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Economic design of X– control
charts: insights on design

variables
Wen-Hsien Chen

Department of Business Administration, National Cheng-Chi University,
Taipei, Taiwan and

Devanath Tirupati
Department of Management, The University of Texas at Austin, USA

Introduction:
Growing competition in the marketplace and a recognition that product quality
is a strategic asset have forced managers to re-examine the role of online and
offline quality in product design and manufacturing. A direct consequence of
this renewed emphasis on product quality is increased investment in product
inspection and other quality assurance systems. In several well-publicized
efforts (for example, see Klock, 1990; Pena, 1990), firms have set up elaborate
systems for data collection and analysis to ensure high output quality.
Typically, this involves establishing numerous process control charts to monitor
status of production processes. The objective is to identify shifts in the process
from the desired (in-control) state so as to take remedial action and restore it to
the ideal state. The major decisions in such a scheme involve tradeoffs between
inspection effort determined by sampling frequency and size, penalty for
operating in out-of-control state, and the cost of restoring the process to the in-
control state. While the basic design principles of control charts are well
understood, in practice their design is based primarily on convenience and
industry norms, and few schemes incorporate economics of various costs
involved. Many researchers (for example, Montgomery, 1980) pointed out that
this was partly due to the difficulty of obtaining and evaluating cost
information. Developments in computer and information technologies and
increasing emphasis on quality costs (for example, see Godfrey, 1988; Juran and
Gryna, 1993, pp. 15-38) have resulted in easier access to such data and made this
factor less critical. Our experience with wafer fabrication environment further
suggests that a lack of understanding of the interrelationships between design
variables, rather than the lack of data is the primary reason for above design of
quality control schemes. 

We recognize that study of control charts, in particular economic design of X–

charts, is a well researched topic with a long history extending to three to four
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decades. Literature on the subject is extensive and good summaries can be
found in review papers by Ho and Case (1994); Montgomery (1980) and Vance
(1983). The primary focus of research in the area has been on the development
of computational procedures to determine the design variables. In addition,
using a combination of computational experiments and sensitivity analyses,
several researchers have obtained qualitative insights into the characteristics of
the design variables. It is interesting to note that while these results are fairly
comprehensive for single stage systems (and local quality control), they provide
limited guidance for multistage systems. Hence our objective is to develop
analytical results which can be used as a framework for application to
multistage systems. Since exact cost functions are intractable, we rely on
analyses of approximate cost function for deriving the necessary insights. Our
results are consistent with the observations in previous studies and provide
additional support for the approximations made in our models. 

Specifically, in this paper our objective is to examine, in detail, the economic
design of X– chart. Our choice is influenced by two considerations: X– chart is
perhaps the most popular control chart used in the industry, and it is perhaps
the simplest model and represents a good starting point for developing
qualitative insights to support managerial decision making. The motivation for
this research comes from our experience with a semiconductor manufacturer.
The manufacturer, like many others in the industry, made substantial
investments in setting up elaborate systems for online quality control and
monitoring of process status. While the system provided a rich database, its
application was rather myopic and limited to local process control. Further, the
determination of control chart variables were not directly related to the
company’s costs or product requirements. It was widely recognized that
utilization of this quality information at the plant level leading to an integrated
quality management would require a better understanding of interprocess
effects – impact of process status on subsequent operations. The work
described in this paper represented a first step in this direction and forms the
basis for subsequent research to examine related issues. For example, in Chen
and Tirupati (1995) we report on the application of process control information
to improve product inspection decisions. In that study, the results of this paper
play a key role in the analysis. 

The results of this work are based on the classical Duncan model (1956).
While this model is a litle dated and a substantial amount of related literature
has appeared since Duncan’s seminal work, the model captures the basic issues
of interest and the host of variants developed in subsequent research are not
particularly useful in providing additional insights. Since the resulting cost
functions are complex (even the Duncan’s cost model), we focus on relatively
stable systems in which the time between failures is large in comparison with
the sampling interval. Accordingly, we make simplifying assumptions and
derive conclusions based on approximate analyses. 

The remainder of the paper is organized as follows: First, we describe the
problem, and present Duncan’s cost model for economic design of X– chart. The
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next section focuses on key results that describe the relationship between
sample size, control limits and frequency of inspection and other production
parameters. Computational experiments to examine robustness of our
conclusions are discussed in the subsequent section. We conclude with a brief
summary and some related remarks.

The cost model 
Pioneering work in the economic design of control charts is due to Duncan
(1956), who developed a cost model for X– control chart and presented a solution
procedure to obtain approximately optimal values of design variables. Since
Duncan’s model of the X– control chart forms the basis for the results of this
paper, we review it in some detail. A summary of the notation used in this paper
is presented below. 

h = the inspection time interval
n = sample size
k = parameter to define control limits, upper (lower) control limit is given

as µ0+ kσ/√n– (µ0–kσ/√n–.)
λ = process failure rate
H = production cycle time, a random variable
D = the time needed to restore the process following an action signal 
e = time for inspection of one unit, time for inspecting a sample of size n

is en.
τ = the elapsed time between the last inspection in the in-control period

and the process shift to out-of-control state.
α = probability of type I error.

β = probability of type II error

W = the costs of finding the assignable cause and restoring the process
to an in-control state

M = the penalty per unit time of operating in an out-of-control state
b = fixed cost per sampling
c = variable sampling cost per unit
T = cost of investigating false alarms

D
ow

nl
oa

de
d 

by
 N

A
T

IO
N

A
L

 C
H

E
N

G
C

H
I 

U
N

IV
E

R
SI

T
Y

 A
t 2

1:
45

 2
1 

A
ug

us
t 2

01
7 

(P
T

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/02656719710165473&iName=master.img-000.png&w=185&h=48


Economic design
of X– control

charts

237

The model is based on the following process features:

• The quality of the output is determined by a single measurable
parameter. The mean of this parameter depends on the process state.

• The process may be in one of two states: in-control or out-of-control. In
the in-control state the process mean is set at the desired value (say µ0 ).
A single assignable cause of variability will result in the shift of the mean
by a fixed magnitude δσ to an out-of-control state. Thus, the process
mean in out-of-control state is either µ0-δσ (with probability 0.5) or 
µ0 + δσ (with probability 0.5). (The standard deviation of output quality
in the out-of-control state continues to be σ.) 

• The elapsed time before the shift occurs is exponentially distributed
with mean 1/λ. 

• Once the process shifts to out-of-control state, it continues to remain in
that state until it is reset.

• The penalty for operating in an out-of-control state is assumed to be
constant at M per unit time.

Monitoring of the process by X– control chart involves the following steps:

• Choose random sample of size n at intervals of length h.

• The variable k, together with the sample size n specifies the control
chart. The upper and lower control limits of the chart are respectively
denoted as µ0+ kσ/√n– and µ0–kσ/√n–.

• If the sample mean is outside the control limits, a search will be initiated
to determine the process status. If the process is confirmed to be out-of-
control, the process will be stopped and corrective action will be taken.
During the search, the process is allowed to continue operation.

• The time required to complete an inspection and plot the result is
proportional to sample size, i.e., for a sample of size n, the time to
complete inspection is en, where e is the sampling time per unit. 

Thus, the cost of a production cycle comprises of the following:

• inspection costs;

• costs of investigating false alarm;

• additional product quality loss due to operating in an out-of-control
state; and

• cost of detecting the cause for shift and restoring the process to in-control
state.

Duncan (1956) provided an expression for the average cost per unit time, AC,
comprising of the elements above as a function of decision variables n, k and h
in the following. For the sake of brevity, we do not present the details but
provide a brief summary in Appendix 1.
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(1)

and 
(2)

In the economic design of X– control charts, the objective is to choose control
variables n, k, and h so as to minimize the cost function (1). It may be observed
that there are similarities between the analysis presented in this paper and
some of the prior research. For example, Goel et al. (1968), Lorenzen and Vance
(1986) employ first order conditions in developing computational procedure.
Collani (1986; 1989) obtains characteristics of design variables based on an
analysis of a variant of the cost model. However, there are important differences.

Figure 1.
Representation of
process control system
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For example, the focus in prior work has been on the development of procedures
to determine optimal values of n, h and k, and qualitative insights into their
behaviour are obtained by sensitivity analyses. In contrast, our objective is to
develop results that could reveal the relationships between control variables
and production parameters. Second, we develop a search procedure which
provides, in addition to approximate solutions, optimal design variables. The
guarantee of optimality is based on bounding procedures developed on the
basis of our results. The reader may note that “exact” solutions presented in the
literature for testing approximate/heuristic solutions are based on search
procedures with pre-specified ranges for design variables n and k. While these
ranges are usually wide enough to include the optimal solution, clearly the
methods depend on production parameters and thus do not guarantee
optimality.

Characterization of design variables
In this section, we focus on development of results which describe the
relationships between process control variables n, k and h and parameters M, λ,
δ, b, c, T and e. These results are based on analyses of functions that closely
approximate the average cost function (1). The simplifications are necessitated
by the mathematical intractability of (1) in providing the desired qualitative
insights. However, our approximations are based on practical considerations
and should be reasonable in several manufacturing environments. Specifically,
we consider relatively stable processes in which the expected time between
shifts to out-of-control state (1/λ) is large in comparison with the sampling
interval (h). We also assume that the time to find the assignable cause and to
restore the process (D) is small relative to 1/λ and that the inspection time (e) is
negligible. The implications of these assumptions for simplifying the cost
function are discussed briefly below.

• A direct consequence of process stability is that λh is small and the term
λh2/12 representing second order effect may be ignored. It may be noted
that this approximation has been used by several other researchers, most
recently by Collani (1989) and Tagaras (1989). 

• The major objective of process control charts is to obtain a quick
feedback on the process status and in most cases the time lag due to
sample inspection (en) is very small. In continuous manufacturing
systems the production line is equipped with tools so as to make this
time negligible.

• The expected cycle time, E[H], is perhaps the most intractable term in (1)
since it is a function of all variables and occurs in the denominator.
However, it includes a dominant term (1/λ) which makes it insensitive to
choices of n, k and h and facilitates approximations at several levels. 1/λ
represents the simplest approximation for E[H] and makes it
independent of the decision variables. This is reasonable for very stable
processes. A natural refinement is to treat E[H] as a constant in deriving
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optimality conditions for n, k and h, but evaluate it in accordance with
equation (2). As a consequence of the latter approximation, we ignore
variation in E[H] due to changes in n, k and h and treat the derivative of
E[H] as zero.

Based on the discussion above, we consider two alternatives for E[H] (A1 and
A2 presented below ) in our analyses. Note that in each case the fourth term in
(2), λh2/12, is ignored. In addition, we examine special cases in which sampling
time is negligible (en ≅ 0) and/or, sampling plans have high discriminating
power (α, β ≅ 0). It may be noted that the second alternative A2 implies that 
en ≅ 0.

A1: E[H] is treated as constant and λh2/12 ≅ 0

A2: E[H] = 1/λ and λh2/12 ≅ 0

Our characterization of variables n, k and h is based on analyses of first order
optimality conditions, that are also sufficient under some conditions. In deriving
these results, we treat sample size n as if it were continuous and assume that
cost function is differentiable with respect to n. Various numerical studies have
indicated that cost function behaves smoothly in the neighbourhood of optimal
n for the problems with realistic values of production parameters (for example,
see Goel et al. (1968); Montgomery (1982) and references therein). Based on these
observations and our computational results, we believe that this approximation
is appropriate for the type of results developed in this paper. In this section, we
first present a summary of the key results of our analyses. This is followed by a
discussion of managerial implications of these findings. The details of the
proofs are provided in Appendix 2. 

Summary of results

Lemma 1: Suppose that conditions in A1 hold, then the average cost
function, AC, reduces to the following:

(3)

Lemma 2: Suppose that conditions in A1 hold and variables n and k are
given, then AC is convex in h. Furthermore, optimal h, h* is given by

(4)

Lemma 3: Suppose that conditions in A1 hold and variables n and h are
given, then optimal k satisfies the following: 
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(5)

Lemma 4: Suppose that conditions in A1 hold and variables h and k are
given. If discreteness of n is ignored, first order optimality condition for
n reduces to the following:

(6)

Proposition 1: Suppose that conditions in A1 or A2 hold and n is fixed,
then optimal k is independent of M.

Proposition 2: Suppose that conditions in A2 hold and n is fixed, then
optimal k is independent of M and λ.

Proposition 3: Suppose that conditions in A1 hold and the inspection
time e is negligible, or conditions in A2 hold, then optimal n and k are
independent of M.

Proposition 4: Suppose that conditions in A2 hold, then optimal n and k
are independent of M and λ.

Corollary 1: Suppose that conditions in A1 hold and e ≅ 0, or conditions
in A2 hold. The upper control limit and lower control limit of control
chart are independent of M.

Corollary 2: Suppose that conditions in A2 hold. The upper control limit
and lower control limit of control chart are independent of M and λ.

Corollary 3: Suppose that conditions in A2 hold, n is fixed and α, β ≅ 0,
then optimal h is given by 

(7)

Corollary 4: Suppose that conditions in A2 hold, n is fixed, and α, β ≅ 0,
then optimal k is given by

(8)

Corollary 5: Suppose that conditions in A2 hold, and discreteness of n is
ignored. Then, the first order optimality condition for n reduces to the
following:

(9)
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Propositions 1-4 and Corollaries 1-5 characterize approximately the behaviour
of decision variables n, k and h as a function of b, c, T, δ, M and E[H]. It may be
noted that equations (7) and (8) are the results of special case when the control
charts have high discriminating power (α, β ≅ 0). It is interesting to note that (7)
and (8) provide closed form expressions for h and k as function of n. As
described later, these results are useful in deriving a quick heuristic to
determine near optimal values of n, k and h.

Managerial implications
In this section, we discuss managerial implications of the characteristics
described by the findings of the previous section. One of the interesting results
in this context is provided by Proposition 4 and Corollary 2 which suggest that
optimal sample size and upper and lower control limits of the X– chart are
independent of M and λ. This may be counterintuitive since one might expect
that the penalty of operating in out-of-control state should have a strong
influence on the design of the control chart. Our result (equation 9) indicates
that the sample size is determined primarily by the amount of shift and should
be sufficient to discriminate between the process states. The control limits
(alternately, variable k) are set accordingly. Thus, the sample size has an inverse
relationship with δ. It should be noted that these results do not imply that the
control scheme and inspection effort are independent of M and λ . In fact,
Lemma 2 suggests that the inspection interval is directly influenced by these
parameters. We observe that this result is similar to the observations obtained
by Collani (1986; 1989).

It may be noted that n and k depend primarily on δ. In contrast, the
inspection interval h is influenced by M (the penalty of operating in the out-of-
control state), λ (process failure rate) and the cost of each inspection (b + cn). It
is interesting to note that equations (4) and (7) are similar to the EOQ result from
inventory theory. Our results indicate that optimal values of n, k and h are
loosely coupled and a hierarchical approach (with some feedback) may be used
for their determination. This partially explains the successes of various
approximation schemes presented in the literature. For example, Lorenzen and
Vance (1986) use the Fibonacci search for determining n. For each n, optimal k
is obtained by the golden section search. And given n and k, Newton’s method
is used to solve for h. While the foregoing conclusions are based on several
assumptions and approximations, we expect that they are quite general.
Computational results described in the next section support these conclusions
and indicate that these results are quite robust.

Computational experiments
In this section, we describe results of computational experiments designed to
illustrate application of the analyses of the previous section. Since a number of
assumptions and approximations were made in deriving these results, one of
the major objectives of the computational experiment is to examine the
robustness of these conclusions over a wide range of parameter values. Second,
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we also used the test problems to examine the nature of the approximations and
the quality of the solutions presented by equations (4), (5), (7) and (8).

The choice of the parameters in our experiments is based on the extensive
computations reported by Tagaras (1989). Since M and e are key parameters in
our analyses, we used a wider range for these parameters than those used by
Tagaras. For all other parameters (λ, b, c, d, T), the range of values is the same
as those adopted by Tagaras. Table I presents the details of our experimental
design. In total, we generated 432 problems for our experiment.

Clearly, to test the validity of the propositions 1-4, it is necessary to derive
optimal solutions for the test problems. As mentioned earlier, while a number of
procedures described in the literature provide good solutions, they do not
guarantee global optimality. By optimal solution we refer to values of n, k and h
which minimize the cost function in (1). Hence, in these test problems we
derived optimal solutions by using a search procedure similar to that presented
by Goel et al. (1968) but without prescribing ranges for n and k. Instead, we
refined the procedure by computing, in a dynamic fashion, bounds on variables
n and k so as to generate optimality and also minimize the computational effort.
The basic module in our scheme, which determines optimal h for given n and k,
is similar to that used by Goel et al. (1968) and involves solving a closed form
expression for h. In our implementation, described in Figures 2 and 3, we adopt
a hierarchical approach for search over variables n and k. For each n we search
over appropriate range of k and determine the optimal solution. The procedure
is repeated for different values of n to obtain a global optimal solution for the
problem. The range of search for n (and k) is limited by computation of upper
bounds on these parameters. The bounding procedure is described in detail in
Appendix 3.

Discussion of computational results:
It is encouraging to note that our computational results support the earlier
conclusions and indicate that the approximations are very reasonable over the
wide range of parameter values used in our test problems. Some examples of
our results describing the behaviour of variables n and k are shown in Table II.
In this table we present optimal values of n and k for problems defined by
parameter set c = 0.1, b = 5.0, T = 500 and c = 1.0, b = 0.5, T = 50. It can be seen
from this table that for value of e = 0, the discrepancies due to approximations
have negligible effect and the computational results are in excellent agreement

Level M δ λ b c T e D w

Low 50 1 0.01 0.5 0.1 50 0 3 35
Medium 100 – 0.02 – – – 0.01 – –
High 1,000 2 0.05 5.0 1.0 500 0.05 – –

Table I.
Parameters for 

the computational 
experiment
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with Proposition 4. Even when the assumptions are significantly violated (for
example, when e = 0.01 or 0.05) the conclusions are robust and the variations in
n are fairly small. For example, for the case e = 0.01, c = 0.1, b = 5.0, T = 500, 
δ = 1 and λ = 0.01 optimal n decreases from 27 to 23 as M increases from 50 to
1,000, a twentyfold increase. The results with the variable k which defines the
control limit are quite similar. We note that the results of Table II are
representative of the results we obtained with other problems. For the sake of
brevity, we do not present the detailed results (which may be obtained from the

Figure 2.
Flow chart for
determination of
optimal values of n, k
and hD
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authors). Instead we present a summary of the results in Table III which
provides the average percentage deviations in n and k for test problems defined
by parameters c, b, T, e and δ. Note that for each data set defined by these
parameters, three levels of λ and M result in nine test problems. The
propositions of Section 3 suggest that the optimal values of n and k for the
problems in each data set should be close, and variations in the values of these
variables represent deviations from the propositions. In the Table, we present

Figure 3.
Flow chart for

computing optimal 
k and h given sample

size n
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c = 0.1 b = 5.0 T = 500 c = 1.0 b = 0.5 T = 50
δ e λ M = 50 M = 100 M = 1,000 M = 50 M = 100 M = 1,000

n k n k n k n k n k n k

0.01 28 3.42 28 3.42 28 3.42 8 1.92 8 1.92 9 1.96
0 0.02 28 3.41 28 3.41 28 3.41 8 1.91 8 1.91 8 1.91

0.05 28 3.40 28 3.40 28 3.40 8 1.87 8 1.88 8 1.89
0.01 27 3.49 26 3.36 23 3.26 8 1.92 8 1.92 8 1.92

1 0.01 0.02 26 3.35 26 3.32 21 3.19 8 1.90 8 1.91 7 1.88
0.05 25 3.30 24 3.27 19 3.10 7 1.83 7 1.84 7 1.85
0.01 22 3.22 21 3.19 15 2.99 8 1.92 7 1.88 6 1.85

0.05 0.02 21 3.18 19 3.11 13 2.91 7 1.87 7 1.87 5 1.82
0.05 19 3.09 17 3.02 11 2.82 6 1.79 6 1.80 4 1.75

0.01 9 3.73 9 3.73 9 3.73 3 2.43 3 2.43 3 2.43
0 0.02 9 3.73 9 3.73 9 3.73 3 2.42 3 2.42 3 2.43

0.05 9 3.72 9 3.71 9 3.72 3 2.40 3 2.40 3 2.40
0.01 8 3.73 9 3.73 8 3.61 3 2.43 3 2.43 3 2.43

2 0.01 0.02 8 3.73 9 3.73 8 3.60 3 2.42 3 2.42 3 2.43
0.05 7 3.71 8 3.59 7 3.46 3 2.39 3 2.40 3 2.40
0.01 8 3.61 8 3.61 6 3.35 3 2.43 3 2.43 3 2.43

0.05 0.02 8 3.60 7 3.47 5 3.20 3 2.42 3 2.42 3 2.43
0.05 7 3.45 7 3.45 5 3.18 3 2.39 3 2.39 3 2.27

Table II.
Optimal values of 
n and k for selected 
problems

c 0.1 0.1 0.1 0.1 1.0 1.0 1.0 1.0
δ e b 0.5 0.5 5.0 5.0 0.5 0.5 5.0 5.0

T 50 500 50 500 50 500 50 500

0 n 2.67 0 2.30 0 2.44 1.33 3.53 3.0
k 0.94 0.26 1.07 0.24 0.97 0.59 1.65 0.98
n 9.52 7.78 8.81 8.33 6.44 3.65 4.34 3.86

0.01
k 1.72 1.13 2.87 2.09 1.67 0.85 1.83 1.03

1 n 22.98 19.12 21.62 18.00 14.68 11.95 14.26 11.49
0.05

k 2.71 1.58 6.62 3.75 2.35 1.41 3.89 2.06

0 n 0 0 4.44 0 0 0 0 0
k 0.27 0.21 1.87 0.18 0.52 0.3 0.43 0.29

2 0.01 n 8.33 5.1 6.67 7.31 0 0 0 5.98
k 2.3 0.95 2.42 2.17 0.52 0.32 0.43 1.46

0.05 n 16.37 11.76 13.24 14.21 6.84 11.11 13.89 4.44
k 3.23 1.70 4.75 3.73 1.39 1.74 4.38 1.30

Table III.
Summary results: 
average percentage 
deviations in n and k
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average relative absolute derivation for each data set defined in the following
manner

Where ni = optimal value of n for problem i in the data set , i = 1, 2, 3, …,9

The measure for k is defined in a similar manner. Observe that for the nine
problems in each data set the value of M varies twentyfold from 50 to 1,000, and
λ varies fivefold from 0.01 to 0.05, which represents a substantial range. The
results in the table are encouraging. For example, the largest average deviation
of n for e = 0 (an assumption in Proposition 3 and 4) is only 4.44 per cent. The
worst corresponding value is 22.98 per cent when the assumptions are
significantly violated. It may be noted that deviations in k are typically smaller
than those observed for n. This is partly due to the discrete nature of n. Also, it
is interesting to note that these deviations in n and k do not have any
appreciable effect on the costs, as long as the corresponding inspection interval
h is optimal. For example, we found that using the values of n and k that are
optimal for λ = 0.02 and M = 100 for the other problems in each data set results
in typical cost penalties of less than 1 per cent if the value of h is appropriately
determined.

The behaviour of variable h is rather interesting and warrants some
elaboration. Recall that the approximate value of optimal h is expressed by
equation (7) which is similar to the result of EOQ model. This formula involves
a square root, as a consequence, the optimal value of h (h*) is not very sensitive
to the estimates of b, c, λ, and M. Similarly, the total cost curve (equation 1) is
somewhat flat in the vicinity of h*. This result suggests that rounding off the h*
value to facilitate implementation is not likely to result in any significant cost
increase. This observation is exemplified by computational results shown in
Figure 4. 

Other interesting results relate to the effect of δ, c, b and T on the sample size
n. In Figure 5 we present illustrative results which correspond to the value of 
M = 100. The results with other problem are similar and are omitted for the
sake of brevity. The results in the figure support equation (9) and indicate that
as process shift δ increases, sample size n decreases. Similarly, increase in unit
inspection cost (c) leads to decrease in sample size n. Likewise, increase in fixed
inspection cost (b) and/or type I error cost (T) lead to increase in n. We note that
these results are consistent with the earlier studies reported in the literature
(see, for example, Chiu, (1976); Collani, (1986, 1989)
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Figure 5.
Optimal values of n for
M = 100

Figure 4.
Total cost versus
inspection interval for
variables n = 17, 
k = 2.78, and for
parameters δ = 1, M =
50, λ = 0.01, e = 0, D =-
3, b = 0.5, 
c = 0.1, W = 35, T = 50
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Other related comments
As mentioned earlier, we used the test problems to examine the quality of the
approximate solutions provided by (4), (5), (7) and (8). It may be recalled that (7)
and (8) provide closed form results to compute approximately optimal h and k
for a given value of sample size n. We refer to solution provided by (7) and (8) as
direct method (DM) because h and k are computed directly by closed form
equations. And we refer to solution obtained from (4) and (5) as iterative method
(IM) since it involves iterative solution of simultaneous equations to determine
h and k. For the 432 problems we used the two methods to obtain h and k for
optimal value of n. The results, summarized in Table IV are very encouraging.
First, the approximate values of h and k are close to optimal. Second, the penalty
in the cost function due to this suboptimality is negligible. From the table, it can
been seen that the average cost error for IM is less than 0.1 per cent and the
maximum error is less than 0.5 per cent. The average error with DM is less than
0.4 per cent and the maximum error is 6 per cent. It may be observed that the
worst case error corresponds to a β value of 0.56, an unlikely situation in
practice. This is clearly due to insensitivity of the cost function to h and k near
their respectively optimal values. These results are consistent with those
obtained by Goel et al. (1968) and Panagos et al. (1985). It may be noted that
equation (6), which is based on treating n as a continuous variable, may be used
to generate an initial choice for sample size. Our experience suggests that this
sample size together with IM or DM procedure provides near optimal results,
typically within 1 per cent of the optimal cost. 

It is interesting to note that the computational results support the
assumptions made to facilitate our analysis. For example, for the 432 problems
in the experiment, the range of λh is between 0.0041 and 0.256 for optimal
choices of n, k and h. The corresponding range for λh2/12 is between 0.00011
and 0.108, which is negligible in comparison with 1/λ, the minimum value of
which is 20. 

We conclude this section with some brief comments about our solution
procedure for determining optimal values of n, k and h. As described earlier, we

e = 0 e = 0.01 e = 0.05
h k cost h k cost h k cost

Iterative AAPRE 5.3 0.7 0.1 5.5 0.8 0.1 6.2 1.0 0.1
method (IM) MAPRE 13.4 3.2 0.4 13.5 3.8 0.4 15.4 4.5 0.5

Direct AAPRE 4.4 1.9 0.1 4.3 2.3 0.1 5.9 4.0 0.4
method (DM) MAPRE 14.7 9.1 0.5 14.9 11.5 0.6 44.4 25.7 6.0

Note: Absolute percentage relative error (APRE) for each problem is defined as
100(|happ–h*|)/h*, where happ and h* respectively denote approximate and optimal values of h.
The measures for k and cost are also defined in a similar manner. AAPRE represents a average
of APRE over 144 test problems. MAPRE represents maximum of APRE

Table IV.
Comparison of 

procedure IM and DM
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used a search procedure that incorporated bounds computed in a dynamic
fashion to generate exact solution. This scheme guarantees optimality, unlike
the procedures reported in the literature, which typically rely on prescribed
ranges for variables n and k. Our computational experience indicates that this
is an efficient procedure with tight bounds on k and n. For example, in most
instances the upper bound on n was within one-third of the optimal value. In the
worst case, the upper bound was ten above the optimal. 

Conclusions
Based on several simplifying assumptions and analyses of the resulting
approximate cost function, we have derived several interesting properties
characterizing the design variables of X

–
control chart. For example, they

suggest that the sample size and the upper and lower limits of the control chart
are independent of the penalty for operating in out-of-control state. Similarly,
these variables are independent of the process failure rate. Our computational
results demonstrate that these and other related results are fairly robust and
hold approximately even when the assumptions are significantly violated.
Besides providing a quick procedure to compute optimal values of n, k and h,
these results contribute to an understanding of the dynamics of these variables.
We believe that such studies help encourage implementation of economic
approach to the design of process control charts and may provide insights to
facilitate integration of online and offline quality decisions for total quality
management.
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Appendix 1: details of the cost model for the X
–

control chart
Expected cycle time E[H]
The cycle time comprises of in-control-period and out-of-control period as shown in Figure 1. The
expected time of in-control period is 1/λ. The out-of-control period may be partitioned into three
segments:

(1) time from the shift to out-of-control state to the next sampling inspection (denoted by h-τ);

(2) time for additional inspections that may be required to detect the shift to out-of-control
state; and

(3) a deterministic interval (en + D) to find the cause for the shift and restore the process to
in-control state.

Thus, the expected cycle length, E[H] may be expressed as follows:

where E(τ) is the expected elapsed time between the last inspection in the in-control period and
the process shift to out-of-control state. 

It may be noted that τ is a random variable which follows a truncated negative exponential
distribution in the interval [0, h], and its density function fτ(t) may be described as follows:

Therefore, the expected value of τ can be derived as

Ignoring terms of order λ 3h4 and higher, Duncan (1956) approximates E[τ] as

(2)

Average total cost per unit time AC 
Average total cost per unit time, AC is defined as the ratio of the expected cycle cost E[TC] to the
expected cycle length E[H], i.e.
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We note that the cycle cost TC comprises of the following:

• Inspection costs: the costs include a fixed component (b) that is independent of sample
size and a variable cost (cn), resulting in sampling cost of (b + cn) for each inspection.

• Costs of investigating false alarm (type I error cost): The cost is directly proportional to
the number of inspections during the in-control state, which is given by

Ignoring higher order terms of λh results in a simple approximation indicated by the last
term in the equation above. The corresponding cost due to type I errors is αT/λh.

• Additional product loss due to operating in an out-of-control state: 

• Cost of detecting the cause for shift and restoring the process to in-control state: W. 
The expected cycle cost (TC) may be obtained as the sum of the four components

described above, and the corresponding average cost per unit time, AC, may be expressed
as follows:

(1)

Appendix 2: analysis of the cost function AC – proof of results of section 3
Owing to the mathematical intractability of (1), our analysis is based on simplifying
approximations. These approximations are reasonable for stable systems. The major
assumptions are: the expected time between shifts to out-of-control state (1/λ ) is large in
comparison with the sampling interval (h); the time to restore the process (D) is small relative to
1/λ ; and the inspection time (e) is negligible. Specifically, we consider two alternatives for E[H]
(A1 and A2 presented below ) in our analyses. Note that in each case λh2/12 and higher order
terms are ignored in (1). In addition, we examine special cases in which sampling time is
negligible (en ≅ 0) and/or, sampling plans have high discriminating power (α, β ≅ 0).

A1: E[H] is treated as constant and λh2/12 ≅ 0. This approximation recognizes that E[H] is
dominated by term (1/λ) and variations in E[H] due to changes in n, k and h can be
ignored. Thus, the derivative of E[H] can be treated as zero.

A2: E[H] = 1/λ and λh2/12 ≅ 0. This is the simplest approximation for E[H] and makes E[H]
independent of n, k and h.

Outline of proof of Lemma 1
Lemma 1 is trivially true. Suppose that conditions in A1 hold, equation (3) below is obtained by
eliminating λh2/12 from equation (1). 

(3)
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Outline of proof of Lemma 2
From (3), given n and k, we obtain the following:

Thus, AC is convex in h. Equation (4) below follows by equating first order derivative to zero and
solving h. Thus, Lemma 2 is obtained.

(4)

Outline of proof of Lemma 3
Equating to zero the first derivative of (3) with respective to k, we obtain

(5)

Thus, Lemma 3 (equation 5) follows.
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Outline of proof of Lemma 4
Equating to zero the first derivative of (3) with respective to n, we obtain

(6)

Thus, Lemma 4 is obtained.

Outline of proof of Proposition 1
Under A1 (or A2) and Lemma 3, optimal value of k is given by (5). To prove that k is independent
of M for a given n, it is sufficient to show that M can be eliminated from (5) so that k is a function
of n, h, δ, λ, b, c, and T. By Lemma 2, equation (4), it follows that 

(p1)

Substituting the above in (5), we obtain k as a solution to 

(p2)

Observe that for a given n, (p2) is independent of M, and the proposition follows.

Outline of proof of Proposition 2
Under A2, E[H] is approximated as 1/λ. Substituting this value in (p2), optimality condition for k
reduces to 

(p3)

Clearly (p3) is independent of M and λ and we obtain Proposition 2.

Outline of proof of Proposition 3
The proof of Proposition 3 is similar to that of Proposition 1. By substituting the right-hand side
of (p1) for h2M and noting that e ≅ 0, (6) may be rewritten as 

(p4)

Since optimal n and k are obtained by simultaneously solving (p3) and (p4), which are
independent of M, the proposition follows.

Outline of proof of Proposition 4
Under A2, E[H] is approximated as 1/λ. Substituting this value in (p4), optimality condition for n
reduces to 

(9)
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Since optimal n and k are obtained by simultaneously solving (p3) and (9), which are independent
of M and λ, the proposition follows.

Outline of proof of Corollary 1 
It is noted that upper (lower) control limit is µ0 + kσ/√n– (µ0-kσ/√n–), where µ0 and σ are assumed to
be constant. By Proposition 1 and 3, it is obvious that kσ/√n– is independent of M and Corollary 1
is obtained.

Proof of Corollary 2
This proof is similar to that of Corollary 1 and is omitted.

Proofs of Corollary 3 and 4 
The proofs follow directly from equations (4) and (p2) respectively with appropriate substitutions
for α, β and E[H].

Proof of Corollary 5
The proof follows directly from the proof of Proposition 4.

Appendix 3: results in support of the procedure for obtaining optimal n, k and h
Additional notation:

k(n): Optimal choice in k for a given n
h(n, k): Optimal choice in h for a given n and k
h(n): Optimal choice in h for a given n and k(n)
AC(n, k, h): Average cost for given n, k and h (defined by equation (1)
AC(n, k): Average cost for given n, k and h(n, k)
AC(n): Average cost for given n, k(n) and h(n)
α(n, k): The value of α defined by n and k
α(n): The value of α defined by n and k(n)
β(n, k): The value of β defined by n and k
β(n): The value of β defined by n and k(n)
H(n, k, h): Expected cycle time for given n, k and h (defined by equation (2)
H(n, k): Expected cycle time for given n, k and h(n,k) 
H(n): Expected cycle time for given n, k(n) and h(n)
nu: Upper bound on sample size
ku: Upper bound on k for a given n

It may be recalled that

It may be noted that AC(n,k) = minh AC(n,k,h) and AC(n) = mink AC(n,k)

Definitions
Upper bound on k. For a given n, ku is an upper bound on k if there exists a k1 ≤ ku and the
following inequality is satisfied.

AC(n, k) ≥ AC(n, k1) for all k > ku

Upper bound on sample size. nu is an upper bound on sample size n if there exists a n1 ≤ nu and
the following inequality is satisfied.

AC(n) ≥ AC(n1) for all n > nu
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Assumptions:
In what follows, we demonstrate that the procedure described in Section 4 and Figure 2 and
Figure 3 provides optimal values of n, k and h under the following conditions. While these
conditions hold for the test problems considered in our experiment, we conjecture that they hold
in general. However, we do not attempt to prove these results since the algebra involved is rather
tedious and not particularly insightful.

(1) The discriminating power of the control chart increases with the sample size, i.e., 

β(n1) > β(n2) if n1 < n2

(2) The sampling interval h is much smaller than the average time between shifts to out-of-
control, i.e., h < 1/λ. 

(3) The cost of restoring the process to in-control state (W) is smaller than the penalty for
operating the process in out-of-control state for a period of 1/λ, i.e., M/λ > W. It may be
noted that in our test problems the value of (M/λ – W) ranged between 965 and 99,965.

Proposition A1:
Suppose that optimal h and k for a sample of size n1 have been determined, then an upper bound
nu for the optimal sample size may be computed as the smallest value of n that is not smaller than
n1 and satisfies the following condition:

Outline of proof 
From Assumption 1, it follows that 1/(1 – β(n1)) > 1/(1 – β(n)) for n > n1, and hence H(n) < g(n, h).
The definition of AC– (n) implies that

In particular the above is true for h(n) and

(a1)

It may be noted that for all n

(a2)

The last inequality follows from (a1) above. The definition of nu implies that

AC– (n) ≥ AC(n1) for n > nu (a3) 
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Inequalities (a2) and (a3) together imply that AC(n) > AC(n1) for all n > nu and hence nu represents

a valid upper bound on the sample size.

Proposition A2:

Given n and k, a lower bound on h(n,k), denoted by ∼h (n, k), is given by 

Outline of proof

Since n and k are given, we omit these arguments and denote AC(n, k, h) as AC(h) in this proof.

Similarly, H(h), β and α respectively denote H(n, k, h), β(n,k) and α(n,k). Using the definition of

H(h) from equation (1), the cost function AC(h) may be expressed as follows:

(a4)

The proof follows from an analysis of first order optimality condition for (a4). Observe that

,

(a5)

Observe that dAC(h)/dh = 0 implies that

(from Assumption 2
(a6)

From (a6) it follows that

D
ow

nl
oa

de
d 

by
 N

A
T

IO
N

A
L

 C
H

E
N

G
C

H
I 

U
N

IV
E

R
SI

T
Y

 A
t 2

1:
45

 2
1 

A
ug

us
t 2

01
7 

(P
T

)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/02656719710165473&iName=master.img-041.png&w=148&h=52
http://www.emeraldinsight.com/action/showImage?doi=10.1108/02656719710165473&iName=master.img-043.png&w=266&h=51
http://www.emeraldinsight.com/action/showImage?doi=10.1108/02656719710165473&iName=master.img-044.png&w=241&h=99
http://www.emeraldinsight.com/action/showImage?doi=10.1108/02656719710165473&iName=master.img-046.png&w=202&h=31


IJQRM
14,3

258
Denoting the right-hand side of the last inequality as h~(n,k), we obtain the proposition, i.e.,

Corollary A1:

.
For a given n, H

~
(n,k) ≤ H(n, k) and H

~
, (n,k) is increasing in k. 

Outline of proof:

(from Proposition A2)

and the first part of Corollary A1 follows.
To prove the second part of the result, it is sufficient to show that h~, (n,k)/(1 – β(n,k)) is

increasing in k and h~,(n,k) is decreasing in k.

and observing that β(n, k) is increasing in k for a given n, it follows that h~ (n,k) /(1–β(n,k) is
increasing in k and h~(n,k) is decreasing in k. Hence, Corollary A1 follows.

Proposition A3: 
The procedure described in Figure 3 provides optimal value of k and the corresponding optimal
inspection interval h for a given sample size n.

Outline of proof
The procedure in Figure 3 involves search over the interval (0, ku) for optimal k, denoted by k*, i.e.,
AC(n,k) > AC(n,k*) for k ≤ ku. Hence it is sufficient to show that there exists a k1 ≤ ku such that
AC(n,k) ≥ AC(n, k1) for all k > ku
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Observe that one of the key steps in the procedure involves computation of parameters H
–

(n,k)
and H~(n,k) for all values of k for which the search is performed. These parameters are defined as
follows:

(a7)

In addition, at the termination of the procedure, we identify values of k1 and ku as shown in 
Figure 3 and the following conditions hold.

• ku is the last and the largest value of k examined in the search procedure and represents
the effective range of k.

• k1 is such that H
–

(n,k1) = min k{H
~

(n,k) } for 0 ≤ k ≤ ku

• H
~

(n,ku) > H
–

(n,k1)

Since H~(n,k) > H~(n,ku ) for k > ku, and H~(n,k) ≤ H(n,k) from Corollary A1, and noting that 
(W – M/λ) < 0 from Assumption 3, we have the following:

Substituting the right-hand side of equation (a7) for H
–

(n,k1) in the inequality above, we obtain

Thus, it follows that AC(n,k) ≥ AC(n, k1) for all k > ku and the proposition follows.
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