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1. Introduction

There has been an accelerating trend in recent decades to create pas-
sively managed mutual funds that are based on market indices, such as
index funds or exchanged traded funds (ETFs). The stock market index
provides reliable market information as well as a better understanding
of market forces. It also creates a benchmark against which investors
and money managers can measure. The stock market index is a useful
tool used by investors and financial managers to describe the market
and compare the returns on specific investments. According to the the-
ory and numerous empirical evidence of the Efficient Market Hypothe-
sis (EMH), it is impossible to consistently outperform the market
without increasing the risk level. Additionally, a majority of mutual
funds fails to outperform the market. Therefore, we can buy into the
market through index-related funds with very low management fees.
The so-called “index investing” is growing and prevailing not only be-
cause it aims to match market performance but also because it incurs
very few expenses. There are many developed derivatives of stock indi-
ces such as stock index futures and stock index options. The derivatives
of stock indices have become important tools withwhich to hedge risks.
Therefore, it is vital to capture the dynamics of the stockmarket indices.
Developing appropriate models to describe their dynamics and trends
has drawn increasing attention from individual investors, fund man-
agers, financial companies, researchers and the government.
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In the early literatures, stock returns are assumed to follow a tradi-
tional geometric Brownian motion, including the Black–Scholes model
(BSM), and this assumption is reasonable under relatively stablemarket
conditions. However, the existence of cyclical price movements gener-
ates a series of regime-switching models on asset pricing. Hamilton
(1989) first proposes the regime-switching model to capture the
expansion–recession cycles for the growth rate of Gross National Prod-
uct. The literature has shown that this model and its variants have been
widely applied to analyze economic and financial time series (Bollen
et al., 2000; Chang and Feigenbaum, 2008; Chun et al., 2014; Engel,
1994; Engel and Hamilton, 1990; Garcia and Perron, 1996; Goodwin,
1993; Hardy, 2001; Kim and Yoo, 1995; Schaller and van Norden,
1997; Schwert, 1989; Sola and Driffill, 2002).

In the past several decades, significant events including the dot-com
bubble in 2000, the September 11 attacks in 2001, the end of the Iraq
war in 2003, and the global financial crisis in 2008 occurred, leading
to abnormal jumps in stock prices and returns (Lin et al., 2014; Su and
Hung, 2011). Unfortunately, the regime-switching model cannot com-
prehensively describe dramatic changes in such a scenario, and in this
paperwe propose a regime-switchingmodel with jump size risks to ad-
dress the jump phenomenon in financial markets. Our model is not the
first regime-switching model with jump risks. Elliott et al. (2007) pro-
posed a Markov-modulated jump diffusion model to evaluate the
European options. In themodel, themarket interest rate, jump frequen-
cy, mean, and volatility of the underlying asset price change over time
according to the state of the economy, which is governed by a continu-
ous Markov chain. In addition, Bo et al. (2010) investigated the same
Markov model where the focus was on currency options. In a more re-
cent paper, Chang et al. (2013) provided a closed-form solution for
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Table 1
Summary statistics of S&P 500 index return.

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Total

Panel A: trading days
Number of days 251 252 248 252 252 252 252 251 251 253 252 252 3018
Max 0.0347 0.0465 0.0489 0.0557 0.0348 0.0162 0.0195 0.0213 0.0288 0.1096 0.0684 0.0430 0.1096
Min −0.0285 −0.0600 −0.0505 −0.0424 −0.0359 −0.0165 −0.0169 −0.0185 −0.0353 −0.0947 −0.0543 −0.0398 −0.0947
Mean 0.0007 −0.0004 −0.0006 −0.0011 0.0009 0.0003 0.0001 0.0005 0.0001 −0.0019 0.0008 0.0005 7.88E-06
Std 0.0114 0.0140 0.0136 0.0164 0.0107 0.0070 0.0065 0.0063 0.0101 0.0258 0.0172 0.0114 0.0136
Skewness 0.0598 0.0007 0.0205 0.4251 0.0532 −0.1102 −0.0155 0.1028 −0.4941 −0.0337 −0.0605 −0.2110 −0.1088
Kurtosis 2.8535 4.3882 4.4478 3.6610 3.7589 2.8623 2.8493 4.1553 4.4481 6.6754 4.8510 4.9599 10.2871

Panel B: jump days
In excess of 2% 14 18 12 23 10 0 0 2 6 31 27 12 155
Mean 0.0241 0.0287 0.0297 0.0314 0.0285 0.0000 0.0000 0.0279 0.0280 0.0409 0.0315 0.0276 0.0310
Std 0.0037 0.0067 0.0084 0.0103 0.0075 0.0000 0.0000 0.0076 0.0070 0.0215 0.0116 0.0072 0.0133
In excess of −2% 9 19 13 29 5 0 0 0 11 41 28 10 165
Mean −0.0234 −0.0268 −0.0282 −0.0270 −0.0275 0.0000 0.0000 0.0000 −0.0265 −0.0411 −0.0353 −0.0340 −0.0313
Std 0.0026 0.0094 0.0077 0.0056 0.0058 0.0000 0.0000 0.0000 0.0051 0.0209 0.0160 0.0154 0.0135
In excess of ±2% 23 37 25 52 15 0 0 2 17 72 55 22 320
Mean 0.0055 0.0002 −1.88E-05 −0.0012 0.0024 0.0000 0.0000 0.0021 −0.0012 −0.0058 −0.0003 0.0019 −0.0011
Std 0.0239 0.0293 0.0304 0.0303 0.0302 0.0000 0.0000 0.0300 0.0298 0.0459 0.0369 0.0342 0.0340
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their Markov-modulated jump diffusion model and empirically con-
firmed the existence of jump switching and clustering.

Table 1 reports summary statistics of the S&P 500 index returns from
1999 to 2010. In Panel A, the summary statistics are based ondaily returns
on trading days, and in Panel B, we show samples of large returns
(jumps). From Panel A, we can see that the mean return is negative from
2000 to 2002 and in 2008. As is observed, the return volatility is larger in
the same years than in other years. This may due to the Internet bubble
in 2000 and the financial crisis in 2008. Generally, the dynamics of price
and return of the S&P 500 can be classified into two states, expansion and
recession. A state of recession is a period of low returns and high volatility,
and a state of expansion is a period of high returns and low volatility.

Panel B in Table 1 presents the summary statistics of stock index
returns on large return (jump) days where the return is in excess
of ±2%.1 Specifically, Panel B shows the number of jump days, the
means, and the standard deviations of jump day returns. Except in 2004
and 2005, jumps appear every year while the jump frequency and the
mean and standard deviation of jump day returns are state dependent.
The mean frequency of the jumps in the entire period is 26.67, whereas
the mean of jump frequencies in the recession state and expansion state
is 46.5 and 16.75, respectively. Additionally, the means and standard de-
viations of jump day returns are higher in the recession state than those
in the expansion state. When the information arrives, asset returns not
only generate an abnormal jump but the mean and volatility of this
jump size also vary under different states. Therefore, the mean and vola-
tility of jump returns are dependent on different states of the economy.

In this paper, we propose a regime-switching model with dependent
jump size risks, in which the jump size of the underlying asset changes
over time according to the state of the economy for two main reasons.
First, the past literature has documented strong empirical evidence of
regime-switching behavior of stock market prices (Alizadeh and
Nomikos, 2004; Hardy, 2001; Pan and Li, 2013; Rey et al., 2014; Schaller
and van Norden, 1997; Schwert, 1989; Timmermann, 2000). Second, em-
pirical observations also show that jump sizes in equity markets are not
independent but seem to come together for a certain period. According
to the previously observed features on large return days, we empirically
find jump clustering, which means that jumps are more frequent in
some periods than others, and different jump sizes under different states
are also observed. Therefore, we incorporate both jump intensity and
state-dependent jump sizes into the regime-switching model.

The regime-switching model with dependent jump size risks has the
ability to capture cyclicalmovements aswell as abnormal jump attributes
1 We assume that price changes of less than 2% are noise.
of the underlying asset price. This paper extends the Markov-modulated
diffusion model with independent jump risks (Chang et al., 2013; Lin
et al., 2014) and empirically examines three stock indices, the S&P 500,
DJIA and Nikkei 225 indices. The expectation maximization (EM) algo-
rithm is applied to estimate the parameters of themodelwhile also apply-
ing the Supplemented Expectation Maximization (SEM) algorithm to
estimate the standarddeviation of theseparameters. Fromthe empirically
estimated parameters in the dynamicmodel and the derived stock prices,
we show that the model is superior to the competing models in stock in-
dices. The estimation results also indicate that our model may capture
some critical empirically observed features of asset returns, including
asymmetry, leptokurtosis, and volatility clustering. Moreover, the results
suggest that jump frequencies and jump sizes are not independent, be-
cause high jump size risks are generally followed by continued high
jump size risks for the period of the high arrival rate, and low jump size
risks are generally followed by continued low jump size risks for the peri-
od of the low arrival rate. Therefore, the behaviors of jumps can address
jump clustering or volatility clustering driven by jump frequencies and
jump sizes.

In this paper, we propose a regime-switchingmodelwith dependent
jump size risks, in which the jump size of the underlying asset changes
over time according to the state of the economy. This paper contributes
to the literature on asset pricing and risk management (Chang et al.,
2013; Elliott et al., 2007; Elliott et al., 2010; Li et al., 2016; Lin et al.,
2014, 2015; Merton, 1976; Su and Hung, 2011). First, we propose a
more general jump size risk model, which advances the jump diffusion
model to a regime-switching model with dependent jump size risks
(RSMDJ) based on a reduced form of the regime-switching model. Sec-
ond, we develop EM and SEM algorithms to estimate the parameters of
the RSMDJ in the past estimation literature of the EM and SEM algo-
rithm (Lange, 1995; Li et al., 2016; Lin et al, 2014; Lin et al., 2015;
Mandelbrot and Benoit, 1963; Meng and Rubin, 1991). Finally, actual
market data are used to examine the empirical fit performance. Past
studies have provided strong empirical evidence of regime-switching
behavior in the price in financial markets (Bollen et al., 2000; Chang
et al., 2013; Chun et al., 2014; Elliott et al., 2007; Elliott et al., 2010;
Garcia and Perron, 1996; Li et al., 2016; Lin et al., 2014; Lin et al.,
2015; Rey et al., 2014). Compared to the competing models, our
regime-switching model with dependent jump size risks can better ex-
plain the dynamics of the S&P 500, DJIA and Nikkei 225 indices. The em-
pirical results are significant in capturing the asymmetry, leptokurtosis,
and volatility clustering of stock returns.

The paper is organized as follows. Section 2 outlines the economic
framework of the regime-switching model as well as the regime-
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switching models with independent and dependent jump size risks.
Section 3 demonstrates the estimations and tests. Section 4 pre-
sents our empirical analysis and results. Section 5 presents the
conclusions.

2. Modeling

This section outlines and compares the basic regime-switching
model (RSM), the regime-switching model with independent jump
risks (RSMIJ), and the regime-switching model with dependent size
risks (RSMDJ). These models are developed for stock market indices
returns to explain the economic implications of the models.

2.1. Regime-switching model

The parameters of the basic regime-switchingmodel are functions of
a Markov chain in which the states represent the hidden states of an
economy or different stages of stock cycles. Suppose that there are
two states; the state of low return and high volatility occurs (a recession
state) when qt = 1, while the state of high return and low volatility oc-
curs (an expansion state) when qt =2. Here, qt is the state variable that
is unobservable at time t and is assumed to follow the first-order Mar-
kov process. If the probability of the state is dependent on the current
regime, its mathematical expression regardless of prior states is
expressed as

Pr qtjqt−1;…; q1ð Þ ¼ Pr qt jqt−1ð Þ: ð1Þ

Following the transitionmatrix, P is used to control the probability of
regime-switching and is expressed as

P ¼ p11 p12
p21 p22

� �
; ð2Þ

where pij is the probability of transition from state i at time t− 1 to state
j at time t, which is given by

P qt ¼ jjqt−1 ¼ ið Þ ¼ pi j ; i; j ¼ 1; 2: ð3Þ

Under state i at any time t − 1, the probability of transition must
meet the criterion given by

X2
j¼1

pi j ¼ 1;∀i ¼ 1;2: ð4Þ

Therefore, at a discrete time, the two states for the return on under-
lying assets can be expressed as

Rt ¼ μ1 þ σ1Zt ; qt ¼ 1
μ2 þ σ2Zt ; qt ¼ 2

�
; ð5Þ

where Rt represents the asset returns at time t and Zt denotes a standard
normal distribution. When in recession state, the mean value is μ1 and
the volatility is σ1. In an expansion state, the mean value is μ2 and the
volatility is σ2. According to Engel and Hamilton (1990), the model
could describe a variety of processes depending on the values given by
the parameters. Thus, the model can better address the variation pro-
cess of asset returns. However, this model cannot capture the jump fea-
ture when the financial market responds to unexpected events, such as
the global financial crisis and the dot-com bubble. Therefore, a regime-
switching model with independent jump risks is introduced in the fol-
lowing section.
2.2. Regime-switching model with independent jump risks

The basic regime-switching model cannot capture the jump behav-
ior of asset returns when extreme information appears in the market.
In response, Lin et al. (2014) introduced the jump arrival and jump
size into the regime-switching model, providing a comprehensive de-
scription of asset returns. The jump-diffusion model proposed by
Merton (1976) also showed that the underlying assets are affected by
significant information, and as such, the return is relevant to jump fre-
quency and jump size. Further, the Markov-switching model of the
Poisson jump process is also presented. It refers to a regime-switching
model with independent jump risks wherein the jump terms are irrele-
vant to the state (Lin et al., 2014).

At discrete times, two states with independent jump risks can be
expressed as

Rt ¼
μ1 þ σ1Zt þ

XNt

n¼1

log Yn ; qt ¼ 1

μ2 þ σ2Zt þ
XNt

n¼1

log Yn ; qt ¼ 2

8>>>><>>>>: ; ð6Þ

where the assumptions of Zt, μi, σi, and qt are the same as those of the
regime-switching model. Nt is the number of jumps at time t, which is
independent and follows a Poisson distribution of parameter λ. Yn de-
notes the jump size that follows a log-normal distribution with mean
μy and standard deviation σy. Both the mean and standard deviation
also follow the first-order Markov chain switch between the states de-
scribed in Section 2.1. However, we find that the mean and volatility
of jump returns are dependent on different regimes. Therefore, we de-
velop the RSMDJ, in which the jump size risks are dependent on differ-
ent states.

2.3. Regime-switching model with dependent jump size risks

The RSMIJ assumes that the mean and volatility of sizes are consis-
tent and unaffected by the state in which they are found. However, em-
pirical observations show that jumps in the equity market are not
independent and seem to have a different mean and volatility of jump
sizes in different states. This can be observed from the dynamic process
of the S&P 500 index returns. Suppose that the market is in a recession
state; the jump arrival rate in the recession state should be higher (bad
news comes frequently) than that in the expansion state. When signif-
icant information appears in themarket, the jump size and volatility be-
come larger when the information contains bad news. Therefore, the
RSMDJ is explored in this paper to improve the characteristics of the
terms {Yn}, providing that the jump size is also affected by the state
(expressed as Yqt ;n).

At discrete times, two states with dependent jump size risks can be
expressed as

Rt ¼
μ1 þ σ1Zt þ

XNt

n¼1

log Y1;n ; qt ¼ 1

μ2 þ σ2Zt þ
XNt

n¼1

log Y2;n ; qt ¼ 2

8>>>><>>>>: ; ð7Þ

where the assumptions of Zt, μi, σi, and qt are the same as those of the
regime-switchingmodel under no jump events. Nt denotes the number
of jumps at time t, which is dependent and follows a Poisson distribu-
tion with parameter λ. Yi,n indicates the jump sizes that follow the log-
normal distribution with a mean μiy and standard deviation σiy with
state i. Both the mean and standard deviation are governed by a first-
order Markov chain.
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3. Estimation and tests

3.1. Estimation

It is assumed that return Re ¼ fR1; R2; …; RTg represents the ob-
servable data, whereas the number of jumps at each time interval
Ñ= {N1, N2,…, NT} and regime qe ¼ fq1; q2; : ::; qTg are unobservable
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Fig. 1. Time series dynamic of S&P 500 index, Dow Jon
and consider missing data. These observed and missing data are col-
lectively called complete data. The parameter space of the RSMDJ is
expressed as

ΘRSMDJ ¼ w1; p11; p22; μ1; μ2; μ1y; μ2y;σ1;σ2;σ1y;σ2y;λ
n o

0 ≤ w1; p11; p22f g ≤ 1;

−∞ b μ1; μ2; μ1y; μ2y

n o
b∞; 0 ≤ σ1;σ2;σ1y;σ2y
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Table 2
Summary statistics of Dow Jones Industrial Average Index Return.

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Total

Panel A: trading days
Number 251 252 248 252 252 252 252 251 251 253 252 252 3018
Max 0.0280 0.0481 0.0437 0.0615 0.0353 0.0174 0.0204 0.0196 0.0252 0.1051 0.0661 0.0382 0.1051
Min −0.0263 −0.0582 −0.0740 −0.0475 −0.0367 −0.0165 −0.0188 −0.0198 −0.0335 −0.0820 −0.0473 −0.0367 −0.0820
Mean 0.0009 −0.0003 −0.0003 −0.0007 0.0009 0.0001 0.0000 0.0006 0.0002 −0.0016 0.0007 0.0004 0.0001
Std 0.0102 0.0131 0.0135 0.0160 0.0104 0.0068 0.0065 0.0062 0.0092 0.0238 0.0152 0.0102 0.0127
Skewness 0.0431 −0.2812 −0.5680 0.4905 0.1117 0.0095 −0.0031 −0.1092 −0.6195 0.2220 0.0713 −0.1772 −0.0005
Kurtosis 2.8665 4.6802 6.9590 4.1861 4.0871 2.8642 3.0227 4.1903 4.5799 6.7269 5.1151 5.0991 10.3570

Panel B: jump days
In excess of 2% 10 13 12 24 10 0 1 0 5 32 26 8 141
Mean 0.0226 0.0260 0.0278 0.0309 0.0285 0.0000 0.0281 0.0000 0.0274 0.0375 0.0284 0.0269 0.0297
Std 0.0024 0.0078 0.0084 0.0110 0.0077 0.0000 0.0079 0.0000 0.0074 0.0209 0.0103 0.0090 0.0133
In excess of −2% 6 18 12 24 5 0 0 0 9 40 19 10 143
Mean −0.0231 −0.0273 −0.0300 −0.0271 −0.0275 0.0000 0.0000 0.0000 −0.0263 −0.0374 −0.0376 −0.0352 −0.0306
Std 0.0020 0.0094 0.0132 0.0069 0.0072 0.0000 0.0000 0.0000 0.0056 0.0177 0.0165 0.0171 0.0126
In excess of ±2% 16 31 24 48 15 0 1 0 14 72 45 18 284
Mean 0.0054 −0.0049 −0.0035 0.0019 0.0038 0.0000 0.0036 0.0000 −0.0008 −0.0041 0.0025 0.0024 −0.0007
Std 0.0229 0.0280 0.0312 0.0307 0.0291 0.0000 0.0290 0.0000 0.0288 0.0420 0.0371 0.0353 0.0328
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The complete-data likelihood function under the RSMDJ is expressed
as

LRSMDJ
C ¼ ΘRSMDJ j~R; ~q; ~N

� �
¼ ∏

T

t¼1
Pr Rt jqt ;Nt ;ΘRSMDJ
	 


∏
T

t¼1
Pr Nt jΘRSMDJ
	 


∏
T

t¼1
Pr qt jqt−1;ΘRSMDJ
	 


wq1 :

¼ wq1 ∏
T

t¼1
pqt−1qt ∏

T

t¼1
Pr Rt jqt ;Nt ;ΘRSMDJ
	 


∏
T

t¼1
Pr Nt jΘRSMDJ
	 


Thus, LRSMDJ
iC ¼ ðΘRSMDJ j~RÞ represents the incomplete-data likelihood

function, which is expressed as

LRSMDJ
iC ¼ ΘRSMDJ j~R

� �
¼

X2
q1 ;q2 ;…;qT¼1

X∞
N1;N2 ;…;NT¼0

LRSMDJ
C ¼ ΘRSMDJj~R; ~q; ~N

� �
:

However, if there are too many periods T, the possible combinations
of {q1, q2, …, qT} become too large, making the calculation of the
incomplete-data likelihood function too difficult. Therefore, the EM
algorithm proposed by Dempster et al. (1977) is used to determine
the maximum likelihood estimations by the complete-data likelihood
function. The EM algorithm has two steps, E and M. Step E takes the
logarithm of the complete-data likelihood function and computes the
conditional expectation given the observable return ~R and previous
Table 3
Summary statistics of Nikkei 225 index return.

1999 2000 2001 2002 2003 2004

Panel A: trading days
Number 245 247 245 246 245 246
Max 0.0489 0.0423 0.0722 0.0574 0.0333 0.0276
Min −0.0344 −0.0723 −0.0686 −0.0410 −0.0523 −0.0497
Mean 0.0014 −0.0013 −0.0009 −0.0009 0.0009 0.0003
Std 0.0127 0.0144 0.0186 0.0162 0.0145 0.0113
Skewness 0.1668 −0.4195 0.2025 0.2706 −0.5235 −0.3556
Kurtosis 4.0519 5.2450 4.2461 3.1708 3.5170 4.0103

Panel B: jump days
In excess of 2% 15 17 31 22 19 9
Mean 0.0286 0.0261 0.0321 0.0298 0.0270 0.0270
Std 0.0082 0.0061 0.0104 0.0083 0.0052 0.0051
In excess of−2% 12 19 30 31 23 9
Mean −0.0267 −0.0296 −0.0304 −0.0260 −0.0283 −0.0289
Std 0.0051 0.0125 0.0109 0.0054 0.0074 0.0083
In excess of ±2% 27 36 61 53 42 18
Mean 0.0040 −0.0033 0.0014 −0.0027 −0.0023 −0.0027
Std 0.0288 0.0299 0.0332 0.0285 0.0279 0.0283
stage parameters Θ(k − 1)
RSMDJ. The expression for the log-complete-

data likelihood function under the RSMIJ is given by

LRSMDJ
C ¼ ΘRSMDJ

~R; ~q; ~N
���� �

¼ logwq1 þ
XT
t¼2

logpqt−1qt :

þ
XT
t¼1

−λþ nt logλ− lognt !−
1
2
log 2π σ2

qt
þ ntσ2

qty

� �h i
−

Rt− μqt þ ntμqty

� �h i2
2 σ2

qt
þ ntσ2

qty

� �
264

375

Assuming that the parameter of the iteration is k− 1 and thatΘRSMDJ
(k − 1)

has been obtained, then step E of iteration K can be expressed as

Q ΘRSMDJ Θk−1
RSMDJ

���� �
¼ E logLRSMDJ

C ΘRSMDJ R
�
; q
�
;N
����� �

R
�
;Θ k−1ð Þ

RSMDJ

���h i
¼ ∑2

i¼1 logwi Pr q1 ¼ i R
�
;Θ k−1ð Þ

RSMDJ

���� �
þ∑2

i¼1∑
2
j¼1∑

T
t¼1 logpi j Pr q1 ¼ i R

�
;Θ k−1ð Þ

RSMDJ

���� �
þ∑T

t¼1∑
∞
nt¼0 −λþ nt logλ− lognt !ð ÞPr q1 ¼ i R

�
;Θ k−1ð Þ

RSMDJ

���� �
þ∑2

i¼1∑
2
j¼1∑

∞
nt¼0 log Pr Rt qt ¼ i;Nt ¼ ntjð ÞPr Nt ¼ nt R

�
;Θk−1

RSMDJ

���� �
Pr qt ¼ i R

�
;Θðk−1Þ

RSMDJ

���� �
:

In step M, the parameter ΘRSMDJ = {w1, p11, p22, μ1, μ2, μ1y,
μ2y, σ1, σ2, σ1y, σ2y, λ} should be determined and maximized. The func-
tion in the formula presented above can be divided into three parts,
2005 2006 2007 2008 2009 2010 Total

245 248 245 244 243 244 2943
0.0246 0.0352 0.0360 0.1323 0.0503 0.0319 0.1323

−0.0388 −0.0423 −0.0557 −0.1211 −0.0504 −0.0392 −0.1211
0.0014 0.0002 −0.0007 −0.0020 0.0007 −0.0002 −0.0001
0.0086 0.0125 0.0119 0.0293 0.0175 0.0132 0.0159

−0.2582 −0.1526 −0.5947 −0.2481 −0.0538 −0.2089 −0.2850
4.7218 3.4131 5.0820 6.7541 3.5272 3.0392 9.0103

4 11 7 40 24 17 216
0.0271 0.0281 0.0277 0.0380 0.0381 0.0339 0.0300
0.0050 0.0048 0.0048 0.0224 0.0158 0.0167 0.0125
2 13 17 46 29 18 249

−0.0295 −0.0289 −0.0277 −0.0431 −0.0422 −0.0399 −0.0310
0.0083 0.0074 0.0077 0.0248 0.0246 0.0253 0.0142
6 24 24 86 53 35 465

−0.0022 −0.0031 −0.0067 −0.0054 −0.0022 −0.0023 −0.0027
0.0288 0.0286 0.0283 0.0470 0.0466 0.0442 0.0333
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namely, the initial probability, the transition probability, and the re-
maining parameters. Thus, the parameter estimations of these three
parts can be identified separately and their function of Q is maximized.

The first and second parts can be used to derive ŵ1, p̂11, and p̂22 by

constraints ∑
2

i¼1
wi ¼ 1 and ∑

2

i¼1
pi j ¼ 1 with a Lagrange multiplier. The

parameter estimation of μ1, μ2, μ1y, μ2y, σ1, σ2, σ1y, σ2y, and λ can derive
d1Q(ΘRSMDJ|ΘRSMDJ

(k − 1)) and d2Q(ΘRSMDJ|ΘRSMDJ
(k − 1)) through an EM gradient

algorithm (Lange, 1995). The first- and second-order differentials are
developed for each parameter of Q(ΘRSMDJ|ΘRSMDJ

(k − 1)). The parameter of
the next stage can then be identified using the formula given by

Θ kð Þ
RSMDJ ¼ Θ k−1ð Þ

RSMDJ−a d2Q ΘRSMDJ jΘ k−1ð Þ
RSMDJ

� �h i−1
d1Q ΘRSMDJ jΘ k−1ð Þ

RSMDJ

� �
:

Thus,

Θ kð Þ
RSMDJ ¼ arg max

Θ
QRSMDJ Θ;Θ k−1ð Þ

� �
;

where a ∈ (0, 1) such that the parameter value does not exceed the pa-
rameter space.

Under the condition of theprogressive increase ofQ(ΘRSMDJ|ΘRSMDJ
(k − 1)),

steps E andM continuously iterate until constricted to a local maximum
value. Finally, the SEM algorithm (Meng and Rubin, 1991) is used to ap-
proximate the variance of the estimation with the EM constringency
rate.

3.2. Tests

This study uses the likelihood ratio (LR) as a testing model. The null
hypothesis is H0 : θ ∈ Θ0 against the alternative hypothesis
H1 : θ ∈ Θ1\Θ0, Θ0 ⊂ Θ1. The testing statistics are

Λ ¼ 2 ln L R;Θ1ð Þ− ln L R;Θ0ð Þð Þ;
where ln L(R; Θi) is the log-maximum likelihood function under Hi.
Under the null hypothesis and when the sample is large enough, the
Table 4
Parametric estimations and model test of stock index returns under BSM, RSM, RSMIJ and RSM

Index Model p̂11 p̂22 μ̂1 μ̂2 μ̂1y μ

DJIA BSM −0.0000
0.0002

RSM 0.9824 0.9933 −0.0014 0.0005
(0.0064) (0.0031) (0.0007) (0.0002)

RSMIJ 0.9828 0.9940 −0.0015 0.0007 −0.0001
(0.0048) (0.0021) (0.0104) (0.0030) (0.0582)

RSMDJ 0.9864 0.9935 −0.0012 0.0011 −0.0021 0
(0.0031) (0.0021) (0.0002) (0.0004) (0.0012) (

S&P 500 BSM 0.0001
(0.0003)

RSM 0.9798 0.9909 −0.0010 0.0004
(0.0053) (0.0074) (0.0005) (0.0002)

RSMIJ 0.9815 0.9949 −0.0009 0.0005 −0.0002
(0.0039) (0.0028) (0.0005) (0.0002) (0.0198)

RSMDJ 0.9795 0.9791 −0.0006 0.0002 −0.0007 0
(0.0031) (0.0021) (0.0002) (0.0004) (0.0012) (

Nikkei 225 BSM −0.0001
(0.0003)

RSM 0.9641 0.9903 −0.0016 0.0005
(0.0057) (0.0024) (0.0011) (0.0003)

RSMIJ 0.9709 0.9932 −0.0011 0.0008 −0.0016
(0.0061) (0.0010) (0.0156) (0.0907) (0.0548)

RSMDJ 0.9754 0.9820 −0.0010 0.0002 −0.0035 0
(0.0069) (0.0032) (0.0052) (0.0583) (0.0402) (

Notation: BSM, RSM, RSMIJ, and RSMDJ are the estimation by using the MLE (maximum likelih
regime-switching model with independent jump risk, and the regime-switching model with de
that round to four decimal places. “0”means the zero value and “0.0000”means it is smaller th
⁎ The null hypothesis can be rejected at the 1% significance level.
testing statistics Λ are distributed as c2(r), where r is the difference be-
tween the numbers of parameters in the twomodels. If Λ N Χ2r,1 − α, the
null hypothesis is rejected.

In this study, we perform three LR tests as follows: test (a) is based
on the BSM (normal distribution assumption for the return) against
the RSM.When Λ N Χ24,1 − α, the BSM is rejected and the RSM is proven
to be better than the BSM. Test (b) is based on the RSM against the
RSMIJ. When Λ N Χ23,1 − α, the RSM is rejected and the RSMIJ is proven
to be better than the RSM. Test (c) is based on the RSMIJ against the
RSMDJ.When Λ N Χ23,1 − α, the RSMIJ is rejected and the RSMDJ is prov-
en to be better than the RSMIJ.

4. Empirical analysis

In this section, we first perform a data analysis for the three major
stock indices in the world and then estimate the parameters in BSM,
RSM, RSMIJ, and RSMDJ. The estimated results and LR tests will be pre-
sented as well.

4.1. Descriptions of the stock indices

Using 12 years of daily data from Jan. 1, 1999 to Dec. 31, 2010, we
examined the three major stock market indices, including the S&P
500, DJIA, and Nikkei 225 indices. Fig. 1 shows the dynamics of
these market indices over the past twelve years. All three indices
have similar patterns and have at least two market cycles that expe-
rienced significant corrections in the 2000 and 2008 recessions.
These dramatic market falls are associated with the dot-com bubble
in 2000, the 9/11 terrorists attacks in 2001, the JPY Carry Trade and
American subprime mortgage crisis in 2007 as well as the global fi-
nancial crisis in 2008.

Tables 1, 2, and 3 show the descriptive statistics of the S&P 500, the
Dow Jones Industrial Average, and the Nikkei 225 indices. Over the past
twelve years, stock markets around the world have experienced two
business cycles in which peaks occurred in 2000 and at the end of
2007, while bottoms occurred in 2003 and 2009. Accordingly, in the
years from 2000 to 2002 and in the year 2008, there were two
DJ.

^2y σ̂1 σ̂2 σ̂1y σ̂2y λ̂1 − 2 log Λ

0.0154
0.0003
0.0237 0.0102 841.33⁎

(0.0003) (0.0009)
0.0229 0.0081 0.0105 0.4110 13.25⁎

(0.0666) (0.0004) (0.0035) (0.0172)
.0002 0.0174 0.0079 0.0275 0.0100 0.2696 15.31⁎

0.0043) (0.0006) (0.0008) (0.0052) (0.0009) (0.0512)
0.0127
(0.0005)
0.0207 0.0082 822.23⁎

(0.0011) (0.0016)
0.0195 0.0069 0.0123 0.2319 72.56⁎

(0.0007) (0.0003) (0.0077) (0.0079)
.0044 0.0192 0.0068 0.0374 0.0025 0.0900 23.83⁎

0.0043) (0.0006) (0.0008) (0.0052) (0.0009) (0.0023)
0.0159
(0.0002)
0.0257 0.0112 555.36⁎

(0.0002) (0.0003)
0.0250 0.0104 0.0113 0.3246 9.85⁎

(0.0089) (0.0012) (0.0088) (0.0198)
.0048 0.0176 0.0103 0.0339 0.0025 0.1096 21.61⁎

0.0050) (0.0074) (0.0078) (0.0055) (0.0011) (0.0018)

ood function) and EM algorithms, in normal distribution, the regime-switching model, the
pendent jump risks, respectively. The real numbers in the table are decimal presentations
an 0.0001 and is zero rounded to four decimal places.



266 Y.-L. Hsu et al. / Economic Modelling 54 (2016) 260–275
recessions in which the stock market returns exhibited negative means
with high volatility. On the contrary, an expansion of other years in
which stockmarket returns exhibited positivemeanswith lowvolatility
was observed.

Wedefine a jumpday as a day in excess of±2% stock returns; that is,
there is a high probability of jump risks when the returns of the day are
more than +2% or less than−2%. A further analysis of the returns and
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Fig. 2. The dynamics of return, the probabilistic dynamics of recession state, and
volatility in these jump days is presented in Panel B. Consistent with the
results in Panel A, the means and standard deviations of jump day
returns are dependent on different market conditions: a bear market
or a bull market. That is, the absolute mean and standard deviation of
returns in jump days are higher in recessions than in expansions.

From the above analysis, we can see that the mean and volatility of
stock market returns and the jump risks are affected by market
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the probabilistic dynamics of jumps for S&P 500 index return under RSMDJ.
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conditions and undergo a regime switch phenomenon. During a bear
market, the stock market experiences low returns and high volatility,
which are accompanied by more numerous and volatile jumps. During
a bull market, the stock market has high returns and low volatility ac-
companied by fewer and more steady jumps.
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Fig. 3. The dynamics of return, the probabilistic dynamics of recession state, an
4.2. Estimations and tests

In this section, we estimate and test the BSM, RSM, RSMIJ, and
RSMDJ models for the S&P 500, Dow Jones Industrial Average, and
Nikkei 225 indices. The BSM uses a normal distribution to describe the
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d the probabilistic dynamics of jumps for DJIA index return under RSMDJ.
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return and estimate parameters with population means and standard
deviation. The EM and SEM algorithms are applied to estimate the pa-
rameters of the RSMDJ.

Table 4 shows the estimation and LR test results for the S&P 500
index of the four models: the BSM, RSM, RSMIJ, and RSMDJ. Under the
BSM, the return follows the normal distribution with a mean of 0.0001
and a standard deviation of 0.0127. Under the RSM, we show that the
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Fig. 4. The dynamics of return, the probabilistic dynamics of recession state, and t
transition probabilities p11 = 0.9798 and p22 = 0.9909 are close to 1,
which means that the probability of remaining in regime one (two) in
the flowing period is high. The market switches to another regime
only after it remains in one regime for a long time, which denotes that
state 1 remains for 99 days and transforms into state 2 on the 100th
day when we suppose p11 = 0.99 and state 1 now. The estimated
mean returns under Regimes 1 and 2 are −0.001 and 0.0004 and are
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he probabilistic dynamics of jumps for Nikkei 225 index return under RSMDJ.



Table 5
The moment formulas for regime-switching model with dependent jump risks.

Model

Regime-switching model with dependent jump risks

Mean

μ ¼ ∑
2

i¼1
πiðμ i þ λμ iyÞ

Variance

σ2 ¼ ∑
2

i¼1
πi

"
E

 
∑
Nt

n¼1
; logYi;n

!2

þ 2E

 
∑
Nt

n¼1
; logYi;n

!
ðμ i−μÞ þ ðμ i−μÞ2 þ σ2

i

#
Skewness

1
σ3 ∑

2

i¼1
πi

"
E

 
∑
Nt

n¼1
; logYi;n

!3

þ 3E

 
∑
Nt

n¼1
; logYi;n

!2

ðμ i−μÞ þ 3E

 
∑
Nt

n¼1
; logYi;n

!
½ðμ i−μÞ2 þ σ2

i � þ ðμ i−μÞ3 þ 3ðμ i−μÞσ2
i

#
Kurtosis

1
σ4 ∑

2

i¼1
πi

"
E

 
∑
Nt

n¼1
; logYi;n

!4

þ 4E

 
∑
Nt

n¼1
; logYi;n

!3

ðμ i−μÞ þ 6E

 
∑
Nt

n¼1
; logYi;n

!3

½ðμ i−μÞ2 þ σ2
i � þ 4E

 
∑
Nt

n¼1
; logYi;n

!
½ðμ i−μÞ3 þ 3ðμ i−μÞσ2

i � þ ðμ i−μÞ4 þ 6ðμ i−μÞ2 þ 3σ2
i

#

Where

E

 
∑
Nt

n¼1
logYi;n

!
¼ λμqty

; E

 
∑
Nt

n¼1
logYi;n

!2

¼ μ2
qty

ðλ2 þ λÞ þ σ2
qt y

λ ; E

 
∑
Nt

n¼1
logYi;n

!3

¼ μ3
qty

ðλ3 þ 3λ2 þ λÞ þ 3μqt y
σ2

qty
ðλ2 þ λÞ ;

E

 
∑
Nt

n¼1
log Yi;n

!4

¼ μ4
qty

ðλ4 þ 6λ3 þ 7λ2 þ λÞ þ 6μ2
qty
σ2

qt y
ðλ3 þ 3λ2 þ λÞ þ 3σ4

qt y
ðλ2 þ λÞ ∘
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associated with asymmetric estimated standard deviations 0.0207 and
0.0082, respectively. The results conform to the real process of market
returns in which the regimes of a “bear market with high variance”
and a “bull market with low variance” can be characterized.

Under the RSMIJ, we observe that the estimated results of themeans,
standard deviations and transition probabilities are similar to those
under the RSM. The transition probability of regimes p11 = 0.9815
and p22 = 0.9949 remain close to 1, indicating that the probability of
staying in regime one (two) in the flowing period is high. In the reces-
sion state, the mean return is positive and the volatility is high, while
in the expansion state, the mean return is negative and the volatility is
low. Moreover, compared to the estimated result of the RSM, the
means are larger and volatilities are smaller, as explained by the jump
term. The estimation of λ, the number of jumps between every time
segment, is 0.2319. The mean and standard deviation of the jumps are
−0.0002 and 0.0123, respectively, showing that the average return
caused by the jump has a downward trend when significant events
occur in the market within a 12-year sample period.

The lastmodel is the RSMDJ developed by this study. Themodel con-
siders the jump size in addition to the regime switch and jump terms.
The estimated results of the means, standard deviations, and transition
Table 6
Moments estimations for Dow Jones Industrial Average, S&P 500 and Nikkei 225.

Index Model Mean

DJIA Data 0.0001
BSM 0.0001
RSM 0.0001
RSMIJ 0.0003
RSMDJ 0.0002

S&P 500 Data 0.0000
BSM 0.0000
RSM 0.0000
RSMIJ 0.0001
RSMDJ 0.0001

Nikkei 225 Data −0.0001
BSM −0.0001
RSM −0.0001
RSMIJ 0.0000
RSMDJ −0.0001

Notation: Datameans themoments of the data for DJIA index log return, S&P 500 index log retu
ments of the log return by the estimated result, RSMdenotes using the regime switchingmodel
regime-switchingmodel with independent jump risk to evaluate the moments of the log return
jump risks to evaluate themoments of the log return by the estimated result. The real numbers i
value and “0.0000” means it is smaller than 0.0001 and is zero rounded to four decimal places
probabilities are similar to those in the RSM and RSMIJ. The transition
probabilities of the regimes, p11 = 0.9795 and p22 = 0.9791, are also
close to one. Compared to the jump terms of the RSMIJ, the estimated
number of jumps λ is smaller than that under RSMIJ. Furthermore,
under RSMDJ, the jump size and volatility are different across regimes.
More specifically, the mean (volatility) of jump risks under RSMIJ is
the same regardless of whether the state is in an expansion or a reces-
sion. However, under RSMDJ, the jump size and volatility are different
across states and better correspond to reality. The mean and standard
deviation of jumps under a recession regime are −0.0007 and 0.0374,
respectively. In an expansion regime, the mean and standard deviation
of jumps are 0.0044 and 0.0025. These results indicate that the mean of
the jump events in the recession state is smaller and the volatility of the
jump events is greater than those in an expansion state.

Jump risk models can better explain the behavior of the reaction of
stock market indices to crises like the 2008–2009 financial crisis than
the existing models. In this paper, the RSMDJ model incorporates de-
pendent jump size risks into the regime-switching model to describe
the reaction of stock market indices to crises such as the 2008–2009 fi-
nancial crisis than existing models. With respect to the empirical evi-
dence, we examine the three major stock market indices, including
Variance Skewness Kurtosis

0.0002 −0.0005 10.3570
0.0002 0.0000 3.0000
0.0001 −0.1198 4.5779
0.0001 −0.1734 5.1760
0.0002 −0.1421 7.1993
0.0002 −0.1088 10.2871
0.0002 0.0000 3.0000
0.0002 −0.1406 5.3884
0.0002 −0.1478 5.6757
0.0002 −0.1516 11.5411
0.0003 −0.2850 9.0103
0.0003 0.0000 3.0000
0.0003 −0.1452 5.1911
0.0003 −0.1179 5.2334
0.0002 −0.2973 7.6513

rn, and Nikkei 225 return, BSM denotes using the normal distribution to compute themo-
to compute themoments of the log return by the estimated result, RSMIJ presents using the
by the estimated result, and RSMDJ is using the regime-switching model with dependent
n the table are decimal presentations that round to four decimal places. “0”means the zero
.
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the S&P 500, DJIA, and Nikkei 225 indices by using 12 years of daily data
from January 1, 1999 to December 31, 2010 that includes the 2008–
2009 financial crisis. The LR test results in the last column of Table 4
show that all three null hypotheses are concluded as being rejected.
With a 0.05 significance level, (1) the RSM is better than the BSM;
(2) the RSMIJ is better than the RSM; and (3) the RSMDJ is better than
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Fig. 5. Autocorrelations of squared returns in S&
the RSMIJ. The results imply that the RSMDJ can better describe the dy-
namic process of stock index returns because it considers the possibility
that jump sizes are different in terms of means and volatilities across
regimes.

Figs. 2 to 4 show the plots of returns, the dynamic probability of the
recession state, and the dynamic probability of the jumps for the S&P
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P 500 index under RSM, RSMIJ and RSMDJ.



Table 7
Autocorrelations of squared returns for RSM, RSMIJ and RSMDJ.

Model Autocorrelation of squared return

RSM 1
νRSM

½ðμ2
1 þ σ2

1Þ
2−ðμ2

2 þ σ2
2Þ

2�2 ð−1þp11þp22Þk ð1−p11Þð1−p22 Þ
ð2−p11−p22Þ2

RSMIJ
1

νRSMIJ

( 
½ðμ2

1 þ σ2
1Þ

2−ðμ2
1 þ σ2

1Þ
2�2 þ 4λμy∑

2

i¼1
μ iðμ2

i þ σ2
i Þ þ 4λ2μ2

y ðμ1−μ2Þ2
!

ð−1þp11þp22 Þkð1−p11Þð1−p22Þ
ð2−p11−p22Þ2

þ 4λμy
½1−ð−1þp11þp22Þ�k

2−p11−p22
∑
2

i¼1
μ ið1−p2−i;2−iÞðμ2

i þ σ2
i Þ
)

RSMDJ
1

νRSMDJ

(
∑
2

i¼1
πiðMk

ii‐πiÞ½ðμ i þ λμ iyÞ2 þ σ2
i þ λðμ2
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2�
2
−2∏

2

i¼1
πi½ðμ i þ λμ iyÞ2 þ σ2

i þ λðμ2
iy þ σ2

iyÞ
2�2
)

Notation:(1) RSM denotes the regime switching model, RSMIJ presents the regime-switching model with independent jump risk, RSMDJ is the regime switching model with dependent
jump risks.
(2) νRSM = π1(μ14 + 6μ12σ1

2 + 3σ1
4) + π2(μ24 + 6μ22σ2

2 + 3σ2
4)− [π1(μ12 + σ1

2) + π2(μ22 + σ2
2)]2.。
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2 The autocorrelation function equation under the RSM and RSMIJ was provided by Lin
et al. (2014). Appendix B shows the detailed derivation process of the autocorrelation
function equation of the squared returns under the RSMDJ.
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500 index, Dow Jones Industrial Average index, and Nikkei 225 index, re-
spectively. Under the recession state, the probability of the S&P 500 index
returns is higher from 2000 to 2002 and 2008 to 2009 than other years.
Regime switches clearly occurred in 2003 and 2007, indicating that the
markets at that time switched to the other regime. The probability of
jumps shows that the return is relatively high and stable from 2003
to 2006, although this period experienced the dot-com bubble and the
9/11 terrorist attacks from 2000 to 2002. However, the jump probability
of the returns significantly increased because of the subprime mortgage
crisis and the global financial crisis from 2008 to 2009.

Furthermore, we observe the probabilistic dynamics of the recession
state and the jump risks before, during and after the financial crisis in
Fig. 2. We show that the RSMDJ can better correspond to reality. During
the pre-crisis period (2004–2007), the probability of the recession state
(refer to state 1 in the figure) being lowmeans that the S&P 500market
is in an expansion. During the financial crisis period (2008–2009), the
probability of the recession state being high means that the S&P 500
market is in a recession. During the post-crisis period (2010–2011),
due to the European debt crisis, the probability of the recession state
switching between high and low.

4.3. Asymmetry and leptokurtosis

We further analyze the derived formulas of the return skewness and
kurtosis in this section. The skewness and kurtosis of each model are
then compared to determine whether the characteristics of the empiri-
cal data can be identified under the four models, including the BSM,
RSM, RSMIJ, and RSMDJ.

Timmermann (2000) derived the skewness and kurtosis equations of
the RSM. Lin et al. (2014) derived the skewness and kurtosis equations of
the RSMIJ. Appendix 1 shows the detailed derivation process of the skew-
ness and kurtosis equations of the RSMDJ in Table 5. The equations of the
RSMIJ are degraded to the skewness and kurtosis equations of the RSM if
the jump terms (average jumps λ = 0) are not considered. Meanwhile,
the equations of the RSMDJ are degraded to the skewness and kurtosis
equations of the RSMIJ if the regime does not associate themean and var-
iation of the jump terms, i.e., μ1y = μ2y and σ1y = σ2y.

Table 6 reports the skewness and kurtosis as calculated by incorpo-
rating the parameter estimates in Table 4 into the formula for each
model. The results of the S&P 500, Dow Jones Industrial Average, and
Nikkei 225 indices show that the returns exhibit asymmetry and
leptokurtosis, which is consistent with the results of Fama (1965), in
which the asset returns show asymmetry, leptokurtosis, and fat tails.
TheBSMassumes a normal distribution return, a skewness of zero and
the kurtosis at 3, so it cannot capture the asymmetry and leptokurtosis
features. However, the other three regime-switchingmodels can success-
fully capture the leptokurtosis. Take theDJIA, for example; the kurtosis es-
timates are 4.5779 for RSM, 5.1760 for RSMIJ, and 7.1993 for RSMDJ. The
kurtosis for the sample data is 10.3570, indicating that the RSMDJ pro-
vides the best empirical fit among these regime-switching models.
When comparing the kurtosis difference (in standard RSM) between
jump risk regime-switching models, the RSMIJ is only marginally better
than the RSM; however, the RSMDJ captures the dynamic of the data
much better.

In the fifth column in Table 6, except for the BSM, the skewness es-
timates are all negative, which accords with the empirical data. The
skewness estimation of the RSMDJ is similar to that of the RSMIJ when
the absolute skewness of the return is smaller than 0.2, such as the
DJIA and S&P 500 index. However, for the Nikkei 225 with an absolute
skewness larger than 0.2, the skewness estimation of the RSMDJ is
much closer to the actual value (the skewness of the data) than that
of other competingmodels. The results suggest that themodel with de-
pendent jump size risks, low jump size risks in good times and high
jump size risks in bad times capture both the asymmetry and
leptokurtosis features and comprehensively describe the nature of the
“fat tails” in the return data.

4.4. Volatility clustering

The time series of financial asset returns often exhibit the volatility-
clusteringpropertywhere large changes in prices tend to cluster togeth-
er and small changes tend to cluster together, which was first observed
and proposed byMandelbrot (1963). Cont (2005) further defined vola-
tility clustering as a positive, significant, and slowly decaying autocorre-
lation function in squared or absolute returns. Figs. 2 to 5 show the time
series of index returns.We can observe that the volatility-clustering be-
havior is obvious in the S&P 500, Dow Jones Industrial, and the Nikkei
225 indices, respectively.

Table 7 shows the inference equations2 of the autocorrelation function
for the squared returns under the three regime-switching models. To
compare the empirical autocorrelations, the model estimations are
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derived from the autocorrelation function equations in Table 7 with esti-
mated parameter values from Table 6. Figs. 5, 6, and 7 are the time series
of the return autocorrelations under each model for the S&P 500, Dow
Jones Industrial Average, and Nikkei 225 indices, respectively. In the fig-
ures, the autocorrelations reveal obvious slowly decaying patterns. More-
over, the autocorrelations for squared returns under the RSM, RSMIJ, and
RSMDJ models are also very similar to those of actual data. This evidence
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Fig. 6. Autocorrelations of the squared returns in
indicates that regime-switching models can accurately describe the clus-
tering volatility characteristics of the index returns.

5. Conclusions

This paper develops a regime-switching model with dependent
jump size risks, in which asset return and jump size risks switch over
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Fig. 7. Autocorrelations of the squared returns in Nikkei 225 index under RSM, RSMIJ and RSMDJ.
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time according to the state of the economy. We then begin to estimate
the parameters of the model with EM and SEM algorithms and demon-
strate empirically observed features using 12 years of data for the S&P
500, Dow Jones Industrial Average, and Nikkei 225 indices. The empiri-
cal results show that the model captures the asymmetric, leptokurtic,
volatility clustering, and jump clustering features of the market indices
in the stockmarket. The LR tests also show that the RSMDJ is better than
the competing models, such as the BSM, RSM, and RSMIJ, for capturing
the dynamic process of financial asset returns, suggesting that the
regime-switchingmodel with dependent jump size risks has a superior
empirical fit over other regime-switching models.

This paper has some implications and possible extensions. First, our
RSMDJmodel can help investors determine a superior investment strat-
egy when a jump event occurs. During a recession state, investors may
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benefit if they underweight their investments in the stock index or sell
the stock index futures. Similarity, under the expansion state, an
investor's superior investment strategy is to overweight their invest-
ments in the stock index in order to benefit from the upward market
trend. Because the size of the jump risks is larger in the recession state
than that in the expansion state, in the recession state with high jump
risks, investors would be better off if they adopt a conservative strategy
in which they underweight their investments in the stock index or sell
the stock index futures to hedge their portfolios. Investors should be
more aware of the jump risks for the jump size during a recession. In ad-
dition, Elliott et al. (2010) study a mean-variance portfolio selection
problem in a hidden Markovian regime-switching model. Accordingly,
we can propose our regime-switching model with jump risks to de-
scribe the mean-variance portfolio selection problem.

Second, the model developed herein can be applied to pricing deriva-
tives. Many recent studies have proposed regime-switching models to
price derivatives. Elliott et al. (2007) price options under a generalized
Markov-modulated jump diffusion model. Bo et al. (2010) focus on cur-
rency options. Chang et al. (2013) provide close-form solutions for option
prices under aMarkov-modulated jump diffusionmodel. Lin et al. (2015)
price a foreign exchange option in the currency cycle with jump risks. Lin
et al. (2014) propose a recursive formula for a participating contract that
embeds a surrender option in a regime-switchingmodel with jump risks.
Li et al. (2016) use a regime-switching jump diffusion model to price de-
rivatives while modeling a CO2 emission allowance.

Third, due to the discrete nature of a jump risk, themarket is incom-
plete, and conventional riskless hedging is difficult to obtain. Therefore,
the issue of hedging with jump risk remains an important challenge in
thefield of riskmanagement. Zhou (2001) develops a theory to incorpo-
rate jump risk into the default process to explain the term structure of
credit spreads. Su and Hung (2011) analyze the influences of jump dy-
namics, heavy-tails and skewness on a value-at-risk estimation. Egami
and Yamazaki (2013) use the jump-diffusionmodel to describe defaults
in a bank's loan/credit business portfolios for credit risk management.

Acknowledgment

Wewould like to thank two anonymous referees and editor for help-
ful comments. This researchwas partially supported by theNational Sci-
ence Council under grant NSC 100-2410-H-004-057-MY2, and partially
supported by Research Center for Humanities and Social Sciences in
Taiwan.

Appendix A. The moment formulas under RSMDJ

Suppose the return follows RSMDJ, then
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E(Zt)s =0 as s=1 and E(Zt)s =1 as s=0, 2. Therefore we should only
consider s = 0, 2,
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The 3rd central moment of return is
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where E(Zt)s =0 as, s=1, 3, and E(Zt)s =1 as s=0, 2. Thus we should
only consider s = 0, 2
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Therefore the formula of skewness is E(Rt − μ)3/Var(Rt)1.5 and the

4th central moment becomes
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E(Zt)s=0 as s=1, 3; E(Zt)s=1 as s=0, 2 and E(Zt)s=3 as s=4. Thus
we should only consider s = 0, 2, 4.
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Appendix B. The autocorrelations function of squared return under
RSMDJ

Assume the return follows RSMDJ, the autocorrelation function be-
tween time t and t-k is
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