypothesis with a probability approaching one when there is
no CD.

Theorem 3.6. Let δ be in (0, 1/2] and c0 be a negative number of
small magnitude.

(a) If F
CD
≻ G, then limN1,N2→∞ P(ŜN1,N2 < cĎδ,N1,N2

) ≤ δ.

(b) If F
CD
⊁ G, then limN1,N2→∞ P(ŜN1,N2 < cĎδ,N1,N2

) → 1.

3.3. Extensions

The bootstrapping procedure may be extended to allow for
correlated samples and time series data with serial dependence.

8 For example, cN1,N2 may be κ0k−1/2 log k with κ0 an arbitrary positive constant
and k = N1N2/(N1 + N2). The choice of κ0 does not affect asymptotic properties.
In our paper, we choose κ0 according to the sample variance and length of the
corresponding estimated contact set.
9 In our subsequent analysis, we set c0 = −0.001.
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Assumption 4. {(x1i, x2i)}Ni=1 is a sample with i.i.d. observations
from the joint distribution F(x1, x2) defined on [a, b] × [a, b], with
the marginal distributions F and G, respectively.

This assumption allows the samples of x1 and x2 from a joint
distribution and hencemay be correlated. In this case, step 3 in the
bootstrap procedure in Section 3.2 is modified as follows.

3′. For b = 1, . . . , B, draw {(x∗

1i,b, x
∗

2i,b)}
N
i=1 with replacement

from {(x1i, x2i)}Ni=1 and compute F̂N,b and ĜN,b based on the
bootstrapped samples. Ŝ∗

N,b is then computed as:

Ŝ∗

N,b =
√
N


B̂0
γ̂ ∗

min

µ̂∗

N,b(γ̂
∗, x) − µ̂N(γ̂ ∗, x), 0


dx.

Assumption 5. {(x1i, x2i)}Ni=1 is a sample with strictly stationary
time series observations from the joint distribution F(x1, x2)
defined on [a, b] × [a, b], with marginal distributions F and G,
respectively. In addition, Assumption 1 of Linton et al. (2005)
holds.10

Given this assumption, the bootstrap procedure can be modi-
fied by invoking the overlapping blockwise bootstrap method.

3
′′

. Let L be the length of blocks which is positively proportional
to Nk, 0 < k < 1. There are N − L + 1 different over-
lapping blocks in the sample: the jth block is {(x1j, x2j), . . . ,
(x1j−L+1, x2j−L+1))}. We draw with replacement from the N −

L+ 1 blocks and by laying them end-to-end until the resulting
sample size is larger than or equal to N , then drop the unnec-
essary observations until the sample size is equal to N .

For b = 1, . . . , B, we draw {(x∗

1i,b, x
∗

2i,b)}
N
i=1 as in step 3′ and

compute F̂N,b and ĜN,b from the bootstrapped samples. Ŝ∗

N,b is
then computed as:

Ŝ∗

N,b =
√
N


B̂0
γ̂ ∗

min

µ̂∗

N,b(γ̂
∗, x) − µ̂N(γ̂ ∗, x), 0


dx.

It is straightforward to show that Theorem 3.6 remains valid when
the critical values are bootstrapped in these two ways.

4. Simulations

In this section, we evaluate the performance of the proposed
test using simulations.We consider three density functions: f (x) =

1, x ∈ [−0.3, 0.7],

g1(x) =


0.6 if x ∈ [−0.3, 0.3),
1.6 if x ∈ [0.3, 0.7],

g2(x) =


0.9 if x ∈ [−0.3, 0.3),
2 if x ∈ [0.3, 0.4),
0.6 if x ∈ [0.4, 0.5),
1 if x ∈ [0.5, 0.7],

with respective distribution functions: F , G1, and G2. The sample
sizes are: N1 = N2 = 50, 250, 1000, and the number of
replications is 1000.

Our simulation design consists of the following 5 setups, with
CD in the first 3 setups and no CD in the remaining two.

1. G1
CD
≻ F , and Q (γ ) = 0 for γ ∈ [0.68, 1.66].

2. G2
CD
≻ F , and Q (γ ) = 0 for γ ∈ [0.93, 1.11].

10 The assumption of Linton et al. (2005) is a regularity condition of weak
dependence on time series data.
Table 1
Mean and standard deviation of ŜN1,N2 .

N1 = N2 Setup 1 Setup 2 Setup 3 Setup 4 Setup 5

50 −0.0164 −0.0386 −0.0664 −0.1731 −0.1018
(0.0343) (0.0611) (0.0788) (0.1207) (0.0982)

250 −0.0078 −0.0265 −0.0676 −0.3332 −0.1532
(0.0158) (0.0444) (0.0816) (0.1502) (0.1190)

1000 −0.0030 −0.0130 −0.0692 −0.6169 −0.2600
(0.0071) (0.0279) (0.0818) (0.1476) (0.1291)

Note: Each entry is the average of ŜN1,N2 over 1000 replications, with the standard
deviation in the parentheses.

Table 2
Empirical size and power of the proposed test.

Size Power
N1 = N2 κ0 Setup 1 Setup 3 Setup 4

50 0.05 2.0 (0.634) 16.8 (0.728) 51.1 (0.585)
0.075 0.3 (0.799) 12.2 (0.865) 37.0 (0.758)
0.1 0.0 (0.884) 9.3 (0.936) 28.9 (0.875)

250 0.05 0.0 (0.554) 7.6 (0.847) 81.6 (0.416)
0.075 0.1 (0.758) 5.1 (0.954) 71.6 (0.585)
0.1 0.0 (0.861) 2.2 (0.982) 61.1 (0.750)

1000 0.05 0.0 (0.397) 5.7 (0.919) 100 (0.325)
0.075 0.0 (0.568) 2.4 (0.983) 99.9 (0.433)
0.1 0.0 (0.699) 1.9 (0.996) 99.9 (0.537)

Note: Each entry is the rejection proportion (as a percentage), with the average
length of the estimated contact set in the parentheses.

3. F
CD
≻ F , and Q (γ ) = 0 for γ = 1.

4. F
CD
⊁ G1, and Q (γ ) < 0 for all γ .

5. F
CD
⊁ G2, and Q (γ ) < 0 for all γ .

The means and standard deviations of ŜN1,N2 under these
setups are summarized in Table 1. It can be seen that, under
the first two setups, both the mean and standard deviation of
ŜN1,N2 decrease with the sample size. These results are consistent
with Theorem 3.4(b) that ŜN1,N2 converges to zero. Under setup
3, the mean and standard deviation of ŜN1,N2 remain stable across
different samples; this is consistent with Theorem 3.4(a). Under
setups 4 and 5, there is no CD, and hence the samplemean of ŜN1,N2
diverges, as suggested by Theorem 3.5.

To further evaluate the finite-sample performance of the
proposed test, we simulate the empirical sizes under setups 1
and 3 and the empirical power under setup 4. The number of
replications is still 1000. To compute the critical values, we employ
i.i.d. bootstrap with the number of bootstraps B = 1000 and
estimate the contact set by setting cN1,N2 = κ0k−1/2 log k, with
κ0 = 0.05, 0.075, 0.1 and k = N1N2/(N1 +N2). The actual lengths
of the contact set in setup 1, setup 3, and setup 4 are 0, 1, and 0,
respectively. The resulting rejection proportions are reported in
Table 2.

Since the length of the estimated contact set increases in κ0,
the corresponding critical value decreases in κ0, and so does
the rejection proportion. When Γ is an interval (setup 1), the
proposed test is undersized for all values of κ0 in all samples. This
is consistent with Theorem 3.4(b) since our test statistic converges
to zero. When Γ is a singleton (setup 3), we find that, for each
κ0, the test tends to be undersized in larger samples, yet it may
be oversized when the samples are really small (N1 = N2 =

50). This shows that the proposed test is indeed conservative. The
finite-sample power under setup 4 also improveswhen the sample
increases. This ought to be the case because, by Theorem 3.5, this
test diverges when there is no CD.
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5. Empirical study

In our empirical study, we consider testing the S&P 500
index return distributions during 2001–2013, based on the model
discussed in Section 2. The daily returns are taken from the CRSP
database with 3269 observations; see Table 3 for the summary
statistics of these returns for each year. As these distributions
can only be known ex post, the testing results cannot be used to
form decisions for future investment. Yet, one may evaluate the
performance of investment experts or fund managers by checking
if their decisions are in line with the implications of CD.

For example, suppose that there is a mutual fund whose
objective is characterized as Eq. (2). Now, the test of CD could
be used to evaluate whether the fund manager makes a correct
decision. Specifically, if the return distribution of year t + 1
dominates that of year t in terms of CD, then all non-satiable and
risk-averse investors should increase their investment in stocks.
If the fund manager invests less in stocks, then the fund manager
should not be rewarded as long as the mutual fund is established
for non-satiable and risk-averse investors. On the other hand, if
the return distributions of year t + 1 and year t do not result
in a CD, then we cannot conclude whether the fund manager
makes a mistake no matter he/she increases or decreases the
investment in stocks. Some non-satiable and risk-averse investors
prefer to increasing the investment in stocks, whereas others
prefer to decreasing. Thus, whether the fund manager should be
punished or rewarded need to be further checked on whether the
fund manager follows the investment guidelines which satisfy the
specific preferences of the mutual fund.

Recall that the excess return distribution of year i (Fi) centrally

dominates that of year j (Fj), i.e., Fi
CD
≻ Fj, if and only if there exists

γ ∈ R such that

γ

 x

a
tdFi(t) ≥

 x

a
tdFj(t), for all x ∈ [a, b].

In our study, we consider 3 different risk free rates: rf = 3%,
2%, and 1%; there is no further assumption as to the value of W .
We estimate the excess return distribution in each year using

daily return data and test both the null hypotheses Fi
CD
≻ Fi+1 and

Fi+1
CD
≻ Fi for all i. Testing these paired hypotheses may lead to

four possible outcomes: (accept, accept), (accept, reject), (reject,
accept), and (reject, reject). The first outcome suggests that the
two distributions are close to each other. The second and third
outcomes occur when there is only one CD relation between Fi
and Fj, so that there is no ambiguity regarding the CD relation.
The fourth outcome indicates that there is no CD relation between
these distributions.11

It is worth mentioning that when a return distribution has a
negative expected value (which must be less than the risk-free
rate), it would be optimal for any risk-averse investor to put all
of his/her money in the risk-free asset. In this case, the optimal
decision variable α∗ would be zero, and it would be unnecessary
to test for central dominance. For example, given that the sample
average of the risk premium in 2002 is negative, the optimal
demand for the risky asset in 2002 would be 0, the lower bound

of α∗. We then have F2003
CD
≻ F2002 because α∗

2002 ≤ α∗

2003 for all
risk-averse investors. On the other hand, F2002 cannot centrally
dominate F2003. For if it does, α∗

2003 cannot exceed α∗

2002 and hence
must also be zero for all risk-averse investors. However, this cannot

11 Note that the daily index returns typically do not satisfy the assumption of a
random sample imposed in Section 3. Hence, our results should be interpreted as
suggestions, rather than definite conclusions, of possible CD relations.
Table 3
Descriptive statistics of S&P 500 index daily returns.

Year Mean s.d. Min Max Obs.

2001 −0.041% 1.361% −4.882% 5.025% 248
2002 −0.086% 1.643% −4.173% 5.754% 252
2003 0.106% 1.073% −3.507% 3.557% 252
2004 0.044% 0.696% −1.629% 1.625% 252
2005 0.022% 0.647% −1.667% 1.940% 252
2006 0.060% 0.632% −1.824% 2.134% 251
2007 0.027% 1.005% −3.448% 2.955% 251
2008 −0.148% 2.564% −8.996% 11.513% 253
2009 0.107% 1.699% −5.225% 7.033% 252
2010 0.062% 1.133% −3.857% 4.362% 252
2011 0.018% 1.465% −6.653% 4.742% 252
2012 0.063% 0.801% −2.471% 2.517% 250
2013 0.114% 0.695% −2.489% 2.558% 252

be true because there should be some positive optimal investment
in 2003 when the sample average of the risk premium in 2003 is
positive. From Table 3 we can see that the sample means in 2001,
2002 and 2008 are negative. We therefore do not consider these
years in our CD testing.

Table 4 summarizes the p-values of the testing results under
different risk free rates; the numbers in the parentheses in
this table are the values of γ̂ ∗, the estimated point at which
Q̂ (γ ) attains its maximum.12 To compute our test, we adopt a
block bootstrap with block length 20.13 We can see that, for

example, the p-values for F03
CD
≻ F04 and F04

CD
≻ F03 are 0.364 and

0.004, respectively. These indicate that we do not reject the
former hypothesis but reject the latter at 1% significance level.
We therefore conclude that the distribution in 2003 centrally
dominates that in 2004 but not the other way around. Table 4

shows the following CD relations: F03
CD
≻ F04, F04

CD
≻ F05, F06

CD
≻ F05,

F06
CD
≻ F07, F10

CD
≻ F09, F10

CD
≻ F11, F12

CD
≻ F11, and F13

CD
≻ F12, while their

corresponding opposite null hypotheses are all strongly rejected at
1% level. Note that the testing results are consistent across different
risk-free rates. These results suggest that the optimal investment
in the S&P 500 index in 2004, 2005, 2007 and 2011 could have been
lower than what it was in the previous year, and that the optimal
investment in 2006, 2010, 2012 and 2013 could have been higher
than what it was in the previous year.

To further illustrate the testing results that support the CD
hypothesis in Table 4, we plot their paired T (x; Fi) with rf =

2% in Figs. 1 and 2. For example, Fig. 1(a) contains the plots for
‘‘0.38 T (x, F03) vs. T (x, F04)’’, and Fig. 1(b) contains the plots for
‘‘0.44 T (x, F04) vs. T (x, F05)’’, and so on. Themultiplier, γ̂ ∗, for each
test, is taken directly from Table 4 (the number in parentheses).
It is interesting to note that, in some cases, the CD relation
may be determined by visual inspection, because one T function
is completely above the other T function. This happens when

F06
CD
≻ F07, F10

CD
≻ F11, F12

CD
≻ F11, and F13

CD
≻ F12. For the remaining

cases, the CD relation is not so obvious from these figures andmust
be determined by the proposed test.

6. Concluding remarks

CD is an important concept in risk theory but has not been ex-
amined empirically due to a lack of proper econometric tools. In
this paper, we propose the first test of CD and provide the first em-
pirical evidence of CD relations in financial data. It is expected that,

12 Note that when the maximal value of Q (γ ) is zero, the set Γ could be a closed
interval. In such cases, we list the lower bound of the set.
13 We also tried block length 10 and an i.i.d. bootstrap, the inference remained
unchanged.
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Table 4

Test results of the null hypotheses Fi
CD
≻ Fi−1 and Fi

CD
≻ Fi+1 .

rf = 3% rf = 2% rf = 1%

Year Fi
CD
≻ Fi−1 Fi

CD
≻ Fi+1 Fi

CD
≻ Fi−1 Fi

CD
≻ Fi+1 Fi

CD
≻ Fi−1 Fi

CD
≻ Fi+1

2003 0.364 0.342 0.339
(0.37) (0.38) (0.4)

2004 0.004∗ 0.886 0.004∗ 0.805 ≤0.001∗ 0.748
(1.56) (0.39) (1.56) (0.44) (1.58) (0.47)

2005 ≤0.001∗
≤0.001∗

≤0.001∗
≤0.001∗

≤0.001∗
≤0.001∗

(1) (0.69) (1) (0.73) (1) (0.75)
2006 0.702 0.556 0.698 0.594 0.632 0.542

(0.39) (0.37) (0.44) (0.41) (0.47) (0.43)
2007 ≤0.001∗ 0.028∗ 0.016∗ 0.002∗

≤0.001∗ 0.004∗

(0.01) (1.62) (0.01) (1.63) (0.01) (1.63)
2009 0.002∗

≤0.001∗
≤0.001∗

≤0.001∗
≤0.001∗

≤0.001∗

(0.1) (0.18) (0.1) (0.19) (0.1) (0.21)
2010 0.471 0.516 0.48 0.491 0.464 0.452

(1.52) (0.19) (1.52) (0.22) (1.52) (0.26)
2011 ≤0.001∗

≤0.001∗
≤0.001∗

≤0.001∗
≤0.001∗

≤0.001∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
2012 0.485 ≤0.001∗ 0.485 ≤0.001∗ 0.487 ≤0.001∗

(0.18) (0.79) (0.22) (0.8) (0.26) (0.8)
2013 0.477 0.465 0.464

(0.58) (0.59) (0.6)

Note: The numbers in the table are p-values of the tests; an asterisk signifies statistical significance. The numbers in the parentheses are γ̂ ∗ , the estimated points at which
Q̂ (γ ) attains its maximum. As the sample for 2008 is not included in the study, the distribution for 2007 is tested against 2006 and 2009, whereas the distribution for 2009
is tested against 2007 and 2010.
based on this work, more econometric research on the tests of CD
and more empirical studies on the CD relations will be developed.

There are some future research directions. First, wemay extend
the asymptotic results to allow for time series dependence in the
data. Second, we may extend our test to allow for nonlinear payoff
functions. Third, the power of the proposed test may be improved.
Whatwe have now is a conservative test whenΓ is a singleton, be-
cause we obtain only the asymptotic distribution of a lower bound
of ŜN1,N2 . The test power can be improved by finding the asymptotic
distribution of ŜN1,N2 . To this end, we need to analyze the estima-
tion effect of the estimator γ̂ ∗ in ŜN1,N2 . This is challenging because
the true parameter is defined by a functional inequality; see An-
drews and Shi (2013, 2014) for related research. These topics are
being investigated.
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Appendix

Proof of Lemma 3.2. When F
CD
≻ G, Γ is a non-empty set. Based on

the definition of CD, Γ is closed. The assertion holds provided that
Γ is convex set. That is, given any γ1, γ2 ∈ Γ , we must show that
γ ∗

= αγ1 + (1−α)γ2 is also in Γ for any α ∈ (0, 1). Clearly, when
γ1 and γ2 are in Γ , Q (γ1) = 0 and Q (γ2) = 0, so that γ1T (x; F) ≥

T (x;G) and γ2T (x; F) ≥ T (x;G) for all x ∈ [a, b]. It follows that
γ ∗T (x; F) ≥ T (x;G) for all x ∈ [a, b], proving that γ ∗ is in Γ . �
Proof of Lemma 3.3. Since f (t) = t is a continuous function
defined on the closed interval [a, b], it ismeasurable and uniformly
bounded. In addition, the collection of the indicator functions
{I(t ≤ x), x ∈ [a, b]} is a Donsker class and bounded by 1 for
all probability measures. By Corollary 9.32 of Kosorok (2008), the
collection of functions tI(t ≤ x), x ∈ [a, b]} is also a Donsker class.
The result follows directly from the Donsker Theorem. �

Lemma A.1. For some fixed γ0 ∈ Γ , we have
N1N2

N1 + N2
Q̂N1,N2(γ0)

d
→


B0

γ0

min{
√

λγ0T (x; BF ) −
√
1 − λT (x; BG), 0}dx.

Proof of Lemma A.1. Since γ0 ∈ Γ , γ0T (x; F) ≥ T (x;G) for all
x ∈ [a, b]. By the definition of B0

γ0
, for all x ∈ [a, b] \ B0

γ0
, we have

γ0T (x; F) > T (x;G), and hence µ(γ0, x) > 0 and

P


lim
N1,N2→∞

µ̂N1,N2(γ0, x) > 0


= 1.

Then by Lemma 3.3 and the continuous mapping theorem,
N1N2

N1 + N2
Q̂N1,N2(γ0)

=


N1N2

N1 + N2

 b

a
min{µ̂N1,N2(γ0, x), 0}dx

=


N1N2

N1 + N2


[a,b]\B0

γ0

min{µ̂N1,N2(γ0, x), 0}dx

+


B0

γ0

min{µ̂N1,N2(γ0, x), 0}dx



=


N1N2

N1 + N2


[a,b]\B0

γ0

min{µ̂N1,N2(γ0, x), 0}dx
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(a) 0.38 T (x; F03) and T (x; F04). (b) 0.43 T (x; F04) and T (x; F05).

(c) 0.44 T (x; F06) and T (x; F05). (d) 0.41 T (x; F06) and T (x; F07).

Fig. 1. Paired T (x; Fi) with rf = 2%; the solid lines are the dominating functions and the dashed lines are the dominated functions.
d
→


B0

γ0

min{
√

λγ0T (x; BF ) −
√
1 − λT (x; BG), 0}dx,

where the last equality follows from the fact that µ(γ0, x) = 0 for
all x ∈ B0

γ0
. �

Lemma A.2. If Γ = {[γ , γ̄ ]}, then

max
γ∈C

Q̂N1,N2(γ ) → 0 in probability,

and
N1N2

N1 + N2
max
γ∈C

Q̂N1,N2(γ ) → 0 in probability.

Proof of Lemma A.2. Let the Lebesgue measure of set B be |B|,
and let Γ0 ≡ {γ ∈ Γ : |B0

γ | = 0} and Γ1 ≡ {γ ∈ Γ : |B0
γ | > 0},

then Γ0 ∩ Γ1 = φ and Γ0 ∪ Γ1 = Γ . We want to prove that Γ1 is
countable and hence Γ0 is non-empty.

(1) Note that for all γi ∈ Γ1, we can construct disjoint open
intervals (aγi , bγi) ⊂ B0

γi
. This is because |B0

γi
| > 0 and |B0

γi
∩ B0

γj
| =

0 for all distinct γi, γj ∈ Γ1.
(2) Since disjoint open intervals in [a, b] are countable, the points
in Γ1 are countable. Hence, Γ0 is non-empty, |Γ0| = |Γ |, and
|Γ1| = 0.

(3) By Lemma A.1, for all γ0 ∈ Γ0, γ1 ∈ Γ1, we know that
N1N2
N1+N2

Q̂N1,N2(γ0) converges in probability to 0 and


N1N2
N1+N2

Q̂N1,N2

(γ1) converges in distribution to somenegative distribution. Hence

lim
N1,N2→∞

P(Q̂N1,N2(γ0) > Q̂N1,N2(γ1)) = 1.

(4) Based on our previous argument, we know that P(argmaxγ∈Γ

Q̂N1,N2(γ ) ∈ Γ0) is no less than P (choose a point randomly in Γ ,
and it lies in Γ0). In addition, if we randomly choose a point in Γ ,
then it lies in Γ0 with probability 1, since |Γ0| = |Γ |. Hence

P(argmax
γ∈Γ

Q̂N1,N2(γ ) ∈ Γ0) = 1,

and the Lemma follows. �

Proof of Theorem 3.4. If Γ is not an empty set, then Γ is a
singleton or a closed interval by Lemma3.2. The result follows from
Lemmas A.1 and A.2. �



376 O-C. Chuang et al. / Journal of Econometrics 196 (2017) 368–378
(a) 1.52 T (x; F10) and T (x; F09). (b) 0.22 T (x; F10) and T (x; F11).

(c) 0.22 T (x; F12) and T (x; F11). (d) 0.59 T (x; F13) and T (x; F12).

Fig. 2. Paired T (x; Fi) with rf = 2%; the solid lines are the dominating functions and the dashed lines are the dominated functions.
Proof of Theorem 3.5. By the law of large numbers and the
continuous mapping theorem, maxγ Q̂N1,N2(γ ) → maxγ Q (γ ),
hence

√
N1 maxγ Q̂N1,N2(γ ) → −∞ if maxγ Q (γ ) < 0. �

Let the bootstrapped empirical distribution function of F̂N1 and
ĜN2 be F̂N1,b and ĜN2,b respectively, b = 1, . . . , B. Let the boot-
strapped empirical processes with respect to T (x; F̂N1), T (x; ĜN2),
µ̂N1,N2(γ , x), and Q̂N1,N2(γ )be T (x; F̂N1,b), T (x; ĜN2,b), µ̂N1,N2,b(γ , x),
and Q̂N1,N2,b(γ ), b = 1, . . . , B. Remember that BF and BG are mean
zero Gaussian processes defined in Section 3.

Lemma A.3.


N1N2
N1+N2

[µ̂N1,N2,b(γ , x) − µ̂N1,N2(γ , x)] weakly con-
verges to a mean zero Gaussian process that has the same distribution
as the limiting process of


N1N2
N1+N2

[µ̂N1,N2(γ , x) − µ(γ , x)].

Proof of Lemma A.3. Based on the central limit theorem for a
bootstrap, for independent samples drawn (with replacement)
from distribution F , we have
N1[F̂N1,b − F̂N1 ]  B′

F
d
= BF .
Similarly,
N2[ĜN2,b − ĜN2 ]  B′

G
d
= BG.

Here B′

F (respectively B′

G) is a Brownian bridge with respect to
distribution F (respectively G) and hence equals BF (respectively
BG) in the distribution. The assertion follows from the definitions
of µ̂N1,N2(γ , x) and µ(γ , x). �

For some ϵ > 0 and givenγ0, letBϵ
γ0

= {x ∈ [a, b] : |µ(γ0, x)| <

ϵ}. The following lemma discusses the relationship between Bϵ
γ ∗

and B̂0
γ̂ ∗ when ϵ ↓ 0.

Lemma A.4. If Γ = {γ ∗
} is a single point, then for any ϵ > 0,

lim
N1,N2→∞

P(B
(1−ϵ)cN1,N2
γ ∗ ⊂ B̂0

γ̂ ∗ ⊂ B
(1+ϵ)cN1,N2
γ ∗ ) = 1.
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Proof of Lemma A.4. (1) By triangular inequality, we have:

|µ̂N1,N2(γ̂
∗, x) − µ(γ ∗, x)|

≤ |µ̂N1,N2(γ̂
∗, x) − µ(γ̂ ∗, x)|

+ |µ(γ̂ ∗, x) − µ(γ ∗, x)|,

for all x ∈ [a, b]. By Lemma A.1, we have
N1N2

N1 + N2
[µ̂N1,N2(γ̂

∗, x) − µ(γ̂ ∗, x)]

 
√

λγ̂ ∗T (x; BF ) −
√
1 − λT (x; BG),

and hence
N1N2

N1 + N2
|µ̂N1,N2(γ̂

∗, x) − µ(γ̂ ∗, x)|

is stochastically bounded. If Γ = {γ ∗
}, then

N1N2

N1 + N2
|µ(γ̂ ∗, x) − µ(γ ∗, x)|

=


N1N2

N1 + N2
|(γ̂ ∗

− γ ∗)T (x; F)|

is also stochastically bounded since γ̂ ∗ is an M-estimator of γ ∗.
Hence

N1N2

N1 + N2
|µ̂N1,N2(γ̂

∗, x) − µ(γ ∗, x)|

is stochastically bounded.

(2) By assumption,


N1N2
N1+N2

cN1,N2 → ∞, so

|µ̂N1,N2(γ̂
∗, x) − µ(γ ∗, x)| < ϵcN1,N2 ,

for all ϵ > 0, if N1,N2 large enough.
Note that |µ̂N1,N2(γ̂

∗, x) − µ(γ ∗, x)| < ϵcN1,N2 implies
both |µ̂N1,N2(γ̂

∗, x)| − |µ(γ ∗, x)| < ϵcN1,N2 and |µ(γ ∗, x)| −

|µ̂N1,N2(γ̂
∗, x)| < ϵcN1,N2 , which imply B

(1−ϵ)cN1,N2
γ ∗ ⊂ B̂0

γ̂ ∗ and

B̂0
γ̂ ∗ ⊂ B

(1+ϵ)cN1,N2
γ ∗ respectively. So we have

|µ̂N1,N2(γ̂
∗, x) − µ(γ ∗, x)| < ϵcN1,N2

⇒ B
(1−ϵ)cN1,N2
γ ∗ ⊂ B̂0

γ̂ ∗ ⊂ B
(1+ϵ)cN1,N2
γ ∗ ,

and the lemma follows. �

For notational simplicity, define kγ ∗(x) = min{
√

λγ ∗T (x; BF )−√
1 − λT (x; BG), 0}, and note that kγ ∗(x) ≤ 0 by definition.

Lemma A.5. If Γ = {γ ∗
} is a singleton, then

B̂0
γ̂ ∗

kγ ∗(x)dx
a.s.

−→


B0
γ ∗

kγ ∗(x)dx.

Proof of Lemma A.5. Since kγ ∗(x) ≤ 0, we have
B
(1−ϵ)cN1,N2
γ ∗

kγ ∗(x)dx ≥


B
(1+ϵ)cN1,N2
γ ∗

kγ ∗(x)dx.

In addition, since cN1,N2 ↓ 0, both the functions I{|µ(γ ∗, x)| <
(1 − ϵ)cN1,N2} and I{|µ(γ ∗, x)| < (1 + ϵ)cN1,N2} are decreasing
and converge to I{µ(γ ∗, x) = 0}. According to the monotone
convergence theorem, we have
B
(1−ϵ)cN1,N2
γ ∗

kγ ∗(x)dx
a.s.

−→


B0
γ ∗

kγ ∗(x)dx, and
B
(1+ϵ)cN1,N2
γ ∗

kγ ∗(x)dx
a.s.

−→


B0
γ ∗

kγ ∗(x)dx.

Together with Lemma A.4, we have

B̂0
γ̂ ∗

kγ ∗(x)dx
a.s.

−→

B0
γ ∗

kγ ∗

(x)dx. �

Proof of Theorem 3.6. If Γ = {γ ∗
}, by Lemmas A.3 and A.5

N1N2

N1 + N2


B̂0
γ̂ ∗

min{[µ̂N1,N2,b(γ , x) − µ̂N1,N2(γ , x)]}dx

has the same asymptotic distribution as
N1N2

N1 + N2


B0
γ ∗

min{[µ̂N1,N2(γ , x) − µ(γ , x)]}dx.

IfΓ = {[γ , γ̄ ]}, then our test statistic converges to 0 almost surely,
and the critical value converges to c0, which is negative. Hence,
the probability of accepting the null hypothesis converges to 1.

If F
CD
⊁ G, our test statistic converges to negative infinity, but the

critical value does not. It follows that the probability of rejecting
the null hypothesis also converges to 1. �
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