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Abstract

We present a stochastic simulation model of a prototype financial market. Our market is populated
by both noise traders and fundamentalist speculators. The dynamics covers switches in the prevailing
mood among noise traders (optimistic or pessimistic) as well as switches of agents between the
noise trader and fundamentalist group in response to observed differences in profits. The particular
behavioral variant adopted by an agent also determines his decision to enter on the long or short
side of the market. Short-run imbalances between demand and supply lead to price adjustments
by a market maker or auctioneer in the usual Walrasian manner. Our interest in this paper is in
exploring the behavior of the model when testing for the presence of chaos or non-linearity in
the simulated data. As it turns out, attempts to determine the fractal dimension of the underlying
process give unsatisfactory results in that we experience a lack of convergence of the estimate.
Explicit tests for non-linearity and dependence (the BDS and Kaplan tests) also give very unstable
results in that both acceptance and strong rejection of IIDness can be found in different realizations
of our model. All in all, this behavior is very similar to experience collected with empirical data
and our results may point towards an explanation of why robustness of inference in this area is
low. However, when testing for dependence in second moments and estimating GARCH models,
the results appear much more robust and the chosen GARCH specification closely resembles the
typical outcome of empirical studies. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

More than one decade ago, first applications of empirical methods from chaos theory
raised the hope of detecting low-dimensional chaotic motion in financial data (cf., for
example, Scheinkman and LeBaron, 1989; Frank and Stengos, 1989; Medio and Gallo,
1992). However, these early positive results were questioned a few years later by other
authors (for example, Ruelle, 1990; Gilmore, 1993). By now, a certain consensus seems to
have emerged that the search for low-dimensional chaos has not been successful. However,
experience also shows that the null hypotheses of either linearity or IIDness are often rejected
with financial data. Furthermore, one also knows that much of the deviations from IIDness
stems from the volatility dynamics and can be captured to some degree by GARCH time
series models.

In this paper, we take the findings reported above as stylized facts of financial data and ask
whether model-generated data from an ‘artificial’ market could reproduce these features.
This continues the line of research of Lux and Marchesi (1999, 2000) who show that their
artificial financial market generates time series of prices and returns sharing some even
more elementary stylized facts of empirical data: both the presence of a unit root in the
asset price dynamics as well as heteroskedasticity and leptokurtosis of returns can be found
in simulations of the model. Their results are even in good quantitative agreement with
empirical findings: as with almost all real-life data, the tails of the distribution of returns
(rt ) are characterized by power-law behavior, i.e. F(|rt | > x) ≈ cx−µ, with a ‘tail index’ µ
in the range of about 2–4. Furthermore, both squared and absolute returns seem to exhibit
long-term dependence, i.e. a slow (hyperbolic) decline of the autocorrelation function, with
a realistic magnitude of the relevant statistics. At the same time, raw returns have only small
degrees of autocorrelation which implies that the (artificial) market appears rather efficient
on first sight since price increments are almost uncorrelated.

When testing for chaos and non-linearity with simulated time series from the Lux and
Marchesi framework in this paper, our results will turn out to conform to empirical behavior
in even greater detail. The plan of the remainder is as follows: the next section reviews
the basic building blocks of the model and explains what kind of mechanism leads to
its interesting dynamics. Section 3 reports and evaluates the results of various statistical
procedures. Section 4 provides concluding remarks.

2. The artificial financial market

Among the various recent approaches towards dynamic behavioral modeling of financial
markets (for example, Day and Huang, 1990; Kirman, 1991; Brock and LeBaron, 1996;
Arthur et al., 1997) the characteristic feature of the model presented in Lux and Marchesi
(1999, 2000) is its use of a mass-statistical approach which only considers a few key behav-
ioral variants and formalizes agents’ switching between these alternatives in a stochastic
manner. Three groups of agents are considered in the model: first, the fixed number of
traders in the market (N) is split up into the camps of noise traders and fundamentalists with
nn(t) and nf (t) denoting the (time-varying) numbers of agents in both groups (nn +nf = N ).
Second, the noise trader group itself consists of optimistic and pessimistic individuals whose
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numbers are given by n+(t) and n−(t) with n+(t)+n−(t) = nn. Given this classification of
behavioral variants, the dynamics is encapsulated in six transition probabilities for changes
between groups.

First, the probabilities of switches of agents from the pessimistic to the optimistic sub-
group and vice versa during a small time increment �t are denoted by π+− �t and π−+ �t ,
where π+− and π−+ are concretized as follows:

π+− = v1
nn

N
exp(U1), π−+ = v1

nn

N
exp(−U1), U1 = α1x + α2

v1

dp/dt

p
. (1)

Here, the basic influences on the noise traders’ formation of opinion are the majority opinion
of their fellow traders, x = (n+ − n−)/nc, and the actual price trend, (dp/dt)/p. The first
component may be seen as a short-hand reflecting herd behavior or the attempt to trace
out underlying information from the behavior of others. The second component may be
interpreted as being representative of trend following practices. Parametersv1,α1, andα2 are
measures of the frequency of revaluation of opinion and the importance of majority opinion
and trend, respectively. The transition probabilities are multiplied by the actual fraction of
chartists (that means, potential transitions are restricted to such a fraction) because we will
also allow interaction with fundamentalist traders in the next step.

Switching from the noise trader to the fundamentalist group and vice versa is formalized
in a similar manner. The notational convention in the transition probabilities below is again
that the first index denotes the subgroup to which a trader moves who had changed his
mind and the second index gives the subgroup to which he formerly belonged (hence, as
an example, π+f �t is the probability for a fundamentalist to switch to the optimistic noise
traders’ group within a small time interval �t):

π+f = v2
n+
N

exp(U2,1), πf+ = v2
nf

N
exp(−U2,1),

π−f = v2
n−
N

exp(U2,2), πf− = v2
nf

N
exp(−U2,2). (2)

The forcing terms U2,1 and U2,2 for these transitions depend on the difference between the
(momentary) profits earned by noise traders and fundamentalists:

(3)

Profits enjoyed by noise traders from the optimistic group (who are buyers, and thus, increase
the fraction of the asset in their portfolio) are composed of nominal dividends (r) and
capital gains due to the price change (dp/dt). Dividing by the actual market price gives the
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revenue per unit of the asset. Excess returns are computed by subtracting the average real
risk-adjusted return (R) available from other investments. 1 Fundamentalists, on the other
hand, consider the deviation between price and fundamental value pf (irrespective of its
sign) as the source of arbitrage opportunities. As the gains from arbitrage occur only in the
future (and depend on the uncertain time for reversal to the fundamental value) the latter are
discounted by a factor s < 1. Furthermore, neglecting the dividend term in fundamentalists’
profits is justified by assuming that they correctly perceive the (long-term) real returns to
be equal to the average return of alternative investments (i.e. R = r/pf ) so that the only
source of excess profits in their view is arbitrage when prices are ‘wrong’ (p �= pf ).

As concerns the second U-function, U2,2, we consider profits from the viewpoint of
pessimistic noise traders who in order to avoid losses will rush out of the market and sell
the asset under consideration. Their fall-back position by acquiring other assets is given by
the average return R which they compare with nominal dividends plus price change (which,
when negative, amounts to a capital loss) of the asset they sell. This explains why the first
two items in the forcing term are interchanged when proceeding from U2,1 to U2,2.

Lastly, the dynamics of the asset’s price results from the market operations of our agents
and the ensuing price adjustment by a market maker who reacts on imbalances between
demand and supply. With optimistic (pessimistic) noise traders entering on the demand
(supply) side of the market, excess demand within this group depends on the number of
individuals in both groups. Assuming a constant average trading volume per transaction,
tn, this amounts to EDn = (n+ − n−)tn. Excess demand of fundamentalists, on the other
hand, typically obeys a law of the type: EDf = nfγ (pf − p)/p, γ being a parameter
for the strength of reaction on differences between p and pf . In order to conform with
the general structure of our framework, we also formalize the price adjustment process in
terms of (Poisson) transition probabilities. As a stochastic version of the standard Walrasian
adjustment we use the following probabilities for the price to increase (decrease) by a small
percentage �p = ±0.001p during a time increment �t: 2

π↑p = max[0, β(ED + µ)], π↓p = −min[β(ED + µ), 0],

ED = EDf + EDn, (4)

where β is a parameter for the price adjustment speed and µ is a small random component
which is added to the speculators’ excess demand.

Note that using Poisson transition probabilities for all dynamic processes, we have formu-
lated a continuous-time model with asynchronous changes of behavior. In our simulations,
updating of p and the number of individuals in the various subgroups is performed with
sufficiently small time increments (ranging in a flexible manner between �t = 0.002 and

1 Usually, one would think of R as a risk-free rate. However, as our model lacks risk aversion on the part of
speculators, we have no basis for computation of a risk premium. An extension of the model to the case of
risk-averse traders is on our agenda. In such a framework, one would hope to be able to account for a positive,
time-varying risk premium as well as for leverage effects (dependence of volatility on the sign of returns) which
so far the model is unable to produce.

2 The increment �p has been chosen as small as possible in order to avoid artificial lumpiness of price changes
with concentration of the distribution of returns at a few values only.
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�t = 0.01) in order to achieve a close approximation to the underlying continuous process.
For the statistical analyses, the realized sample paths are extracted at integer time steps.

As a benchmark for the analysis of the resulting price dynamics, we introduce an
exogenous news arrival process. Our assumption here is that the log of the fundamen-
tal value follows a Wiener process, and hence,

ln(pf,t ) = ln(pf,t−�t ) + εt �t, (5)

with increments εt identically and independently distributed according to a Normal dis-
tribution with mean zero and (time-invariant) variance σ 2

ε . This specification ensures that
neither fat tails nor volatility clustering nor any kind of non-linear dependence are brought
about by the exogenous news arrival process. 3 Hence, emergence of these characteristics
in market prices would not be driven by similar characteristics of the news, but would rather
have to be attributed to the trading process itself. In fact, the major finding from our earlier
work on this artificial market (Lux and Marchesi, 1999, 2000) is that the trading process
itself generates realistic dynamics of asset returns, i.e. market interactions of agents mag-
nify and transform exogenous noise (news) into fat tailed returns with clustered volatility
(cf. Fig. 2 for an example of the resulting dynamics of returns).

Lux and Marchesi (2000) provide a theoretical analysis of the mean-value dynamics
of the model that allows to gain some insights into the origin of this dynamic behavior.
They show that the above system is characterized by a continuum of equilibria 4 with a
market price which (on an average) equals the fundamental value, balanced disposition
among noise traders, and indeterminate fractions of agents within the noise trader and
fundamentalist group. The reason or this indeterminacy can be understood by taking into
account that neither group has any advantage in a situation where no arbitrage opportunities
exist (p = pf ) and no deviations from the equilibrium price are expected (which amounts
to dp/dt = 0). This implies, that switches of individual agents between groups become
random in the neighborhood of an equilibrium, so that the system moves in an erratic manner
along its continuum of equilibria. The relevant equilibrium ‘selected’ in any period, then,
depends on the whole history of the process. 5

Another theoretical result is that stability of an equilibrium depends on the fraction of
noise traders among agents. A critical value for the fraction of chartists can be computed
that separates the region of stable and unstable equilibria. When the configuration comes
close to this critical point, volatility increases due to destabilizing reactions of the now

3 Another stylized fact, unit root behavior, is, in fact, shared by both the fundamental value and market prices.
It seems to us, however, that this is not an entirely trivial consequence of our assumptions as the price dynamics
follows a different, much more complicated process than fundamentals. In fact, as shown in Lux and Marchesi
(2000), one can get non-rejection of unit roots from the price process even with stationary fundamentals.

4 More precisely, these are the equilibria of a first-order approximation to the time development of mean values of
the relevant variables (cf. Lux, 1995, 1997, 1998). In the original stochastic system, these equilibria are stationary
in the sense that the systematic factors in the transition probabilities vanish (all U-functions in Eqs. (1)–(3) are
identical to zero as is excess demand) and the dynamics is confined to stochastic fluctuations.

5 In out-of-equilibrium episodes, however, one finds more systematic motions between groups. There one also
finds changing majorities of optimistic or pessimistic noise traders. Note also that with a price close to the
fundamental value, balanced disposition of noise traders implies that their excess demand is close to a random
process with mean zero. Hence, as long as no bubbles built up our noise traders do essentially behave like the
‘liquidity traders’ of standard market microstructure models.
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larger chartist group. However, these destabilizing forces are kept in check by a tendency
of agents to switch back to a fundamentalist behavior in the presence of large deviations
between price and fundamental value. The resulting decline of the number of noise traders,
then, leads to reduction of the amplitude of the fluctuations. As a result, destabilization is
only a temporal phenomenon which, nevertheless, occurs repeatedly in the course of the
market’s development. Note that for the fraction of noise traders this stabilizing mechanism
amounts to some kind of re-injection (this is similar to, but more complicated than a random
walk with a reflecting boundary).

As this temporary destabilization does not lead to lasting deviations from fundamental
valuation, the resulting picture still seems to be consistent with efficiency of the price
formation process, but the market can also be characterized by a certain fragility with a
tendency towards ‘unnecessarily’ large fluctuations and alternation between tranquil and
turbulent periods. This behavior resembles a phenomenon called on–off intermittency in
natural science (cf. Heagy et al., 1994). 6

3. Testing for non-linear structure in the simulated data

We now proceed with the statistical analyses of our model-generated data. The parameter
values used for simulations are the same as in Lux and Marchesi (1999): N = 500, v1 =
2, v2 = 0.6, β = 4, tn = 0.001, γ = 0.01, α1 = 0.6, α2 = 1.5, α3 = 1, R = 0.0004, and
s = 0.75, where R = r/pf .

The random variables µ and ε are assumed to follow Normal distributions with mean
zero and standard deviations σε = 0.005 and σµ = 0.05.

‘Fine-tuning’ of the model’s parameters was not necessary in order to get ‘realistic’
statistical attributes. What we did in choosing the parameters was some scale adjustment
in order to get an interval of price changes which is consistent with empirical observations
in industrialized economies (with absolute returns over unit time intervals not exceeding
0.2–0.3). With changes of the parameters, we are, of course, able to evoke fluctuations
which are either wilder or more moderate, but these nevertheless share the same statistical
characteristics as the data shown in this paper. Now turn to the details of the statistical
analysis.

3.1. Fractal (or correlation) dimension

First, we follow many of the early empirical chaos papers in attempting to estimate
the so-called fractal dimension of our data. The fractal dimension (denoted by Dc in the
following) is a measure to determine the degree of complexity of a time series which, for data
from a chaotic attractor, would assume some non-integer value Dc > 1. With a reasonably
low estimate, say < 4, the hope would emerge of understanding the underlying dynamics,
while a higher dimension estimate (if its existence could be assured at all) would imply that
the dynamics is close to truly random generating mechanisms.

6 Another economic example of its occurrence is given in Youssefmir and Huberman (1997).
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Of the various definitions of the fractal dimension, the correlation dimension is usually
adopted in empirical work. To arrive at an estimate of Dc for a given time series {yt},
t = 1, 2, . . . , n, one first computes the so-called correlation function:

Cε,m =
∑ ∑

1≤s≤t≤n

Iε(y
m
t , ym

s )(
n

2

) , (6)

where ym
t = (yt , yt+τ , . . . , yt+(τ−1)m) is an ‘m-history’ constructed from the underlying

univariate dataset and Iε(·) is an indicator function: Iε(y
m
t , ym

s ) = 1 if ||ym
t − ym

s || < ε

and 0 otherwise. The correlation function, thus, measures the relative frequency with which
different points are within radius ε of each other. Here, m is called the embedding dimension,
and the lag τ used in constructing the m-histories is chosen in a way to avoid too high a
correlation between the elements of an m-tuple. It is usually recommended to set this lag
equal to the first zero-crossing of the autocorrelation function and we follow this practice
here. For chaotic attractors, Cε,m should behave like Cε,m ≈ constant × εDc . As stochastic
processes exhibit increasing estimates of Dc with increasing ‘embedding’ dimensions, one
looks for the development of the estimate when using m-histories ym

t with increasing m. If
the estimate Dc exhibits convergence to some almost constant value, this value is used as
an estimate of the ‘true’ correlation dimension of the process under investigation.

In Fig. 1, we show the application of this procedure to a dataset of 40,000 observations of
returns over unit time steps simulated from our model. The upper part illustrates the behavior
of the correlation integral with increasing embedding dimension m. It can readily be seen
that at least for embeddings up to m = 12, the slope of the fitted linear curves increases with
increasing m. Plotting the slopes as the estimates of Dc in the bottom part confirms that one
cannot speak of convergence of the estimate which seems to increase monotonously, and
finally, at m = 12, reaches a value of 8.81. Looking up early papers such as Scheinkman
and LeBaron (1989) or Frank and Stengos (1989), this pattern appears quite familiar. For
comparison, our plot also shows the behavior of the increments of the fundamental value
(which are assumed to follow a Normal distribution). Here we see higher estimates of Dc
coming close to the 45◦ line throughout and increasing up to a high 11.06 at m = 12. Thus,
it appears that, although we are unable to establish convergence of the correlation dimension
estimate, the price dynamics from the model appears less complex (less random) than the
pseudo-random numbers underlying the dynamics of the fundamental value.

To check the significance of this apparently different behavior formally, we applied
the ‘shuffle test’ (Scheinkman and LeBaron, 1989) and ‘surrogate data test’ (Theiler et al.,
1992). In the former, the results for the original series are compared with estimates obtained
for randomly reshuffled time series, whereas in the latter, they are compared to that of
synthetic data with similar distributional characteristics and (linear) autocorrelation. Table 1
shows the outcome of these tests for embedding dimensions m = 3, 6, 9, and 12. It can
be seen that the dimension estimates from 20 sets of surrogate data are uniformly larger
than those of the original dataset. Reshuffling yields lower estimates than the surrogate
data technique, but for the higher embeddings (m = 9 and 12) also leads to a rejection of
the underlying null hypothesis (that the original data does not behave differently from the
randomized ones) at the 95% level. Again, similar results are familiar from the empirical
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Fig. 1. Estimation of the correlation dimension Dc for a sample of 40,000 observations. Top: log–log plot of the
scaling of the correlation integral with embedding dimension ranging from m = 2 to m = 12. The 11 curves
proceed counter-clockwise from lower to higher numbers of m, the broken vertical lines demarcating the scaling
region. As can be seen, the slope keeps increasing, so there is no saturation of the correlation dimension as can
also be inferred from the bottom plot of Dc vs. m. The bottom plot also shows that the randomly generated changes
of the fundamental value are characterized by higher estimates of Dc at all embedding dimensions.

Table 1
Estimates of correlation dimension

Embedding dimension Raw data Shuffled data Surrogate data

Minimum Maximum Minimum Maximum

3 2.21 2.20 2.28 2.65 2.71
6 4.51 4.40 4.55 5.26 5.42
9 6.54 6.66 6.89 7.86 8.15

12 8.81 8.84 9.19 9.69 11.28
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chaos literature, where randomly reshuffled series usually lead to higher estimates of Dc
despite lack of convergence of the dimension estimate. The overall result is that like most
of the empirical time series that have been analyzed in this way our computer-generated
data show traces of hidden structure which, however, appears to be of a more complicated
nature than time series from some low-dimensional deterministic dynamics.

3.2. BDS and Kaplan test

Having been unable to establish a low-dimensional correlation dimension for our sim-
ulated data, we are turning to more modest goals. In the following we are interested in
whether explicit tests for non-linearity and IIDness would indicate at all that there is more
in our data than a purely stochastic motion or short-term linear dependence. From the
wealth of available procedures, we choose the BDS and Kaplan test (Brock et al., 1996;
Kaplan, 1994).

The reason for this choice is that these two tests turned out to be the best performing ones in
a recent competition among non-linearity tests (cf. Barnett et al., 1998). Our application can
also be viewed as adding another type of process to their competition. In order to facilitate
comparison, we use the same sample size as Barnett et al. did in their ‘large’ samples,
i.e. 2000 observations, and consider 20 subsamples from a longer simulation run in order
to perform a small Monte Carlo experiment. 7 The whole data series of 40,000 entries is
shown in Fig. 2, it is the same series that was used in the above attempt at estimating the
correlation dimension.

The idea of the BDS test is to look for significant deviations of the behavior of the
correlation integral (6) from that expected under IIDness of the data. In particular, if the
data under consideration are identically and independently distributed, then it can be shown
that limn→∞Cε,m = (limn→∞Cε,1)

m almost surely for all ε > 0 and m = 2, 3, . . . The
pertinent test statistic is (Brock et al., 1996)

Vε,m =
√
n(Cε,m − Cm

ε,1
)

σε,m

, (7)

which has a limiting standard Normal distribution under the null hypothesis of IID. With
the estimate of the standard deviation σε,m given in Brock et al. application of the above is
straightforward.

The outcomes of a sequence of BDS tests applied to 20 data windows are given in Table 2
and are visualized in Fig. 2. In constructing the m-tuples, we tried embedding dimensions
ranging from 2 to 5, and since linear dependence had been removed by ARMA filtering, 8

we set the lag length τ equal to 1. We classify the results as ‘acceptance’ (‘rejection’) of

7 Of course, both the size of this experiment as well as the number of testing procedures applied to the data are
restricted by computation time.

8 The optimal ARMA (p, q) model was estimated by the predictive stochastic complexity (PSC) algorithm, cf.
Chen and Tan (1999). The finding of small positive orders of the ARMA parameters is mainly due to a negative
spike at the first lag which appears somewhat too large when compared to empirical numbers. The reason for this
negative short-run autocorrelation is probably a too swiftly change of noise traders from optimistic to pessimistic
mood and vice versa during turbulent episodes. Further attempts at fine-tuning of parameters may eliminate this
feature.
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Fig. 2. Simulation run over 40,000 time steps. The parameter values underlying this simulation are:
N = 500, v1 = 2, v2 = 0.6, β = 4, tn = 0.001, γ = 0.01, α1 = 0.6, α2 = 1.5, α3 = 1, R = 0.0004, s = 0.75
and σε = 0.005, where R = r/pf . The broken and dotted lines indicate those subperiods with clear rejection from
the BDS test (- - -) and ambiguous results (· · · ), respectively, cf. Table 1.
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Table 2
Overall results of non-linearity tests

Subsample ARMA BDS Kaplan GARCH

1 (0, 0) Reject Reject (1, 1)
2 (1, 0) Accept Ambiguous (1, 1)
3 (0, 0) Accept Ambiguous (1, 1)
4 (1, 0) Accept Ambiguous (1, 1)
5 (1, 0) Accept Accept No GARCH
6 (1, 0) Accept Accept (1, 1)
7 (1, 0) Accept Accept (1, 1)
8 (1, 0) Accept Accept (1, 1)
9 (2, 2) Ambiguous Ambiguous (1, 1)

10 (1, 0) Accept Accept (1, 1)
11 (0, 2) Ambiguous Ambiguous (1, 1)
12 (0, 0) Reject Ambiguous (1, 1)
13 (0, 2) Ambiguous Ambiguous (1, 1)
14 (1, 0) Reject Reject (1, 2)
15 (1, 0) Accept Accept No GARCH
16 (0, 2) Ambiguous Ambiguous (1, 1)
17 (2, 1) Reject Reject (1, 1)
18 (0, 2) Accept Ambiguous (1, 1)
19 (2, 2) Ambiguous Ambiguous (1, 1)
20 (1, 0) Accept Accept No GARCH

IIDness, if none (all) of the test statistics over m = 2 to m = 5 are significant at the 95%
level. Mixed results are classified as ‘ambiguous’.

Kaplan’s test (Kaplan, 1994) is a test based upon continuity in phase space of deterministic
dynamics. Continuity implies that nearby points on a trajectory from a deterministic process
should also be nearby in phase space, while, with data from a purely stochastic dynamics,
nearby points (in time) may be further apart in phase space. More formally, this amounts
to testing whether for pairs of data points which are within some small distance dij =
||yi − yj || < r , the average of the differences of their iterations εij = ||yi+1 − yj+1|| is
found to be smaller than some threshold value. The significance of this test statistics is
judged by comparison with surrogate data. As the computational burden of this test allows
only limited experimentation, we resorted to the conservative choice m = 2 for the length of
the vectors yi and again set τ = 1. Furthermore, we performed 20 replications with surrogate
data and adopted two variants of this test: in the first, we computed the test statistic K as the
average εij from the 500 smallest distances dij , while in the second variant, we performed a
linear regression on these smallest pairs (dij , εij ) and considered the intercept at dij = 0. In
both cases, the resulting test statistics K is compared to the minimum K from 20 time series
of surrogate data. With the latter greater (smaller) than the actual one, we accept (reject)
linearity of the data and report ‘ambiguous’ results, if both cases have divergent outcomes.

Detailed results are given in an unpublished appendix which is available upon request.
As can be seen from Table 2, results from both tests are similar within most subperiods,
but are in no way uniform across subsamples. Interestingly, comparing test results with the
visual appearance of the relevant parts of the time series, there seems to be a general ten-
dency towards rejection in periods with larger fluctuations, while in periods with moderate
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volatility both the BDS and Kaplan test do not reject IID or linearity. 9 It is interesting to
compare this behavior of our model with de Lima’s recent findings for US stock market
data: considering daily S&P 500 data during the 1980s, he was unable to reject IIDness in
all subsamples prior to the crash in 1987. However, once he extended the sample to include
this event and the following episodes, the outcome was overwhelming rejection (de Lima,
1998). Apparently, the results from our model are quite similar to de Lima’s findings with
the BDS and Kaplan statistics becoming significant in periods of high volatility only. 10

However, note that, in our model, both the rejection and non-rejection periods are generated
from one and the same simulation run without any change of the underlying mechanism.
This serves to question the suggested interpretation in de Lima’s paper that non-stationarity
rather than dependence may be the source of rejection of IIDness in the 1980s. In fact,
here it is shown that one can conceive processes that look practically random for extended
time spans (and the theoretical arguments outlined in Section 2, in fact, suggest, that the
dynamics is close to random near the equilibrium), but encapsulate non-linear forces which
only show up in the dynamics and in the test statistics in certain subperiods. It is worth em-
phasizing that what the process does is exactly what the tests indicate: switching between
tranquil phases in which the dynamics is practically indistinguishable from purely random
motion and more turbulent phases where some structural elements can be detected. 11

3.3. GARCH estimation

As it is well known that most of the non-linearity in financial data seems to be contained
in their second moments, we proceed by carrying out a sequence of tests and parameter
estimates on volatility dynamics. Our first step is to test for the presence of GARCH effects
by applying the Ljung-Box and Lagrange multiplier tests to squared entries of our data.
In both cases the number of lags considered is 12. In order to conserve space, we confine
ourselves to a short summary here instead of giving all the details (which are available
upon request): both tests gave uniform results for each of our 20 subsamples with usually
overwhelming rejection of the null hypothesis in the majority (17) of cases. As can be seen
in Table 2, those periods without rejection of independence of squared returns (nos. 5, 15,
and 20) are also periods without rejection of IIDness with any of the variants of the BDS
test or the Kaplan test. On the other hand, with 17 out of 20 rejections at the 95% level, the
presence of GARCH effects seems to be more robust than the rejection of IIDness from the
non-linearity tests.

9 The four panels of 10,000 time steps each in Fig. 2 have been scaled according to the maximum fluctuations
occurring within each window. In the second and third panel, no excessively large fluctuations appear. However,
in the first and fourth panel we have some very large fluctuations which may artificially give the impression of a
lower average volatility over the remaining parts of the window. This is, however, an optical illusion only as the
usual bandwidth of fluctuations which are observed over the total of the second and third panel is dominated here
by a few outliers.
10 Performing recursive BDS tests as in de Lima (1998) we often get exactly the same picture with the statistic
‘jumping’ right across the critical values when large fluctuations set in.
11 As noted in Section 1, the tails of the distribution of returns drop off with a power-law index around 3. This
assures existence of second moments which can also be confirmed by the convergence of recursive variances. The
process should, thus, be covariance stationary, so that the variation in the results of the BDS and Kaplan tests
should not be due to moment condition failures.
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In the second stage of GARCH modeling we attempted to specify the appropriate model
from the GARCH (p, q) family and estimate its parameters. This amounts to the following
specification of the returns generating process:

rt = µ + h
1/2
t εt , ht = α0 +

p∑
i=1

αix
2
t−i +

q∑
i=1

βiht−i , (8)

with εt IID normal innovations and the restrictions α0 > 0, αi, βi ≥ 0 and
∑

iαi +
∑

iβi <

1. For the selection of the optimal number of lags in the variance equation we adopted the
BIC criterion. Overall results as shown in Table 3 point to the parsimonious GARCH (1,
1) specification as the optimal model for 16 out of the 17 time series under consideration,
while for the remaining sample GARCH (1, 2) has been chosen. Table 3 gives the detailed
parameter estimates which are relatively uniform across samples: browsing through the
rows we find for all (1, 1) specifications a small influence of the most recent innovation
(α1 < 0.1 throughout) coming along with strong persistence of the variance coefficient
(β1 > 0.9). A glance at the relevant literature shows that such parameter estimates are
rather common when considering returns from share markets of foreign exchange rates at
daily frequencies (cf. de Vries, 1994; Pagan, 1996). It is also interesting to observe that the
sum of the coefficients α1 + β1(+β2) is close to one in all cases, i.e. the process is close
to an Integrated GARCH process. Again, the whole chain of results found for the GARCH
framework is astonishingly similar to what one usually extracts from real-life data.

4. Conclusions

The aim of this paper was to investigate the time series behavior of simulated data from
a simple model of a financial market with interacting agents. Extending earlier work on the
unconditional distributional properties and scaling laws of our model, we were interested
in the dependence structure in our data and the outcome of various tests for non-linearity.
We found mixed results with the omnibus tests by Brock et al. and Kaplan. Hence, without
knowledge of the generating mechanism a researcher would probably not find it easy to
classify our data and would perhaps even find it doubtful that all the samples have been
generated from one and the same underlying mechanism. One of the contributions of this
paper is to point exactly to this possibility of obtaining seemingly divergent results from an
extended simulation of our artificial market. This behavior may account for the appearance
of non-stationarity of stock market indices during the 1980s (cf. de Lima, 1998). More
generally, such mechanisms may provide a possible explanation for the lack of robustness
of the results of non-linearity tests both over time periods and between tests (cf. Barnett
et al., 1998). On the other hand, the last part of our experiments showed that the finding of
GARCH effects appears to be much more robust, and in most subsamples, yields realistic
parameter estimates. Even the numerical estimates fall into a very narrow and realistic range
for those 16 samples where GARCH (1, 1) appears appropriate.

It is worth emphasizing that, in our model, all these interesting qualitative features arise
endogenously from the trading process and the interactions of our agents. With the assump-
tion of IID Normal innovations of the fundamental value, none of these characteristics can
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be attributed to exogenous influences. Taking together our earlier results on the uncondi-
tional distributions (Lux and Marchesi, 1999, 2000) and the present findings, it seems that a
large part of the stylized facts of financial data can be explained by relatively simple models
of interacting agents.
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