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a b s t r a c t

Lévy subordinated hierarchical Archimedean copulas (LSHAC) are flexible models in high dimensional
modeling. However, there is limited literature discussing their applications, largely due to the challenges
in estimating their structures and their parameters. In this paper, we propose a three-stage estimation
procedure to determine the hierarchical structure and the parameters of a LSHAC. This is the first paper
to empirically examine the modeling performances of LSHAC models using exchange traded funds.
Simulation study demonstrates the reliability and robustness of the proposed estimation method in
determining the optimal structure. Empirical analysis further shows that, compared to elliptical copulas,
LSHACs have better fitting abilities as well as more accurate out-of-sample Value-at-Risk estimates with
less parameters. In addition, from a financial risk management point of view, the LSHACs have the advan-
tage of being very flexible in modeling the asymmetric tail dependence, providing more conservative
estimations of the probabilities of extreme downward co-movements in the financial market.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction copulas to higher dimensions.1 Although extremely flexible, some
The construction and estimation of high dimensional copulas
are challenging problems, yet they are critical and essential for
financial risk management (Kole et al., 2007; Patton, 2009). There-
fore, investigating the theoretical properties and empirical applica-
tions of high dimensional modeling with copulas have attracted
much attentions in the literature (Bu et al., 2011; Dias and
Embrechts, 2004; Embrechts et al., 2003; Hoesli and Peka, 2013;
Kumar and Okimoto, 2011; Patton, 2006; Zhou and Gao, 2012).
Elliptical copula models are inadequate to capture the nonlinear
dependence in the financial returns (Embrechts et al., 2002), and
additionally the number of parameters in the elliptical copulas
grows quadratically with the dimension. Vine copulas, also known
as pair copula constructions, facilitate extensions from bivariate
outstanding issues need to be adequately addressed for vine copula
models, including testing the ‘‘simplifying assumptions”, selecting
appropriate bivariate models from the huge number of potential can-
didates, designing spatial vines, and goodness-of-fit tests for high
dimensional vine copulas, etc.

Archimedean copulas (AC), though have a very small number of
parameters irrespective of dimensions, suffer from the exchange-
able structures, which makes AC inadequate to model complex
dependence structures (Weiß and Scheffer, 2015). In an attempt
to overcome the exchangeability issue of ACs, the hierarchical
Archimedean copula (HAC) has been proposed (Joe, 1997). This
approach partially overcomes the exchangeability by ‘‘nesting”
two or more ACs with appropriate grouping, thereby providing a
more flexible framework. Despite their advantages, there are
compatible conditions which the generators need to be satisfied to
ensure that the resulting HAC yields a valid multivariate distribu-
tion. These conditions, however, can be difficult to verify and hence
also restrict the practical applications of HACs.
, and the
Gaussian
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In this paper, we advocate Lévy subordinated hierarchical Archi-
medean copulas (LSHAC), which is a family of HAC models con-
structed from Lévy subordinators. Hering et al. (2010) introduce
the construction and simulation of LSHACs, while Mai and
Scherer (2012) discuss LSHAC within a h-extendible copula frame-
work. By inducing dependence within each group with Lévy subor-
dinators, the hard-to-check compatible conditions are conveniently
solved, leading to a huge potential application to financial
modeling.

While LSHACs have substantially enlarged the family of HACs,
they have never been employed in modeling the high-
dimensional financial data, mostly because of the difficulties in
determining the suitable hierarchical structures as well as estimat-
ing the parameters for LSHACs. The recursive multi-stage maxi-
mum likelihood (ML) estimation procedure proposed by Okhrin
et al. (2013b) is efficient for HACs with the same generator func-
tions such as Gumbel generator or Clayton generator (hereafter,
we call these models as All-GM-HACs or All-CL-HACs), but will be
computationally demanding for general HAC models with different
generators. Moreover, their technique provides sub-optimal struc-
ture as well as ML estimators because of its recursive nature. In
addition, LSHAC models are constructed in such a way that the
parameters in the outer layers in the hierarchy should not be
estimated later than the inner layer parameters, meaning the
bottom-up recursive procedure by Okhrin et al. (2013b) is not
applicable for LSHACs.

Motivated by these observations, this paper attempts to fill up
these gaps by providing a comprehensive study of some of the
outstanding issues in the construction and estimation of LSHACs.
In doing so, we explicitly construct a multi-level LSHAC in a fully
general setting by developing a notation system, an integral repre-
sentation and the corresponding sampling algorithm. In addition,
we propose to exploit the hierarchical clustering analysis to effi-
ciently determine the structure of LSHACs with a new proposed
dissimilarity metric, called s-Euclidean metric. Using a simulation
study, we demonstrate that the best grouping results provided by
the s-Euclidean metric can correctly identify the true structure
more than 95% of the times. Once the optimal structure of a
LSHAC is identified, an augmented inference for margin (AIFM)
method is proposed to estimate the remaining LSHAC parameters.

We illustrate the economic significance of the LSHAC models by
fitting the high dimensional financial data and forecasting the out-
of-sample Value-at-Risk of an equally-weighted portfolio. To the
best of our knowledge, this is the first paper to apply the LSHACs
in financial modeling and risk management. Our results indicate
that the LSHACs providemore accurate Value-at-Risk forecasts com-
pared to the benchmark model of Student’s t copula. In addition, we
model the joint downward movements of the assets in the market,
as appropriately modeling the downside risk is important for finan-
cial risk managers (Ang and Bekaert, 2002; Ang and Chen, 2002;
Boubaker and Sghaier, 2013; Brooks et al., 2005; Harvey and
Siddique, 1999; Jondeau and Rockinger, 2003; Das and Uppal,
2004; Longin and Solnik, 2001). With the flexibility of modeling
asymmetric tail dependences, the LSHAC models will help financial
risk managers to more accurately estimate the extreme downside
co-movements of the market, which is critically important for risk
management and portfolio optimization.

The remainder of this paper proceeds as follows. Section 2
introduces the LSHAC model and three stage estimation proce-
dure. In particular, a new dissimilarity metric based on the hier-
archical clustering analysis is proposed to determine the
structure of LSHACs. Section 3 investigates the efficiency of the
proposed method with a simulation study. In Section 4, we
empirically test the LSHACs by forecasting the Value-at-Risk
and modeling the downside co-movements. Section 5 concludes
the paper.
2. Methodology

2.1. Hierarchical Archimedean copulas (HACs)

A function C : ½0;1�d ! ½0;1�; Cðu1;u2; . . . ;udÞ ¼ w w�1ðu1Þþ;
�

. . . ;w�1ðudÞÞ defines a d-dimensional Archimedean copula (AC) if

w 2 G ¼ w : ½0;1Þ ! ½0;1�jwlimu!1ðuÞ ¼f 0;wð0Þ ¼ 1; ð�1Þk dk

duk
wðuÞ P

0; k 2 Ng (Kimberling, 1974; Nelsen, 2006). Functions in the class of
G is known as completely monotonic (c.m.). w is called the generator
of the corresponding AC and w�1 is its general inverse, defined by
w�1ðuÞ ¼ infft : wðtÞ 6 ug. The class of c.m. functions also coincides
with the class of Laplace transforms on ½0;1Þ (Feller, 2008). Hence,
copulas defined by the c.m. generators are also known as the
Laplace transform AC (LT-AC).

The advantage of the AC family is that it simplifies the depen-
dence modeling in high dimension with only one parameter. The
drawback of such simplification is that the resulting distribution
leads to the exchangeability phenomenon; i.e. the distribution of
random variables ðu1;u2; . . . ;udÞ is invariant under permutation.
To address this problem, the hierarchical Archimedean copula
(HAC) model has been proposed by nesting the random variables
into a hierarchy. HAC was first introduced by Joe (1997), and dis-
cussed within a more general framework by Savu and Trede
(2010). Sampling algorithms are discussed by Whelan (2004),
McNeil (2008), and Hofert (2012). The HAC model is best illustrated
with an example. Assuming that a six-dimensional HAC is given by

Cðu1; . . . ;u6Þ ¼ Cw0
ðCw1;1

ðCw2;1
ðu1;u2Þ;u3Þ;Cw1;2

ðCw2;2
ðu4;u5Þ;u6ÞÞ:

ð1Þ

Note that (1) is a three-level HACwith five generators. The copula Cw0

with generator w0 is known as the outer copula while copulas Cw1;1

and Cw1;2 (Cw2;1 and Cw2;2 ), with generators w1;1 and w1;2 (w2;1 and
w2;2), are the inner copulas at level 1 (level 2), respectively. Besides
that w0 and wi;j ði; j ¼ 1;2Þ should be c.m., to ensure (1) is a valid

copula, the conditions w0 and wi;j 2 G and ðw�1
0 � wi;jÞ

0
and

ðw�1
1;k � w2;kÞ

0 2 Gði; j; k ¼ 1;2Þ, called compatible conditions, need to be
satisfied. Note that the notation ‘‘�” denotes function composition.
The compatible conditions cause the construction of the HACs more
challenging. If all the generators of a HAC are from the same AC fam-
ily, these conditions are not too difficult to verify, since in most cases
the copula parameters should be monotonic from top to deeper
levels (Okhrin et al., 2013b; Embrechts et al., 2003). However, if a
HAC is constructed from mixed generators involving different fami-
lies, one has to verify the compatible conditions on a case-by-case
basis (Savu and Trede, 2010; Hofert, 2012). For this reason most
empirical studies on the HAC models have focused on either All-
GM-HACs or All-CL-HACs (Savu and Trede, 2010; Okhrin et al.,
2013b; Okhrin et al., 2013a; Choroś-Tomczyk et al., 2013). Hering
et al. (2010) circumvent this hard-to-check compatible conditions by
constructing two-level HACs via Lévy subordinators. Mai and
Scherer (2012) consider a h-extendible framework in which LSHAC
is one of the special cases. They provide a stochastic representation
of three-level LSHACs and explained that the stochastic representa-
tion can be extended to higher levels in an iterative way.

2.2. General framework of LSHAC

In this subsection, we extend themodel in Hering et al. (2010) by
providing an integral representation of a general L-level LSHAC
exhibited in Fig. 1. The notation system and its corresponding
sampling algorithm are described in Appendix A. Specifically,
let fSt : 0 6 t 6 Tg be a Lévy subordinator, i.e., a stochastically



Fig. 1. General framework of a LSHAC model. The notation system of this LSHAC is introduced in Appendix A. The functions in the parentheses are the AC generators for the
corresponding inner copulas.

Table 2
Lévy Subordinators. G: Gamma process; GM: Stable process; IG: the Inverse Gaussian
process.

Subordinator WðuÞ Parameters� �

22 W. Zhu et al. / Journal of Banking & Finance 69 (2016) 20–36
continuous non-decreasing Lévy process, which has zero start, sta-
tionary and independent increments (see Tankov (2004); Proposi-
tion 3.10). The Laplace transform of St satisfies the following
equation:

Eðe�xSt Þ ¼ exp �tWðxÞð Þ; 8x > 0; ð2Þ
where the non-decreasing function W : ½0;1Þ ! ½0;1Þ is called the
Laplace exponent of St . Theorem 2.1 provides the integral representa-
tion of the L-level LSHAC, with the notations in Appendix A, in terms
of the Laplace transform.

Theorem 2.1. Given the structure of a LSHAC in Fig. 1, the copula
function, C u1; . . . ; udð Þ, can be constructed as

Z 1

0

YDð1Þ
J0

j1¼1

Z 1

0

YDð2Þ
s1

j2¼1

Z 1

0
. . .

Z 1

0

YDðL�1Þ
sL�2

jL�1¼1

Z 1

0

YDðLÞ
sL�1

jL¼1

� FðL�1Þ
sL�2 ;jL�1

ðCðLÞ
sL�1 ;jL

Þ
� �vðL�1Þ

sL�2 ;jL�1 dGð ÞðL�1Þ
jL�1

; ð3Þ

where

dGð Þð0Þj0
¼ dGð0Þ

0;1ðv ð0Þ
0;1Þ;

and

dGð ÞðlÞjl ¼ deGðlÞ
sl�1 ;jl

ðv ðlÞ
sl�1 ;jl

; v ðl�1Þ
sl�2 ;jl�1

Þ . . .deGðlÞ
s0 ;j1

ðv ð1Þ
s0 ;j1

;v ð0Þ
0;1ÞdGð0Þ

0;1ðv ð0Þ
0;1Þ:
G WG ¼ a log 1þ u
b a > 0; b > 0

GM WGM ¼ ua 0 < a < 1
IG WIG ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2uþ b2

p
� ab a > 0; b > 0
Proof. Proof of Theorem 2.1 is provided in Appendix B. h

It follows from the above theorem that the following corollary
provides an expression of the inner generators.
Table 1
Archimedean Copula (AC) generators. CL: Clayton family; GM: Gumbel family; IG: Invers
Nelsen (2006, p. 116).

Family wðuÞ
GM wGMðuÞ ¼ exp �x

1
h

� �
CL wCLðuÞ ¼ ð1þ uÞ�1

h

IG wIGðuÞ ¼ exp 1
h ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2h2x

p
Þ

� �
C12 1þ x

1
h

� ��1

C14 wC14
ðuÞ ¼ 1þ x

1
h

� ��h
Corollary 2.1. At level l, where 1 6 l 6 L, the jl-th copula generator in

position sl�1 : wðlÞ
sl�1 ;jl

, can be expressed as

wðlÞ
sl�1 ;jl

ðuÞ ¼ wð0Þ
0;1 �l�1

i¼1

eWðiÞ
si�1 ;ji

ðuÞ; ð4Þ

where �n
k¼1 f k :¼ f 1 � . . . � f n, and wðlÞ

sl�1 ;jl
is c.m.

Corollary 2.1 states that at each level of a LSHAC, the generator
can be constructed from composing an outer AC generator and a
sequence of Laplace exponents of Lévy subordinators. Tables 1
and 2 list, respectively, examples of c.m. Archimedean generators,
together with their tail dependences, and examples of Lévy subor-
dinators, which are used in the simulation study in Section 3 and
the empirical analysis in Section 4. In terms of the tail dependences,
in contrast to the Gaussian copula with no tail dependence and Stu-
dent’s t copula with symmetric tail dependence, the LSHAC models
can model upper tail dependence (GM family), lower tail depen-
dence (CL family), tail independence (IG family), or asymmetric
dependence at both tails (C12 and C14 family). For financial market,
where the extreme events usually happen asymmetrically, LSHAC
e Gaussian family; C12: (12)th copula in Nelsen (2006, p. 116); C14: (14)th copula in

kl ku Parameter

0 2� 2
1
h h P 1

2�1
h 0 h > 0

0 0 h > 0

2�1
h 2� 2

1
h h P 1

1
2 2� 2

1
h h P 1



W. Zhu et al. / Journal of Banking & Finance 69 (2016) 20–36 23
may have potential advantage of capturing the extreme co-
movements more accurately.

It follows immediately from Corollary 2.1 that the All-GM-HAC
model, which is currently the most commonly used HAC in the
empirical analysis, is a special case of LSHACs. This property is
expressed in Corollary 2.2 below, and it is also mentioned with a
three level HAC example in Mai and Scherer (2012).

Corollary 2.2. For an All-GM-HAC, the lth level copula generator

wðlÞðuÞ can be expressed as (l P 1):
2 We may also consider other distance measures, such as Tanimoto measure (see
Goshtasby, 2012). According to the literature, Tanimoto measure usually produces
similar results as the association coefficients, and hence we do not consider this
measure in this paper.
wðlÞðuÞ ¼ wð0Þ �l�1

k¼1

eWðkÞðuÞ ¼ exp �u
Ql�1

k¼1
1
hk

� �
:

From the parameterization in Tables 1 and 2, wð0Þ represents a GM gen-

erator with h ¼ h0; h0 P 1; eWðkÞ denotes the kth GM subordinator with
a ¼ 1=hk; hk P 1.

2.3. Structure and estimation of a LSHAC

In this subsection, we discuss an estimation procedure for
LSHACs, focusing on the determination of the hierarchical struc-
ture. Given a d-dimensional sample data with T observations,
XT ¼ ðx1; . . . ; xdÞT�d, the log-likelihood function of the sample is
defined by

LðhÞ ¼
Xd
j¼1

XT
t¼1

log f j xt;jjF t�1; h
M� �

þ
XT
t¼1

log c F1ðxt;1Þ; . . . ; Fdðxt;dÞjF t�1; h
� �� �

; ð5Þ

where h ¼ ðhM ; hC ;SÞ is the parameter vector to be estimated, includ-
ing the marginal parameter set, hM , the copula parameter set, hC , and
the hierarchy structure S; F t is the information available up to time
t; c is the corresponding copula density; Fj is the marginal cumula-
tive distribution function (c.d.f.) of xj with density f j, where
j ¼ 1; . . . ;d.

The classical inference for margin (IFM) estimation for copulas,
in which hM and hC is calibrated in a two-step estimation procedure,
is widely used and yields asymptotically efficient estimates (Joe,
1997; Patton, 2006). However, the ML estimation can only be
employed to an HAC with a known hierarchical structure. Conse-
quently, we propose an augmented IFM (AIFM) method with a
three-stage procedure, determining the hierarchical structure of a
LSHAC by using hierarchical clustering method.

In the first stage we obtain the ML estimator of each margin’s
parameter set, hMj ; j ¼ 1; . . . ; d, from

c
hMj ¼ argmax

hMj

XT
t¼1

log f j xt;jjF t�1; h
M
j

� �
ð6Þ

and produce the pseudo-sample u ¼ ðu1; . . . ;udÞ0 by probability
transformation with the estimated marginal distribution functions,
namely

u ¼ ðu1; . . . ;udÞ0 ¼ bF 1ðx1; chM1 Þ; . . . ; bFdðxd; chMd Þ
� �0

; ð7Þ

where bF1ðx1; chM1 Þ; . . . ; bFdðxd;
c
hMd Þ represent the estimates of the mar-

ginal probability transformations.
Let S be the true hierarchical structure that underlies the LSHAC.

Given that S is unknown in practice, the objective of the second

stage is to determine bS that closely resemblances S. As noted ear-
lier, determining the optimal structure of a LSHAC is one of the key
issues that has largely been ignored in the literature of LSHACs,
despite its critical role on dependence modeling. Here we propose
to determine the optimal structure of a LSHAC by resorting to the
hierarchical clustering analysis (Ward, 1963; Székely and Rizzo,
2005; Zhang et al., 2013).

The hierarchical clustering procedure entails choosing an appro-
priate metric of dissimilarity (or equivalently similarity) between
each pair of the pseudo sample, ðu1; . . . ;udÞ0, where
uj ¼ ðu1;j; . . . ;uT;jÞ0 and j ¼ 1; . . . ; d, to construct a symmetric prox-
imity matrix f ¼ ½di;j�, where di;j denotes a proximity index between
the ith and the jth variables. Larger di;j represents a higher level of
dissimilarity. In hierarchical clustering, the Euclidean metric,

defined by dE
i;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1ðut;i � ut;jÞ2

q
, is one of the most commonly

used dissimilarity metrics. Another plausible family of dissimilarity
metric is based on the association coefficients between variables.
Examples of these association measures are Pearson’s correlation
coefficient, Spearman’s rho and Kendall’s s.2 The dissimilarity met-
ric based exclusively on either of the above Euclidean distance or the
association coefficient is unsatisfactory in that it takes into account of
only one possible source of dissimilarity. More specifically, Euclidean
metric fails to consider the association effect between variables while
the association metric fails to consider the closeness of the data. To
address this problem, we propose the following dissimilarity metric

ds�E
i;j ¼

dE
i;j

� �a
1þ si;j
� �b ; ð8Þ

where si;j denotes the Kendall’s s between ui and uj; a and b are
appropriately chosen parameters. The above metric is new and we
refer it as s-adjusted-Euclidean (hereafter, s-Euclidean) metric. Note
that the Kendall’s s appears explicitly in Eq. (8). Other association
measures such as that based on the Pearson’s correlation coefficient
or the Spearman’s rho could have been used. Here we have chosen
Kendall’s s as this is a popular metric for determining the structure
of HAC models (see Okhrin et al., 2013b).

We emphasize that the metric based on s-Euclidean offers a
great deal of flexibility for measuring dissimilarity. In particular,
by setting ða ¼ 1; b ¼ 0Þ and ða ¼ 0; b ¼ 1Þ, the above s-Euclidean
metric reduces to the Euclidean metric and the Kendall’s s metric,
respectively. More importantly, the relative magnitude of the
parameters a and b provides an effective way of controlling the rel-
ative emphasis of the metric dictated by the Euclidean metric and
the Kendall’s s metric. For example, a large a and a small b lead
to a greater importance on the Euclidean distance and less empha-
sis on the association measure. Therefore, the proposed new metric
has the capability of taking into consideration of both Euclidean
distance and association effect jointly. This implies that a lower

dE
i;j and a higher dependence (i.e., a larger si;j) lead to a smaller

ds�E
i;j , indicating lower dissimilarity.

Given the pseudo-sample, u ¼ ðu1; . . . ;udÞ0, obtained from Eq.

(7), and the estimated hierarchical structure, bS , from the second
stage, the final stage is to determine the ML estimator of the copula
parameter set hC according to

c
hC ¼ argmax

hC

XT
t¼1

log c F1ðxt;1Þ; . . . ; Fdðxt;dÞjF t�1;
c
hM ; hC ; bS� �� �

: ð9Þ
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The resulting AIFM estimator is denoted by bh ¼ ðchM ;
c
hC ; bSÞ, with an

optimal hierarchical structure, bS , obtained from hierarchical cluster-
ing analysis.

3. Simulation analysis

Resorting to a simulation study, this section provides an in-
depth analysis to confirm the superiority of the s-Euclidean metric
in correctly identifying the structure of LSHACs. In our benchmark
example, we assume a LSHAC model with the following given
structure S,

Cðu1; . . . ;u6Þ ¼ Cð0Þ
0;1ðCð1Þ

1;1ðCð2Þ
2;1ðCð3Þ

1;1ðu1;u2Þ;u3Þ; u4Þ;Cð1Þ
1;2ðu5;u6ÞÞ ð10Þ

and generators:

wð0Þ
0;1ðuÞ ¼ wGMðuÞ ¼ expð�u1=hÞ; ð11Þ

wð1Þ
1;1ðuÞ ¼ wGM�GðuÞ ¼ exp � a1;1 log 1þ u

b1;1

� �� �1
h

 !
; ð12Þ

wð1Þ
1;2ðuÞ ¼ wGM�IGðuÞ ¼ exp � a1;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2uþ b2

1;2

q
� a1;2b1;2

� �1
h

 !
; ð13Þ

wð2Þ
2;1ðuÞ ¼ wGM�G�IGðuÞ

¼ exp � a1;1 log 1þ a2;1
b1;1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2uþ b2

2;1

q
� b2;1

� �� �� �1
h

 !
; ð14Þ

wð3Þ
1;1ðuÞ ¼ wGM�G�IG�GMðuÞ

¼ exp � a1;1 log 1þ a2;1
b1;1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2expð�u1=h3;1 Þ þ b2

2;1

q
� b2;1

� �� �� �1
h

 !
:

ð15Þ
Here the subscripts denote the outer generator and the Lévy subor-
dinators used to construct the corresponding inner generators. For
example, wGM�GðuÞ is an inner generator constructed by a GM outer
generator and a Lévy subordinator G. The parameter set of this
LSHAC model is hC ¼ ðh; a11; b11; a12; b12; a21; b21; h31Þ ¼ ð1:3;1:3;
10;0:3;9; 0:08;9;0:5Þ. The experiment procedure is given as follows:

Step 1: Sample N sets of copula parameters fhCn ; n ¼ 1; . . . ;N, from
uniform distributions with range ½hCð1� pÞ; hCð1þ pÞ�.

Step 2: For each nth set of copula parameters, where n ¼ 1; . . . ;N,
sample M independent batches each of sample size T from

a LSHAC with parameters fhCn and structure S, using Algo-
rithm Appendix A.1.

Step 3: For each mth simulated batch of sample size T, where

m ¼ 1; . . . ;M, estimate dSn;m using the hierarchical cluster-
ing analysis with the dissimilarity metrics discussed in
Section 2.3.

Step 4: Calculate the reliability ratio, qn, which measures the rela-
tive proportion of the estimated structuresdSn;m ; m ¼ 1; . . . ;M, that correctly identify the true struc-
ture S; i.e.,
3 There are 16 pairs of (a; b) when a; b 2 f0;1;2;3g. We exclude the pairs
qn ¼
XM
m¼1

IcSn;m¼S
M

; n ¼ 1; . . . ;N;

where IcSn;m¼S
is an indicator variable with value equals to one

if the estimated structure coincides with the true structure,
zero otherwise.
ða ¼ 2; b ¼ 0Þ and ða ¼ 3; b ¼ 0Þ, which are the same as ða ¼ 1; b ¼ 0Þ; the pairs
ða ¼ 0; b ¼ 2Þ and ða ¼ 0; b ¼ 3Þ, which are the same as ða ¼ 0; b ¼ 1Þ; the pairs
ða ¼ 2; b ¼ 2Þ and ða ¼ 3; b ¼ 3Þ, which are the same as ða ¼ 1; b ¼ 1Þ; as well as the
pair ða ¼ 0; b ¼ 0Þ, leading to a total of 9 effective pairs of ða; bÞ.
Recall that one of the advantages of our proposed s-Euclidean
matric lies in its flexibility. To provide additional analysis on the
impact of metrics on the reliability ratio, we consider different
combinations of a and b, where a; b 2 f0;1;2;3g. While there are
16 possible pairs of (a; b), effectively we only need to consider 9

of such pairs for determining the hierarchical structures dSn;m ,
where n ¼ 1; . . . ;N and m ¼ 1; . . . ;M.3 We let N ¼ 1000; M ¼ 100,
and T ¼ 1000. In addition, we use p ¼ 5%; 10%, and 20% to reflect
the parameter uncertainty in the LSHACs. The mean and variance
of the reliability ratio (qn) are summarized in Table 3.

� From Table 3, it is clear that the more general s-Euclideanmetric
is more superior than that based on either the Euclidean dis-
tance or the Kendall’s s. This also justifies the importance of
integrating both metrics. The reliability ratio could reach over
95.6% for a ¼ 2 and b ¼ 3 and with p ¼ 5% parameter uncer-
tainly. Not only that this metric yields the highest reliability
ratio, its variability (as measured by its sample variance) is also
the smallest.

� As the degree of parameter uncertainty increases (i.e. by increas-
ing p from 5% to 20%), the reliability ratio deteriorates slightly
with increasing variability. This phenomenon is consistent for
all proximity metrics. It is, however, worth pointing out that
while the performance declines with increasing parameter
uncertainty, the changes are quite small and hence this provides
some indication of the robustness of the underlying proximity
metric at identifying the true structure of the underlying LSHAC.

� While the Euclidean metric is the worst among the three met-
rics, it is comforting to know that it still has a success rate of
at least 64%.

Fig. 2 plots the empirical cumulative distribution functions
(eCDF) of the reliability ratios for three proximity metrics for
p ¼ 5%; 10%, and 20%, including the Euclidean metric
(a ¼ 1; b ¼ 0), Kendall’s s metric (a ¼ 0; b ¼ 1), and the best
performance s-Euclidean metric with (a ¼ 2; b ¼ 3). It is also of
interest to note that the eCDF of the reliability ratios based on
s-Euclidean metric lies under those of the other two metrics.
According to the definition of stochastic ordering (see, for example,
Hadar and Russell (1969)), the results of s-Euclidean metric is first
order stochastic dominance over the Euclidean and the Kendall’s
s metric, indicating a superiority of s-Euclidean metric.

4. Empirical analysis

In this section, the LSHAC models are applied to financial data
using the three-stage estimation methodology proposed in the pre-
ceding sections. Gaussian copula and Student’s t copula are used as
the benchmark models. In term of model comparison, we resort to
the commonly used criteria: Bayesian information criterion (BIC;
Schwarz, 1978). In order to present economic benefit of applying
LSHACmodels, we perform out-of-sample Value-at-Risk (VaR) fore-
casting for an equally-weighted portfolio. Finally, the probabilities
of the market downward co-movements are calculated based on
the VaR and the conditional tail expectation (CTE) criteria.

4.1. Data

Special attention is needed when studying co-movement proba-
bilities considering that markets have different opening and closing
time, which will, to some extent, drive market dependence. In order
to address this issue, we consider the exchange traded funds (ETF)



Table 3
Mean and Variance of the Reliability Ratios (qn) from different dissimilarity metrics. The Euclidean metric is a special case of the s-Euclidean metric when a ¼ 1 and b ¼ 0, with its
results listed in the first two rows. The Kendall’s s metric is a special case of the s-Euclidean metric when a ¼ 0 and b ¼ 1, and the mean and variance of its reliability ratios are
listed in the third and forth rows. The best structure estimating results are achieved when a ¼ 2 and b ¼ 3, with the average reliability ratio being 95.62% when p ¼ 5%.

Dissimilarity metric Statistics p ¼ 5% p ¼ 10% p ¼ 20%

Euclidean Mean 0.6590 0.6574 0.6392
ða ¼ 1; b ¼ 0Þ Variance 0.0018 0.0040 0.0134
Kendall’s s Mean 0.8700 0.8616 0.8466
ða ¼ 0; b ¼ 1Þ Variance 0.0045 0.0113 0.0350
s-Euclidean Mean 0.8384 0.8323 0.8241
ða ¼ 1; b ¼ 1Þ Variance 0.0023 0.0054 0.0179
s-Euclidean Mean 0.9131 0.9057 0.8920
ða ¼ 1; b ¼ 2Þ Variance 0.0011 0.0029 0.0092
s-Euclidean Mean 0.9439 0.9394 0.9228
ða ¼ 1; b ¼ 3Þ Variance 0.0007 0.0016 0.0058
s-Euclidean Mean 0.9049 0.8969 0.8814
ða ¼ 2; b ¼ 1Þ Variance 0.0014 0.0032 0.0104
s-Euclidean Mean 0.9562 0.9490 0.9281
ða ¼ 2; b ¼ 3Þ Variance 0.0005 0.0010 0.0035
s-Euclidean Mean 0.9446 0.9412 0.9193
ða ¼ 3; b ¼ 1Þ Variance 0.0006 0.0013 0.0048
s-Euclidean Mean 0.9187 0.9121 0.8926
ða ¼ 3; b ¼ 2Þ Variance 0.0008 0.0013 0.0037

Fig. 2. Empirical cumulative distribution functions (eCDF) of the reliability ratios
(qn). From the top to the bottom, p ¼ 5%; 10%, and 20% under the three proximity
metrics. Dotted lines are for Euclidean metric; solid lines are for Kendall’s s metric;
Lines with stars are for s-Euclidean metric when a ¼ 2 and b ¼ 3.
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that are invested in the U.S. ETF data have the advantage of being
traded at the same time, making it more convenient to study the
joint market co-movement. Our sample portfolio consists of daily
log-returns of six U.S. ETFs. Specifically, they are iShare MSCI Ger-
many ETF (EWG), iShare MSCI France ETF (EWQ), iShare MSCI
Netherlands ETF (EWN), iShare MSCI Dow Jones ETF (IYY), iShare
MSCI Australia ETF (EWA), iShare MSCI Hong Kong ETF (EWH).4
4 The data were collected from finance.yahoo.com.
To ensure geographical diversification, we ensure that the
selected ETFs cover a diverse set of international markets, with
three ETFs from the European market (EWG, EWQ, EWN), one from
the American market (IYY), one from the Australia market (EWA),
and one from the Asian market (EWH). The complete sample covers
the period from January 1, 2011 to September 30, 2015, including
1193 trading days. The sample period covers a number of impor-
tant events including the post European sovereign debt crisis, the
sharp drops in the ‘‘August 2011 stock markets fall”, and the
‘‘2015 stock market selloff”. Log returns of the six ETFs are dis-
played in Fig. 3.
4.2. Estimation results

To consider the stylized facts of financial data, such as volatility
clustering and positive excess kurtosis (McNeil et al., 2010), in the
first stage, the generalized autoregressive conditional heteroskedas-
ticity (GARCH (1, 1)5) models (Engle, 1982; Bollerslev, 1986) are used.
The GARCH (1,1) model are specified as follows:

ri;t ¼ ci þ �i;t ; �i;t ¼
ffiffiffiffiffiffi
hi;t

q
zi;t; hi;t ¼ xi þ gi;1hi;t�1 þ ni;1�2i;t�1;

where ri;t is the log-return of the ith index at time t; �i;j and zi;t are
the residual and standard residual of the ith index at time t, respec-
tively; hi;t is the conditional variance of the ith index at time t based
on the information at t � 1; and ci; xi; gi;1, and ni;1 are parameters.
In addition, to capture the heavy tails of the data, the standard resid-
uals zi;t are modeled as the generalized hyperbolic (GH) distribution
(Barndorff-Nielsen, 1997). Hyperbolic, Normal-inverse Gaussian
(NIG), student’s t, and Variance Gamma (VG) are included within
the GH family.

Table 4 exhibits the empirical results for the margins, together
with the standard errors of the parameters given in the parenthesis.
The best fitted residual models are Student’s t for EWQ, EWA, as
well as EWH, and VG for EWG, EWN and IYY. Pseudo sample data,
obtained from probability transformations, are used to estimate
LSHACs in the second and the third stages of the estimation
procedure.
5 In our analysis, the optimal order of the autoregressive moving average-
generalized autoregressive conditional heteroskedasticity (ARMA (m,n)-GARCH (p,
q)) model are selected based on BIC. GARCH (1,1) model is selected as the optimal
model for all the six stock indices.



Fig. 3. Time series plots of log returns in the full sample. The figure shows plots of the log returns on the six ETFs (EWG, EWQ, EWN, IYY, EWA, EWH). The complete sample is
divided into the in-sample period from January 1, 2011 to December 31, 2012, including 501 trading days (shaded in gray), and the out-of-sample period from January 1, 2013
to September 30, 2015, including 692 trading days (highlighted in blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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In the second stage, the s-Euclidean metric in Eq. (8) based on
hierarchical clustering analysis is applied to the pseudo samples
obtained from the first stage. In order to be consistent with the sim-
ulation study in Section 3, we use the 9 pairs of (a; b) listed in
Table 3 to estimate the hierarchical structure of the ETF data. For
this data set, the 9 pairs of (a; b) have identified five distinct hier-
archical structures, as depicted in Fig. 4.

The estimated hierarchical structures based on the Euclidean
metric (a ¼ 1; b ¼ 0), the Kendall ’s s metric (a ¼ 0; b ¼ 1) and
the s-Euclidean metric with a ¼ b ¼ 1 are identical. This is a four-

level structure and is denoted by cS1 in Fig. 4a. This structure first
isolates the Asian EWH from the rest of the ETFs. Among the
remaining ETFs, the European ETFs EWG and EWQ are firstly
grouped together, then joined by EWN. Meanwhile, IYY from the
U.S. and EWA from Australia are in the other subgroup. This indi-
cates that based on the three proximity metrics, i.e.,
ða ¼ 0; b ¼ 1Þ; ða ¼ 1; b ¼ 0Þ, and ða ¼ 1; b ¼ 1Þ, the Hong Kong
market is less similar to the ETFs from the other markets. In
addition, cS1 also indicates that within the European subgroup, Ger-
many market and France market are more alike compared to the
Netherlands market.

The second type of structure, dented by cS2 , is estimated by the
pair ða ¼ 1; b ¼ 2Þ. It is a four-level structure graphically repre-
sented in Fig. 4b. This structure collects the two ETFs from Germany
(EWG) and Netherlands (EWN) into one group, and groups the
remaining indices together. The four dimensional part on the left
of the hierarchy is a nested structure in which EWQ from France
and EWA from Australia are firstly grouped into a subgroup, then
joined together by EWH from Hong Kong at the next level, with
IYY from the U.S. joined finally. This structure separates the Ger-
many and Netherlands from the other markets.cS3 and cS4 have the same hierarchical structure as cS1 , but with

different combinations of ETFs. cS4 , which is estimated based on
ða ¼ 2; b ¼ 1Þ; ða ¼ 3; b ¼ 1Þ, and ða ¼ 3; b ¼ 2Þ, is almost the same

as cS1 except that in the three dimensional part on the left of the



Table 4
Marginal estimation results. The standard errors of estimated parameters are listed in the parenthesis. v ; a, and b are parameters of the residual distributions.

Europe America

EWG EWQ EWN IYY EWA EWH
Distribution VG t VG VG t t

cð�10�4Þ 7.4800 (0.0156) 9.8347 (0.0094) 4.4019 (0.0248) 5.7783 (0.0736) 8.5840 (0.0688) 6.2272 (0.0918)

xð�10�6Þ 3.8456 (0.0192) 7.2770 (0.01328) 2.7497 (0.0193) 3.9969 (0.0144) 3.0814 (0.0131) 6.0600 (0.0371)

g1 0.0888 (0.0038) 0.0865 (0.0121) 0.0702 (0.0055) 0.1262 (0.0005) 0.0966 (0.0019) 0.1131 (0.0003)
n1 0.9046 (0.0000) 0.8984 (0.0000) 0.9217 (0.0100) 0.8450 (0.0000) 0.8957 (0.0000) 0.8543 (0.0001)
v – 7.2813 (0.0005) – – 7.9848 (0.0058) 7.9689 (0.0011)
a 2.1555 (0.0000) – 2.3119 (0.0001) 2.2446 (0.0022) – –
b �0.4055 (0.0008) – �0.3402 (0.0176) �0.3068 (0.0154) – –
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hierarchy, EWG and EWN are first grouped together then joined by

EWQ. In contrast, cS1 first collects EWG and EWQ and then groups

EWN in the three dimensional subgroup. cS3 ða ¼ 1; b ¼ 3Þ, on the
other hand, is drastically different. It firstly separates IYY
from the U.S. and collects the remaining indices together. In the
five dimensional part, EWG from Germany and EWN from
Netherlands are in the same subgroup while EWQ from France,
EWA from Australia and EWH from Hong Kong are in the other
subgroup.

The hierarchical structure estimated with ða ¼ 2; b ¼ 3Þ,
denoted by cS5 , is graphically represented in Fig. 4e. The resulting
structure first partitions the ETFs into two broad groups of Euro-
pean market (EWG, EWQ, and EWN) and non-European market
(IYY, EWA, and EWH). In addition, within the European subgroup,
EWG and EWQ are in the same small subgroup. Similarly, IYY and
EWA are classified together within the non-European subgroup,
implying that the U.S. market and Australia market are more simi-
lar when compared to the market between the U.S. and Hong Kong.

For the final and third stage of the estimation procedure, the fit-
ting results of the LSHAC models with the five structures are com-
pared, with the outer copulas and the Lévy subordinators chosen
from Tables 1 and 2, respectively. The LSHACs are highly flexible
with a large number of candidate models. To be more specific, to
calibrate the six dimensional LSHAC with five generators in Fig. 4,
we have 5� 34 ¼ 405 candidates for each structure. For the length
restriction of this paper, only the best and the worst LSHAC models
for each structure are displayed in Table 5. Elliptical copulas includ-
ing Gaussian copula and t copula are also calibrated to serve as
benchmarks.

From the fitting results in Table 5, the best LSHAC model for cS4

is given by the C12 family, and is better than both Gaussian and Stu-
dent’s t copula, which is highlighted in bold with two stars in the
parenthesis as the best LSHAC model. In addition, the best LSHAC

model for cS1 , which is constructed from the C14 family, is better
than Gaussian copula. Compared to the elliptical copulas, LSHAC
models have the following two advantages. First, LSHACs generally
have fewer parameters, increasing the efficiency of the models (see
the last column in Table 5). Second, LSHAC models are very flexible
in modeling the tail dependence. Gaussian copula has no tail
dependence while Student’s t copula have symmetric tail depen-
dence. These tail dependence characteristics are not suitable for
financial data. In contrast, the LSHACs is able to provide much
greater flexibility in modeling the tail dependence. In particular,
according to Table 1, C12 and C14 families are able to model asym-
metric tail dependence, which according to the estimated results in
Table 5, are more applicable to the financial data considered in this
paper.

To further analyze the modeling abilities of different models,
similar to Okhrin et al. (2013b), we also perform the moving win-
dow procedure, where each copula model are estimated with the
sample from a moving window with the window width of 100
observations. The resulting series of BIC values are calculated and
displayed in Fig. 5, including six copula models (Student’s t copula,

best LSHAC copula with structure bSj ; j ¼ 1; . . . ;5). The LSHAC mod-

els have the best performances for 89.55% (cS4: 84.82%, cS5: 4.73%) of
the days, while the Student’s t copula dominates the remaining
10.45% times.

Based on the estimating results in Table 5 and Fig. 5, the hierar-
chical structures of the LSHAC models have considerable effects in

the estimation results. For our data set, cS4 offers better fitting
results compared to the other structures. Moreover, the

moving window results show that the best LSHAC with cS4

dominates 84.82% of the times while the LSHAC with cS5 dominates
only 4.73%.

Finally, it is worth emphasizing that all the other LSHAC models
perform much better than the All-GM-HAC. Recall that the All-GM-
HAC is the most popular HAC model currently used in the empirical
analysis. By constructing HACs involving the Lévy subordinators,
the LSHAC broadens the HAC family and hence provides greater
flexibility for practical applications. The proximity metric proposed
in this paper further facilitates the determination of the optimal
structure of LSHACs, greatly enhancing the applicability of LSHAC
models.

4.3. Backtesting

In the preceding sections, the LSHAC models have shown better
fitting abilities based on information criteria. In this section, we
illustrate the superiority of the LSHAC models by comparing their
out-of-sample Value-of-Risk (VaR) forecasting with the benchmark
Student’s t copula. VaR is one of the most popular measures used by
banks and insurance companies for quantifying risks. Loosely
speaking, the VaR of a return random variable R at a given level
a0 2 ð0;1Þ corresponds to the worst return at probability a0. For
more information about VaR and backtesting, refer to McNeil
et al. (2010, pp. 55–59).

The objective of our backtesting analysis is to calculate VaR
at a0 ¼ 95% and a0 ¼ 99% for each trading day, t, in the out-
of-sample period from January 1, 2013 to September 30, 2015.
The copulas we tested in this study include Student’s t copula, best

LSHAC copula with structure bSj ; j ¼ 1; . . . ;5. We use the 501 in-
sample historical data (from January 1, 2011 to December 31,
2012), Xs ¼ ðx1; . . . ; xdÞs�d, where s ¼ t � 500; t � 499; . . . ; t, to make
VaR forecast for day t þ 1 with different copula models as
follows:

Step 1: Starting from t, we generate N pseudo samples from a

LSHAC with parameters d
hCLSHAC and structure bSj ; j ¼ 1; . . . ;

5, or from a t copula with parameters chCT .



Fig. 4. Estimated hierarchical structures. The figure shows estimated tree structures. In consistent with the simulation analysis in Section 3, results are reported for
a 2 f0;1;2;3g and b 2 f0;1;2;3g. Each sub-caption shows the pairs of (a;b) that estimate the corresponding hierarchical structures. Note that when a ¼ 1; b ¼ 0; s-
Euclidean degenerates to the Euclidean metric, and when a ¼ 0; b ¼ 1, it degenerates to the Kendall’s smetric. Countries in the European markets are in red while the other
countries from non-European markets are in green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Step 2: For each nth pseudo sample, n ¼ 1; . . . ;N, we recover the

margins with parameters chM . More specifically, we apply
the inverse probability transform to convert them to the
estimated GH distributions and hence the log-returns,ern
tþ1 ¼ ðern1;tþ1; . . . ;ern6;tþ1Þ, according to the estimated

GARCH(1,1) model.
Step 3: Compute the simulated portfolio return as

rp;tþ1 ¼P6
d¼1

1
6 rd;tþ1, and estimate the sample a0-level VaR

for the day t þ 1.
Step 4: Update the information set with the actual portfolio return,

rp;tþ1. Let t ¼ t þ 1, reestimate all parameters and repeat
the first three steps to forecast the portfolio VaR for the
next day.



Table 5
Fitting results for the five structures in Fig. 4. This table shows copula estimating results, with the first two rows presenting results with Gaussian and Student’s t copula as
competing models. When estimating, we go through LSHAC models with the outer copulas chosen from Table 1 and the Lévy subordinators selected from Table 2. However, for
the length restriction of this paper, only the best and the worst LSHAC models for each structure are displayed. The best fitting result, highlighted in bold with two stars in the
parentheses, is given by a LSHAC with structure Ŝ4 from the C12 family, which has asymmetric upper and lower tail dependence. The last two columns show the BIC values and the
number of parameters of each model.

Model BIC No. para

Elliptical copulas
Gaussian copula �1782.0 15
Student’s t copula �1844.9 16
Structure Generators in each level BIC No. para

LSHACcS1 Cð0Þ
0;1 Cð1Þ

1;1 Cð2Þ
2;1 Cð2Þ

2;2 Cð3Þ
3;1

GM GM GM GM GM �1543.71 5
C14 GM IG IG GM �1810.58 7

cS2 Cð0Þ
0;1 Cð1Þ

1;1 Cð2Þ
1;2 Cð2Þ

2;1 Cð3Þ
3;1

GM GM GM GM GM �1472.75 5
C12 GM GM GM GM �1717.72 5cS3 Cð0Þ
0;1 Cð1Þ

1;1 Cð2Þ
2;1 Cð2Þ

2;2 Cð3Þ
3;1

GM GM GM GM GM �1472.87 5
C12 GM GM GM GM �1717.71 5

cS4 Cð0Þ
0;1 Cð1Þ

1;1 Cð2Þ
2;1 Cð2Þ

2;2 Cð3Þ
3;1

GM GM GM GM GM �1583.37 5
C12 GM GM GM IG �1851.84 (**) 6

cS5 Cð0Þ
0;1 Cð1Þ

1;1 Cð2Þ
1;2 Cð2Þ

2;1 Cð2Þ
2;2

GM GM GM GM GM �1510.95 5
C12 IG IG GM GM �1778.62 7
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LSHAC (S4) (84.82%)

LSHAC (S5) (4.73%)

Fig. 5. BIC values from moving window estimation. This figure shows the moving window estimation results with window width of 100 observations. Copula models are
shown in the legend with the percentage of the days, when the particular models is dominating, displayed in the corresponding parentheses.
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In our simulation, we set N ¼ 100;000. With the simulated VaR,
we calculate the number of violations and collect the results in
Table 6. Figs. 6 and 7 show the 95%- and 99%-level VaR estimates,
respectively, as well as the actual portfolio returns. The out-of-
sample period includes the whole year in 2013 (252 trading days),
the whole year in 2014 (252 trading days) and January 1–Septem-
ber 30 in 2015 (188 trading days). In Table 6, the expected viola-
tions as well as the realized violations with different models are
reported. The ‘‘Error” columns show for each dependence model
the average discrepancy per year between realized and expected
number of violations. The backtesting results with the LSHAC

model with structures cS2 ; cS3 ; cS4 , and cS5 are quite remarkable
since the three-year average error of exceedances is �0.2 for 95%-
VaR and �0.64 for 99%-VaR. In contrast, the three-year average
error based on Student’s t copula is 3.13 for 95% and 1.03 for 99%,
respectively.

It is also noteworthy that although four out of five LSHACs per-

form better than the benchmark model, the LSHAC with cS1 is overly
conservative in estimating the portfolio VaR and seems to overesti-
mate the portfolio risk. It indicates that although the LSHAC model



Table 6
Number of violations of the 95% and 99% VaR estimate calculated. The backtesting results for the 95% significant level are reported in the third to sixth column and the backtesting
results for the 99% significant level are reported in the seventh to tenth column. Expected number of violations are also reported. The two columns named ‘‘Error” show for each
dependence model the average absolute discrepancy per year between realized and expected number of violations. The equal-weight portfolio consist of the returns of the six
ETFs in Section 4.1 including EWA, EWG, EWH, EWN, EWQ, and IYY. The full sample covers the period from January 1, 2011 to September 30, 2015 (1193 trading days). The
backtests are performed on the out-of-sample data consists of 692 trading days including the whole year of 2013 (252 trading days), the whole year of 2014 (252 trading days)
and January 1–September 30 in 2015 (188 trading days).

Results for the 95% VaR estimate Results for the 99% VaR estimate

2013 2014 2015 Error 2013 2014 2015 Error
Expected violations 12.6 12.6 9.4 – 2.52 2.52 1.88 –

Realized violations LSHAC-cS1
2 1 2 9.87 0 0 0 2.31

LSHAC-cS2
12 11 11 1.26 2 1 2 0.72

LSHAC-cS3
12 11 11 1.26 2 1 2 0.72

LSHAC-cS4
12 11 11 1.26 2 1 2 0.72

LSHAC-cS5
12 11 11 1.26 2 1 2 0.72

Student’s t 13 17 14 3.13 4 2 4 1.37

Fig. 6. Comparison of realized portfolio log returns and 95%-VaR forecasts. The figures show plots of the realized log returns on equally-weighted portfolio consisting of the
six ETFs (EWG, EWQ, EWN, IYY, EWA, EWH) in solid dark gray lines. Each figure shows 95%-VaR forecasts using LSHAC models with one of the five estimated structures in
dash-dot black lines. The VaR estimates based on Student’s t copula is also shown as a benchmark in dashed blue lines. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Comparison of realized portfolio log returns and 99%-VaR forecasts. The figures show plots of the realized log returns on equally-weighted portfolio consisting of the
six ETFs (EWG, EWQ, EWN, IYY, EWA, EWH) in solid dark gray lines. Each figure shows 99%-VaR forecasts using LSHAC models with one of the five estimated structures in
dash-dot black lines. The VaR estimates based on Student’s t copula is also shown as a benchmark in dashed blue lines. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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with cS1 is competitive with the LSHAC with cS4 from a statistical
point of view (both models have very close BIC values), they may
be very different economically, as shown in this VaR estimating
example. Another possible explanation of this result is the tail
dependence behavior of the two LSHAC models. To be more speci-

fic, the best LSHAC model of cS1 is from C14 family, with a fixed
lower tail dependence of 0.5. This restriction may lead to the unsat-
isfying VaR estimating ability of the C14-LSHAC model. The LSHAC

model of cS4 , on the other hand, is constructed with C12 family,
which is more flexible in modeling both upper and lower tail
dependence (see Table 1).

Based on results collected in Table 6, it is difficult to see the dif-

ferences between the LSHAC models with structures cS2 ; cS3 ; cS4 ,

and cS5 . To further analysis the accuracy of the VaR estimates of dif-
ferent models, we perform the two-tailed conditional coverage
backtest (CC Test) proposed in Christoffersen (1998) and the
duration-based Weibull test of independence (WB Test) by
Christoffersen (2004). The results are presented in Table 7.
The results confirm our finding that the four LSHAC models with
structures cS2 ; cS3 ; cS4 , and cS5 are better than the benchmark Stu-
dent’s t copula most of the time and are also better than the LSHAC

model with structure cS1 .

4.4. Extreme downward co-movement risk management

As cautioned in Kole et al. (2007) that the choice of copula mod-
els can have a profound effect on quantifying risk. It is therefore
important to use a copula model that has the capability of reflecting
key characteristics of the underlying problem. For quantifying
financial risk involving multiple risk factors, the dependence, par-
ticularly the tail dependence, is one of the most important factors.
In this subsection, the importance of choosing an appropriate cop-
ula model is further highlighted by analyzing the extreme down-
ward co-movements. In our analysis, we use the same set of
assets as in Section 4.1 to compute the following joint downward
probability at time t:

Pr R1;t 6 d1;t; . . .R6;t 6 d6;tð Þ ð16Þ



Table 7
CC Test and WB Test results. This table presents the results of the two-tailed conditional coverage backtest (CC Test) proposed in Christoffersen (1998) and the duration-based
Weibull test of independence (WB Test) by Christoffersen (2004). on the 95%- and 99%-level VaR estimates of the portfolio based on a variety of dependence models. The equal-
weight portfolio consist of the returns of the six ETFs in Section 4.1 including EWA, EWG, EWH, EWN, EWQ, and IYY. The full sample covers the period from January 1, 2011 to
September 30, 2015 (1193 trading days). The backtests are performed on the out-of-sample data consists of 692 trading days including the whole year of 2013 (252 trading days),
the whole year of 2014 (252 trading days) and January 1–September 30 in 2015 (188 trading days).

Model 2013 2014 2015 2013–2015

CC test WB test CC test WB test CC test WB test CC test WB test

LSHAC-cS1
0.0008 0.2140 0.0001 0.0859 0.0113 0.7795 0.0000 0.0256

LSHAC-cS2
0.1714 0.2081 0.2853 0.3507 0.4330 0.7518 0.1055 0.5163

LSHAC-cS3
0.1797 0.9155 0.4045 0.5564 0.4325 0.7510 0.4844 0.9057

LSHAC-cS4
0.1720 0.2081 0.4029 0.5573 0.4355 0.7457 0.1277 0.5968

LSHAC-cS5
0.1712 0.2079 0.2861 0.3527 0.4338 0.7477 0.1052 0.5207

Student’s t 0.1725 0.2075 0.1765 0.0811 0.4331 0.7518 0.0826 0.6129

LSHAC-cS1
0.0000 0.0008 0.0000 0.0868 0.0000 0.0060 0.0000 0.0883

LSHAC-cS2
0.9177 0.2146 0.543 0.9862 0.9654 0.7759 0.7090 0.3269

LSHAC-cS3
0.9170 0.2151 0.5416 0.9851 0.9664 0.7806 0.7069 0.3261

LSHAC-cS4
0.9187 0.2155 0.5423 0.9853 0.9684 0.7764 0.7117 0.3261

LSHAC-cS5
0.9198 0.2143 0.5407 0.9943 0.9681 0.7738 0.7062 0.3253

Student’s t 0.9161 0.2136 0.5386 0.9929 0.9612 0.7780 0.7099 0.3255
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where Ri;t and di;t denote, respectively, the time-t return random
variable and its time-t extreme downward return, where
i ¼ 1; . . . ;6. In practice, the extreme downward returns di;t are often
quantified by some appropriately chosen risk measures. Besides VaR
mentioned in the preceding sections, conditional tail expectation
(CTE) is also a popular measure for risk management. CTE measures
the average worst returns given that the return is worse than its
VaR, therefore, CTE is a better measure of tail risk and is also com-
monly known as the Expected Shortfall (ES) or the Conditional Value
at Risk (CVaR) (Föllmer and Schied, 2011).

By setting di;t ; i ¼ 1; . . . ;6, as VaRi;tða0Þ, which is the time-t VaR
of the return of index i at confidence level a0, the resulting down-
ward co-movement probability (16) is termed as the probability
of the ‘‘bad time” at time t (see also Kole et al., 2007). Similarly,
when di;t ; i ¼ 1; . . . ;6, is the corresponding CTE, i.e. CTEi;tðaÞ, then
(16) becomes the probability of the ‘‘extreme bad time” at time t.
The step-by-step estimating procedure for the probabilities of the
‘‘bad time” and the ‘‘extreme bad time” is summarized as follows:

Step 1: Calculate simulated log-returns, ern
tþ1 ¼ ðern1;tþ1; . . . ;ern6;tþ1Þ,

according to Step 1 and Step 2 in Section 4.3.

Step 2: For each ith asset, i ¼ 1; . . . ;6, we calculate gVaR i;tþ1ða0Þ as
the a0-quantile of the sample of er1i;tþ1; . . . ;erNi;tþ1, and com-

pute the gCTEi;tþ1ða0Þ as the average of those samples that

exceed gVaR i;tþ1ða0Þ.
Step 3: Calculate the ‘‘bad time” and ‘‘extreme bad time” probabil-

ities as follows,
Table 8
Estimation results of extreme downward co-movements. The first two columns of
this table show the estimated mean probabilities of the extreme downward co-
movements. Standard deviation of the estimations are displayed in the parentheses.
The last two columns show the corresponding waiting time for the ‘‘bad time” and
‘‘extreme bad time” (denoted as ‘‘Ext. Time” in the table).

Model Prob. of bad time Prob. of ext. time Wait of
bad time

Wait of
ext. time

cS1
0.0040 (0.000195) 0.001396 (0.000119) 12.05 34.12cS2
0.0028 (0.000189) 0.001014 (0.000111) 16.76 46.98
ePbad
tþ1 ¼

XN
n¼1

Iern
tþ16

fVaR tþ1ðaÞ

N
; ePext

tþ1 ¼
XN
n¼1

Iern
tþ16

fCTEtþ1ðaÞ

N
;

where ern
tþ1 ¼ ðern1;tþ1; . . . ;ern6;tþ1Þ; gVaRtþ1 ¼ ðgVaR1;tþ1; . . . ;gVaR6;tþ1Þ; gCTEtþ1 ¼ðgCTE1;tþ1; . . . ; gCTE6;t0þ1Þ; Iern

tþ16
fVaR tþ1ðaÞ

is an

indicator representing the event of a ‘‘bad time”, and
Ierntþ16

fCTEtþ1ðaÞ
is an indicator of the event of an ‘‘extreme bad

time”.
 cS3
0.0029 (0.000138) 0.001022 (0.000076) 16.68 46.59cS4
0.0030 (0.000132) 0.002173 (0.000110) 15.83 21.91cS5
0.0029 (0.000134) 0.001044 (0.000075) 16.43 45.63

Student’s t 0.0013 (0.000141) 0.000399 (0.000079) 35.89 119.35
Step 4: Update the information set with the actual portfolio return
rp;tþ1. Let t ¼ t þ 1, reestimate all parameters and repeat
the first three steps to forecast the probabilities for the
next day t þ 1. Then calculate the means and standard
deviations of the estimated ‘‘bad time” and ‘‘extreme bad
time” probabilities.

The downside comovement estimation results are displayed in
Table 8. It is instructive to compare the probability of a ‘‘bad time”
if all six indices were independent. By assuming that the probabil-
ity of ‘‘bad time” for each asset is 0.05, then the joint probability for
all six independent indices to experience a ‘‘bad time” is

ð0:05Þ6 ¼ 1:56� 10�8. Hence, the results in Table 8 clearly high-
lights the importance of the dependence and hence the choice of
copulas for modeling the financial market. It has been studied by
the literature that elliptical copulas cannot provide sufficient esti-
mates to the downside risk in the financial market due to their
symmetric tail (in-)dependence (Weiß and Scheffer, 2015; Siburg
et al., 2015). Therefore, given the financial turmoil that we have
experienced and using Student’s t copula as the benchmark model,
we find that the Student’s t copula produces probabilities of the
‘‘bad time” and the ‘‘extreme bad time” that seem too optimistic.
On the other hand, the LSHAC models with asymmetric tail depen-
dence appear to be more consistent with practice. It is also interest-

ing to note that although the LSHAC model with structure cS1

has substantially different VaR-forecast results, the downside
comovement probabilities are similar to the other LSHAC models.
Taking into consideration the number of parameters, the fitting
abilities based on BIC presented in Section 4.2, the backtesting
results in Section 4.3, as well as the flexibility in modeling the tail
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dependence, these results lead to the justification of the LSHAC

with structure cS4 .
5. Conclusions

High dimensional multivariate estimation has always been chal-
lenging, yet critical, in the financial and risk management model-
ing. Traditional elliptical copulas such as the Gaussian copulas
and the Student’s t copulas have limited flexibility, in addition to
their undesirable quadratic growth in the number of parameters
with dimension. These issues can be partially solved by using
LSHACs to capture hierarchal dependence structure. The advan-
tages of LSHAC models are their tractability to create new genera-
tors in terms of an outer generator and a series of Lévy
subordinators, and more importantly, their flexibility to model
the tail dependencies with the desirable hierarchical dependence
structure that reflects the properties of the underlying data.

This paper constructs a generalized multi-level LSHAC model
and designs an estimation procedure that focuses on a suitable
grouping method to determine the hierarchical structure. We
employ hierarchical clustering analysis with a newly proposed s-
Euclidean metric to determine the grouping of variables. The simu-
lation study shows that the s-Euclidean metric achieves a balance
between Euclidean distance and association measures, providing
a better performance in identifying the true structure. In the empir-
ical analysis, the proposed estimation methodology is applied to
estimating the out-of-sample Value-at-Risk and the extreme down-
side co-movement probabilities of a equally-weighted portfolio
comprised of six ETFs from the European, American, Australian,
and Asian markets. General LSHACs with the structure determined
by s-Euclidean metric produces better modeling performances
and more accurate VaR forecasts than elliptical copulas and
All-GM-HACs. In particular, with more flexibility to model the tail
dependence by choosing appropriate outer generators, LSHAC
models provide more accurate estimations to the joint downside
movements and hence give better guidance to the financial risk
managers. The empirical results also indicate that selecting a
suitable structure of a LSHAC has a significant impact on high-
dimensional estimation.
Appendix A. Notation system and sampling algorithm of a
L-level LSHAC

It is indeed theoretically demanding to construct a LSHAC in a
fully general setting. To this end, we provide a notation system
and an integral representation (Marshall and Olkin, 1988; Joe,
1997; Whelan, 2004; McNeil, 2008; Hofert, 2008) of a general L-
level LSHAC exhibited in Fig. 1 by introducing the following
notation:

� For l ¼ 0;1; . . . ; L, let l denote the index level of LSHAC and Jl
denote the number of copulas at level l.

� At level 0:
– There is only one copula, denoted by Cð0Þ
0;1, and hence by

construction J0 ¼ 1. This is also known as the outer copula.

– There is a random time variable V ð0Þ
0;1 at which the Lévy sub-

ordinators for all subsequent groups are evaluated. We

denote its corresponding c.d.f. as Gð0Þ
0;1ðvÞ and its LT-AC gener-

ator as wð0Þ
0;1.

� At level l:
– For l ¼ 1; . . . ; L and j ¼ 1; . . . ; Jl�1, let D
ðlÞ
j be the number of

copulas at level l ‘‘emanating” from the jth copula in the
previous level l� 1. Note that the following condition must
hold:

XJl�1

j¼1

DðlÞ
j ¼ Jl; l ¼ 1; . . . ; L ðA:1Þ

and JL ¼ d.

– Let CðlÞ
j;k with generator wðlÞ

j;k be the kth copula in the j-th clus-

ter with size DðlÞ
j . It is emanated from the jth copula at level

l� 1, for l ¼ 1; . . . ; L; j ¼ 1; . . . ; Jl�1, and k ¼ 1; . . . ;DðlÞ
j ;

– The mth adjacent copula emanated from CðlÞ
j;k at level lþ 1 is

denoted as Cðlþ1Þ
s;m , where s ¼ 1; . . . ; Jl, is the position of Cðlþ1Þ

s;m ,
satisfying

s ¼
Xj�1

q¼1

DðlÞ
q

 !
Ifj>1g þ k; ðA:2Þ

where If�g is the indicator function.
� At level L:
– We partition ðu1; . . . ;udÞ into JL�1 groups and define

CðLÞ
j;k ¼ us; s ¼ 1; . . . ; JL; j ¼ 1; . . . ; JL�1; k ¼ 1; . . . ;DðLÞ

j ;

ðA:3Þ
where s satisfies (A.2).

� Additional definitions:

– Let XðtÞ denote a Lévy subordinator evaluated at time t,

with corresponding c.d.f eGðx; tÞ and Laplace exponent eW.

Define function FðlÞ
sl�1 ;jl

ðuÞ as

FðlÞ
sl�1 ;jl

ðuÞ ¼ expð�wðlÞ�1
sl�1 ;jl

ðuÞÞ: ðA:4Þ

Given the above definition of FðlÞ
sl�1 ;jl

, the following function

FðlÞ
sl�1 ;jl

ðuÞ
� �v

¼ exp �vwðlÞ�1
sl�1 ;jl

ðuÞ
� �

ðA:5Þ

is a valid c.d.f. for any positive v (Marshall and Olkin, 1988). Let

WðlÞ
sl�1 ;jl

¼ wðl�1Þ�1
sl�2 ;jl�1

� wðlÞ
sl�1 ;jl

be the Laplace exponent of a Lévy subordina-

tor, XðlÞ
sl�1 ;jl

, with c.d.f. GðlÞ
sl�1 ;jl

, then the generator given by

~wðlÞ
sl�1 ;jl

ðu;vÞ ¼ Fðl�1Þ
sl�2 ;jl�1

wðlÞ
sl�1 ;jl

ðuÞ
� �� �v

¼ exp �vwðl�1Þ�1
sl�2 ;jl�1

� wðlÞ
sl�1 ;jl

ðuÞ
� �

¼ exp �vWðlÞ
sl�1 ;jl

ðuÞ
� �

; ðA:6Þ

is also a c.m. LT-AC generator, where l ¼ 2; . . . ; L� 1 (Feller, 2008;
Nelsen, 2006).

Random samples from a LSHAC can be simulated relatively

easily by recognizing that FðL�1Þ
sL�2 ;jL�1

ðCðLÞ
sL�1 ;jL

Þ
� �vðL�1Þ

sL�2 ;jL�1 , where

jL ¼ 1; . . . ;DðLÞ
sL�1

, is a valid c.d.f. for any positive v ðL�1Þ
sL�2 ;jL�1

(see (A.5),

(A.6) and Theorem 2.1). More specifically, if YsL�1 ;jL is a uniform ran-

dom variable on ð0;1Þ, then given V ðL�1Þ
sL�2 ;jL�1

with c.d.f. eGðL�1Þ
sL�2 ;jL�1

ðx; tÞ, a
random sample of CðLÞ

sL�1 ;jL
can be obtained via inverse transform as

CðLÞ
sL�1 ;jL

¼ wðL�1Þ
sL�2 ;jL�1

� logðYsL�1 ;jL Þ
V ðL�1Þ

sL�2 ;jL�1

 !
: ðA:7Þ

In summary, for a multi-level LSHAC with a general structure
displayed in Fig. 1, the random samples can be simulated by a
sequential procedure formally described in Algorithm Appendix A.1.

Algorithm Appendix A.1 (Sampling an L-level LSHAC).
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Step 1: Generate a random variable V ð0Þ
0;1 with c.d.f. Gð0Þ

0;1ðxÞ.
Step 2: For l ¼ 1; . . . ; L� 1; sl�1 ¼ 1; . . . ; Jl�1; jl ¼ 1; . . . ;DðlÞ

sl�1
, gener-

ate a random variable V ðlÞ
sl�1 ;jl

with c.d.f. eGðlÞ
sl�1 ;jl

ðx;V ðl�1Þ
sl�2 ;jl�1

Þ.
Step 3: Generate a series of independent uniform random vari-

ables: YsL�1 ;jL ; jL ¼ 1; . . . ;DðLÞ
sL�1

.

Step 4: Return UsL�1 ;jL ¼ wðL�1Þ
sL�2 ;jL�1

� logðYsL�1 ;jL
Þ

V ðL�1Þ
sL�2 ;jL�1

 !
¼ wð0Þ

0;1�L�1
i¼1
eWðiÞ

si�1 ;ji

� logðYsL�1 ;jL
Þ

VðL�1Þ
sL�2 ;jL�1

 !
.

Then ðU1;1; . . . ;U
ðLÞ
sL�1 ;jL

; . . . ;UðLÞ
sL�1 ;JL

Þ is a sample from copula

Cðu1; . . . ;udÞ.
Note that when L ¼ 2 and d ¼ J, Algorithm Appendix A.1 reduces

to the sampling algorithm of a two-level LSHAC proposed by Hering
et al. (2010).
Appendix B. Proof of Theorem 2.1

We prove Theorem 2.1 by induction.

For level y ¼ 0, since wð0Þ
0;1 is a LT-AC generator with c.d.f Gðv ð0Þ

0;1Þ,
we have

wð0Þ
0;1 ¼

Z 1

0
exp �v ð0Þ

0;1 � u
n o

dGð0Þ
0;1ðv ð0Þ

0;1Þ; ðB:1Þ

ðFð0Þ
0;1ðuÞÞ

v ¼ exp �vwð0Þ�1
0;1 ðuÞ

n o
: ðB:2Þ

According to the definition of LSHAC, the copulas emanated from

Cð0Þ
0;1 with generator wð0Þ

0;1 are

Cð1Þ
s0 ;j1

js0 ¼ 1; j1 ¼ 1; . . . ;Dð1Þ
s0

n o
: ðB:3Þ

Consequently, we have

Cð0Þ
0;1 ¼ Cð0Þ

0;1ðCð1Þ
s0 ;1

; . . . ;Cð1Þ
s0 ;D

ð1Þ
s0

Þ ¼ wð0Þ
0;1

XDð1Þ
s0

j1¼1

wð0Þ�1
0;1 ðCð1Þ

s0 ;j1
Þ

0B@
1CA ðB:4Þ

Then, using (B.1) and (B.2) yields

Cðu1;u2; . . . ;udÞ ¼
Z 1

0

YDð1Þ
s0

j1¼1

exp �v ð0Þ
0;1w

ð0Þ�1
0;1 ðCð1Þ

s0 ;j1
Þ

n o
dGð0Þ

0;1ðv ð0Þ
0;1Þ;

¼
Z 1

0

YDð1Þ
s0

j1¼1

Fð0Þ
0;1ðCð1Þ

s0 ;j1
Þ

� �vð0Þ
0;1dGð0Þ

0;1ðv ð0Þ
0;1Þ;

¼
Z 1

0

YDð1Þ
s0

j1¼1

Fð0Þ
0;1ðCð1Þ

s0 ;j1
Þ

� �vð0Þ
0;1 dGð Þj0 :

ðB:5Þ
Similarly, for level y ¼ 1, the copulas emanated from Cð1Þ

s0 ;j1
with gen-

erator wð1Þ
s0 ;j1

are

Cð2Þ
s1 ;j2

js1 ¼
Xs0�1

m¼1

Dð1Þ
m

 !
Ifs0>1g þ j1; j2 ¼ 1; . . . ;Dð2Þ

s1

( )
: ðB:6Þ

Since s0 ¼ 0, it is equivalent to

Cð2Þ
s1 ;j2

js1 ¼ j1; j2 ¼ 1; . . . ;Dð2Þ
s1

n o
: ðB:7Þ

Therefore, we have
Cð1Þ
s0 ;j1

¼ Cð1Þ
s0 ;j1

Cð2Þ
s1 ;1

; . . . ;Cð2Þ
s1 ;D

ð2Þ
s1

� �
¼ wð1Þ

s0 ;j1

XDð2Þ
s1

j2¼1

wð1Þ�1
s0 ;j1

ðCð2Þ
s1 ;j2

Þ

0B@
1CA: ðB:8Þ

Let

~wð1Þ
s0 ;j1

ðu;v ð0Þ
0;1Þ ¼ Fð0Þ

0;1ðwð1Þ
s0 ;j1

ðuÞÞ
� �vð0Þ

0;1 ¼ exp �v ð0Þ
0;1w

ð0Þ�1
0;1 � wð1Þ

s0 ;j1
ðuÞ

n o
ðB:9Þ

andeWð1Þ
s0 ;j1

ðuÞ ¼ wð0Þ�1
0;1 � wð1Þ

s0 ;j1
ðB:10Þ

be the Laplace exponent of a Lévy subordinator, Xð1Þ
s0 ;j1

, with c.d.f.eGð1Þ
s0 ;j1

. According to the property of Laplace exponent of a Lévy sub-

ordinator expressed in (2),

~wð1Þ
s0 ;j1

ðu;v ð0Þ
0;1Þ ¼ exp �v ð0Þ

0;1w
ð0Þ�1
0;1 � wð1Þ

s0 ;j1
ðuÞ

n o
;

¼ exp �v ð0Þ
0;1
eWð1Þ

s0 ;j1
ðuÞ

n o
;

¼ E exp �uXð1Þ
J0 ;j1

ðv ð0Þ
0;1Þ

n o� �
;

¼
Z 1

0
exp �uv ð1Þ

s0 ;j1
ðv ð0Þ

0;1Þ
n o

deGð1Þ
s0 ;j1

ðv ð1Þ
s0 ;j1

;v ð0Þ
0;1Þ: ðB:11Þ

As proved in Theorem 2.1 of Hering et al. (2010), derivative of

wð0Þ�1
0;1 � wð1Þ

s0 ;j1
defined according to (B.10) is c.m. According to Joe

(1997) and McNeil (2008), ~wð1Þ
s0 ;j1

ðuÞ is a LT-AC generator. As a result,

we can rewrite (B.5) according to (B.8) and (B.9),

Cðu1; . . . ;udÞ ¼
Z 1

0

YDð1Þ
s0

j1¼1

Fð0Þ
0;1ðCð1Þ

s0 ;j1
Þ

� �vð0Þ
0;1dGð0Þ

0;1ðv ð0Þ
0;1Þ;

¼
Z 1

0

YDð1Þ
s0

j1¼1

~wð1Þ
s0 ;j1

XDð2Þ
s1

j2¼1

wð1Þ�1
s0 ;j1

ðCð2Þ
s1 ;j2

Þ;v ð0Þ
0;1

0B@
1CAdGð0Þ

0;1ðv ð0Þ
0;1Þ;

¼
Z 1

0

YDð1Þ
s0

j1¼1

Z 1

0
exp �v ð1Þ

s0 ;j1

XDð2Þ
s1

j2¼1

wð1Þ�1
s0 ;j1

ðCð2Þ
s1 ;j2

Þ

0B@
1CA

0B@
1CA

� deGð1Þ
s0 ;j1

ðv ð1Þ
s0 ;j1

;v ð0Þ
0;1ÞdGð0Þ

0;1ðv ð0Þ
0;1Þ; ðB:12Þ

Similarly, let Fð1Þ
s0 ;j1

ðuÞ satisfy

Fð1Þ
s0 ;j1

ðuÞ
� �v

¼ exp �vwð1Þ�1
s0 ;j1

ðuÞ
� �

; ðB:13Þ

then we have

Cðu1; . . . ;udÞ

¼
Z 1

0

YDð1Þ
s0

j1¼1

Z 1

0

YDð2Þ
s1

j2¼1

Fð1Þ
s0 ;j1

ðCð2Þ
s1 ;j2

Þ
� �vð1Þ

s0 ;j1 deGð1Þ
s0 ;j1

ðv ð1Þ
s0 ;j1

;v ð0Þ
0;1ÞdGð0Þ

0;1ðv ð0Þ
0;1Þ;

¼
Z 1

0

YDð1Þ
s0

j1¼1

Z 1

0

YDð2Þ
s1

j2¼1

Fð1Þ
s0 ;j1

ðCð2Þ
s1 ;j2

Þ
� �vð1Þ

s0 ;j1 dGð Þð1Þj1
:

ðB:14Þ
Therefore, (3) is satisfied at level y ¼ 1. Now let us assume at level
y : 0 6 y 6 l� 2ðl P 2Þ, the following equation holds

Cðu1; . . . ;udÞ ¼
Z 1

0

YDð1Þ
s0

j1¼1

Z 1

0

YDð2Þ
s1

j2¼1

. . .

Z 1

0

YDðyþ1Þ
sy

jyþ1¼1

FðyÞ
sy�1 ;jy

ðCðl�1Þ
sy ;jyþ1

Þ
� �vðyÞ

sy�1 ;jy dGð ÞðyÞjy
:

ðB:15Þ
For notation consistency we let s�1 ¼ 0; j0 ¼ 1. Then at level yþ 1,

the copulas emanated from Cðyþ1Þ
sy ;jyþ1

with generator wðyþ1Þ
sy ;jyþ1

are



W. Zhu et al. / Journal of Banking & Finance 69 (2016) 20–36 35
Cðyþ2Þ
syþ1 ;jyþ2

jsyþ1 ¼
Xsy�1

m¼1

Dðyþ1Þ
m

 !
Ifsy�1>1g þ jyþ1; jyþ2 ¼ 1; . . . ;Dðyþ2Þ

syþ1

( )
:

ðB:16Þ
As a result, we have

Cðyþ1Þ
sy ;jyþ1

¼ wðyþ1Þ
sy ;jyþ1

XDðyþ2Þ
syþ1

jyþ2¼1

wðyþ1Þ�1
sy ;jyþ1

ðCðyþ2Þ
syþ1 ;jyþ2

Þ

0B@
1CA: ðB:17Þ

Let

~wðyþ1Þ
sy ;jyþ1

ðu;v ðyÞ
sy�1 ;jy

Þ ¼ FðyÞ
sy�1 ;jy

ðwðyþ1Þ
sy ;jyþ1

ðuÞÞ
� �vðyÞ

sy�1 ;jy ðB:18Þ

¼ exp �v ðyÞ
sy�1 ;jy

wðyÞ�1
sy�1 ;jy

� wðyþ1Þ
sy ;jyþ1

ðuÞ
n o

ðB:19Þ

andeWðyþ1Þ
sy ;jyþ1

ðuÞ ¼ wðyÞ
sy�1 ;jy

� wðyþ1Þ
sy ;jyþ1

ðuÞ ðB:20Þ

be the Laplace exponent of a Lévy subordinator, denoted as Xðyþ1Þ
sy ;jyþ1

,

with c.d.f. eGsy; jðyþ1Þ
yþ1 . Consequently, substituting (B.20) into (B.19)

yields

~wðyþ1Þ
sy ;jyþ1

ðu;v ðyÞ
sy�1 ;jy

Þ ¼ exp �v ðyÞ
sy�1 ;jy

eWðyþ1Þ
sy ;jyþ1

ðuÞ
n o

¼ E exp �uXðyþ1Þ
sy ;jyþ1

ðv ðyÞ
sy�1 ;jy

Þ
n o� �

¼
Z 1

0
exp �uv ðyþ1Þ

sy ;jyþ1

n o
deGðyþ1Þ

sy ;jyþ1
ðv ðyþ1Þ

sy ;jyþ1
; v ðyÞ

sy�1 ;jy
Þ
ðB:21Þ

Similarly, ~wðyþ1Þ
sy ;jyþ1

is a LT-AC generator. Therefore, (B.15) can be

rewritten as

Cðu1; . . . ;udÞ ¼
Z 1

0

YDð1Þ
s0

j1¼1

Z 1

0

YDð2Þ
s1

j2¼1

. . .

Z 1

0

YDðyþ1Þ
sy

jyþ1¼1

~wðyþ1Þ
sy ;jyþ1

�
XDðyþ1Þ
sy

jyþ1¼1

wðyþ1Þ�1
sy ;jyþ1

Cðyþ2Þ
syþ1 ;jyþ2

;v ðyÞ
sy�1 ;jy

� �0B@
1CA dGð ÞðyÞjy

; ðB:22Þ

which is equivalent to

Z 1

0

YDð1Þ
s0

j1¼1

Z 1

0

YDð2Þ
s1

j2¼1

. . .

Z 1

0

YDðyþ1Þ
sy

jyþ1¼1

Z 1

0

� exp �v ðyþ1Þ�1
sy ;jyþ1

XDðyþ2Þ
syþ1

jyþ2¼1

wðyþ1Þ�1
sy ;jyþ1

ðCðyþ2Þ
syþ1 ;jyþ2

ÞÞ

0B@
1CA ðB:23Þ

deGsy ;jyþ1
ðv ðyþ1Þ

sy ;jyþ1
;v ðyÞ

sy�1 ;jy
Þ dGð ÞðyÞjy

: ðB:24Þ

Let Fðyþ1Þ
sy ;jyþ1

satisfy

ðFðyþ1Þ
sy ;jyþ1

Þv ¼ exp �vwðyþ1Þ�1
sy ;jyþ1

ðuÞ
� �

: ðB:25Þ

Then we have

Cðu1; . . . ;udÞ ¼
Z 1

0

YDð1Þ
s0

j1¼1

Z 1

0

YDð2Þ
s1

j2¼1

. . .

Z 1

0

YDðyþ1Þ
sy

jyþ1¼1

Z 1

0

YDðyþ2Þ
syþ1

jyþ2¼1

Fðyþ1Þ
sy ;jyþ1

� ðCðyþ2Þ
syþ1 ;jyþ2

ÞÞ dGð Þðyþ1Þ
jyþ1

; ðB:26Þ

which means that (3) is satisfied at level yþ 1. Therefore, by
mathematical induction, (3) holds for all l ¼ 1; . . . ; L� 1, and this
completes the proof of Theorem 2.1. h
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Choroś-Tomczyk, B., Härdle, W.K., Okhrin, O., 2013. Valuation of collateralized debt
obligations with hierarchical Archimedean copulae. Journal of Empirical Finance
24, 42–62.

Christoffersen, P.F., 1998. Evaluating interval forecasts. International Economic
Review 39 (4), 841–862.

Christoffersen, P.F., 2004. Backtesting value-at-risk: a duration-based approach.
Journal of Financial Econometrics 2 (1), 84–108.

Das, S.R., Uppal, R., 2004. Systemic risk and international portfolio choice. The
Journal of Finance 59 (6), 2809–2834.

Dias, A., Embrechts, P., 2004. Dynamic copula models for multivariate high-
frequency data in finance. Manuscript, ETH Zurich.

Embrechts, P., Lindskog, F., McNeil, 2003. Modelling dependence with copulas and
applications to risk management. Handbook of Heavy Tailed Distributions in
Finance 8 (1), 329–384.

Embrechts, P., McNeil, A., Straumann, D., 2002. Correlation and dependence in risk
management: properties and pitfalls. In: Dempster, M. (Ed.), Risk Management:
Value at Risk and Beyond:. Cambridge University Press, pp. 176–223.

Engle, R.F., 1982. Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom inflation. Econometrica 50 (4), 987–1007.

Feller, W., 2008. An Introduction to Probability Theory and its Applications. John
Wiley & Sons Inc.

Föllmer, H., Schied, A., 2011. Stochastic Finance: An Introduction in Discrete Time,
Second revised and extended edition. Walter de Gruyter, Berlin.

Goshtasby, A.A., 2012. Image Registration. Similarity and Dissimilarity Measures.
Springer, London.

Hadar, J., Russell, W., 1969. Rules for ordering uncertain prospects. American
Economic Review 59 (1), 25–34.

Harvey, C.R., Siddique, A., 1999. Autoregressive conditional skewness. Journal of
Financial and Quantitative Analysis 34 (4), 465–487.

Hering, C., Hofert, M., Mai, J.-F., Scherer, M., 2010. Constructing hierarchical
Archimedean copulas with Lévy subordinators. Journal of Multivariate
Analysis 101 (6), 1428–1433.

Hoesli, M., Peka, K., 2013. Volatility spillovers, comovements and contagion in
securitized real estate markets. The Journal of Real Estate Finance and
Economics 47 (1), 1–35.

Hofert, M., 2008. Sampling Archimedean copulas. Computational Statistics and Data
Analysis 52 (12), 5163–5174.

Hofert, M., 2012. A stochastic representation and sampling algorithm for nested
Archimedean copulas. Journal of Statistical Computation and Simulation 82 (9),
1239–1255.

Joe, H., 1997. Multivariate Models and Multivariate Dependence Concepts. Taylor &
Francis.

Jondeau, E., Rockinger, M., 2003. Conditional volatility, skewness and kurtosis:
existence, persistence, and comovements. Journal of Economic Dynamics and
Control 27 (10), 1699–1737.

Ward Jr., J.H., 1963. Hierarchical grouping to optimize an objective function. Journal
of American Statistical Association 58 (301), 236–244.

Kimberling, C.H., 1974. A probabilistic interpretation of complete monotonicity.
Aequationes Mathematicae 10 (2–3), 152–164.

Kole, E., Koedijk, K., Verbeek, M., 2007. Selecting copulas for risk management.
Journal of Banking & Finance 31 (8), 2405–2423.

Kumar, M.S., Okimoto, T., 2011. Dynamics of international integration of
government securities’ markets. Journal of Banking & Finance 35 (1), 142–154.

Kurowicka, D., Cooke, R.M., 2006. Uncertainty Analysis with High Dimensional
Dependence Modelling. John Wiley & Sons.

Longin, F.M., Solnik, B., 2001. Extreme correlation of international equity markets.
The Journal of Finance 56 (2), 649–676.

Mai, J.-F., Scherer, M., 2012. H-extendible copulas. Journal of Multivariate Analysis
110 (0), 151–160, Special Issue on Copula Modeling and Dependence.

Marshall, A.W., Olkin, I., 1988. Families of multivariate distributions. Journal of the
American Statistical Association 83 (403), 834–841.

McNeil, A.J., 2008. Sampling nested Archimedean copulas. Journal of Statistical
Computation and Simulation 78 (6), 567–581.

McNeil, A.J., Frey, R., Embrechts, P., 2010. Quantitative Risk Management: Concepts,
Techniques, and Tools. Princeton University Press.

http://refhub.elsevier.com/S0378-4266(16)00036-4/h0005
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0005
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0010
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0010
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0015
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0015
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0020
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0020
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0025
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0025
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0030
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0030
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0030
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0035
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0035
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0040
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0040
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0040
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0045
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0045
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0045
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0050
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0050
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0055
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0055
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0060
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0060
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0070
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0070
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0070
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0075
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0075
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0075
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0080
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0080
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0085
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0085
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0090
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0090
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0095
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0095
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0100
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0100
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0105
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0105
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0110
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0110
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0110
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0115
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0115
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0115
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0120
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0120
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0125
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0125
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0125
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0130
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0130
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0135
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0135
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0135
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0140
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0140
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0145
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0145
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0150
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0150
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0155
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0155
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0160
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0160
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0165
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0165
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0170
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0170
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0175
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0175
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0180
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0180
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0185
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0185


36 W. Zhu et al. / Journal of Banking & Finance 69 (2016) 20–36
Nelsen, R.B., 2006. An Introduction to Copulas, second ed. Springer.
Okhrin, O., Odening, M., Xu, W., 2013a. Systemic weather risk and crop insurance:

the case of China. Journal of Risk and Insurance 80 (2), 351–372.
Okhrin, O., Okhrin, Y., Schmid, W., 2013b. On the structure and estimation

of hierarchical Archimedean copulas. Journal of Econometrics 173 (2),
189–204.

Patton, A.J., 2006. Modelling asymmetric exchange rate dependence. International
Economic Review 47 (2), 527–556.

Patton, A.J., 2009. Copula-based models for financial time series. In: Mikosch, T., Krei,
J.-P., Davis, R.A., Andersen, T.G. (Eds.), Handbook of Financial Time Series.
Springer, Berlin Heidelberg, pp. 767–785.

Savu, C., Trede, M., 2010. Hierarchies of Archimedean copulas. Quantitative Finance
10 (3), 295–304.

Schwarz, G.E., 1978. Estimating the dimension of a model. Annual of Statistics 6 (2),
461–464.
Siburg, K.F., Stoimenov, P., Weiß, G.N.F., 2015. Forecasting portfolio-value-at-risk
with nonparametric lower tail dependence estimates. Journal of Banking &
Finance 54, 129–140.

Székely, G.J., Rizzo, M.L., 2005. Hierarchical clustering via joint between-within
distance: extending ward’s minimum variance method. Journal of Classification
22 (2), 151–183.

Tankov, P., 2004. Financial Modelling with Jump Processes. CRC Press.
Weiß, G.N.F., Scheffer, M., 2015. Mixture pair-copula-constructions. Journal of

Banking & Finance 54, 175–191.
Whelan, N., 2004. Sampling from Archimedean copulas. Quantitative Finance 4 (3),

339–352.
Zhang, W., Zhao, D., Wang, X., 2013. Agglomerative clustering via maximum

incremental path integral. Pattern Recognition 46 (11), 3056–3065.
Zhou, J., Gao, Y., 2012. Tail dependence in international real estate securities

markets. Journal of Real Estate Finance and Economics 45 (1), 128–151.

http://refhub.elsevier.com/S0378-4266(16)00036-4/h0190
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0195
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0195
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0200
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0200
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0200
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0205
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0205
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0210
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0210
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0210
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0215
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0215
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0220
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0220
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0225
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0225
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0225
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0230
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0230
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0230
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0235
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0240
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0240
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0245
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0245
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0250
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0250
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0255
http://refhub.elsevier.com/S0378-4266(16)00036-4/h0255
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