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Abstract Financial time series forecasting has been a challenge for time series ana-
lysts and researchers because it is noisy, nonstationary and chaotic. To overcome this
limitation, this study uses empirical mode decomposition (EMD) and phase space
reconstruction (PSR) to assist in the task of financial time series forecasting. In addi-
tion, we propose an approach that combines these two data preprocessing methods
with extreme learning machine (ELM). The approach contains four steps as follows.
(1) EMD is used to decompose the dynamics of the exchange rate time series into
several components of intrinsic mode function (IMF) and one residual component.
(2) The IMF and residual time series phase space is reconstructed to reveal its unseen
dynamics according to the optimum time delay τ and embedding dimension m. (3)
The reconstructed time series datasets are divided into two datasets: training and test-
ing, in which the training datasets are used to build ELM models. (4) A regression
forecast model is set up for each IMF as well as the residual component by using
ELM. The final prediction results are obtained by compositing the prediction values.
To verify the effectiveness of the proposed approach, four exchange rates are chosen
as the forecasting targets. Compared with some existing state-of-the-art models, the
proposed approach yields superior results. Academically, we demonstrated the valid-
ity and superiority of the proposed approach that integrates EMD, PSR, and ELM.
Corporations or individuals can apply the results of this study to acquire accurate
exchange rate information and reduce exchange rate expenses.
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1 Introduction

An exchange rate reflects relative values between different currencies, and is one of
the most important financial and macroeconomic indicators in an economy. The fluc-
tuation of exchange rates affects international trade, capital flows, and asset portfolio
management. Many financial time series forecasting models (Adhikari and Agrawal
2013; Wu and Chang 2012; Zhiqiang et al. 2012) have been developed that play a crit-
ical role in the world economy because of their ability to forecast economic benefits
and influence economic development. These models have attracted increased atten-
tion from academic researchers and business people for its theoretical possibilities and
practical applications (Hadavandi et al. 2010; Lu et al. 2009). The ostensible purpose
of the breakdown of financial market boundaries was to enhance the efficiency of cap-
ital funding (for example, the Bretton Woods system of monetary management was
officially ended in the 1973). As a result, currencies that are traded internationally have
become crucial economic indices for international trade, financial markets, alignment
of economic policy by governments, and corporate financial decision-making.

However, financial time series forecasting is a challenging task because of its
inherent nonlinearity and nonstationary characteristics. In the last few decades, these
characteristics have attracted increased attention from many academic researchers.
The forecasting approaches used in literature can be classified into two types of
models: statistical and artificial intelligence (Wang et al. 2012; Zhu and Wei 2013).
Linear statisticalmodels such as exponential smoothing (Lemke andGabrys 2010) and
autoregressive integrated moving average (ARIMA) (GEP and GM 1970) have iden-
tified immense applications for forecasting financial data. A subclass ARIMA model,
namely, Naïve random walk (RW) (Sun 2005; Tyree and Long 1995), has become the
benchmark statistical technique in this domain. In a simple RW model, each forecast
is assumed to be the sum of the most recent observation and a random error term. After
the pioneering work of Meese and Rogoff (1983), the RWmodel has been extensively
used by many researchers for foreign exchange rate forecasting. Currently, the simple
RW is the most dominant linear model in literature of the financial time series and,
especially, exchange rates (Zhang 2003).

Despite the simplicity and notable forecasting accuracies of RWmodels, their main
drawback is their inherent linear form. Thus, such statistical models cannot effectively
capture nonlinear patterns hidden in financial time series because these models are
developed based on the assumption that the time series being forecasted are linear and
stationary (Huang et al. 2010). To overcome this limitation of statisticalmodels, several
nonlinear models have been proposed. Among them, the artificial neural network
(ANN) has attracted considerable interest from researchers because of their excellent
nonlinear modeling capability (Zhang and Wu 2009; Chen et al. 2012a; Jaeger and
Haas 2004; Deng et al. 2015; Vasilakis et al. 2013). Many studies have concluded that
the ANN model outperforms conventional statistical models. However, ANN suffers
from localminimum traps and has difficulty determining hidden layer size and learning
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rate (Kazem et al. 2013). A new learning algorithm for the single hidden layer feed-
forward neural network (SLFN) known as the extreme learning machine (ELM) has
been proposed that overcomes the aforementioned disadvantages (Huang et al. 2006a;
Chen and Ou 2011). In the learning process of ELM, the input weights and hidden
biases are randomly selected, and the output weights are analytically determined by
using the Moore-Penrose generalized inverse. ELM can learn much faster and has
a higher generalization performance than do the traditional gradient-based learning
algorithms. In addition, ELM solves the problems of stopping criteria, learning rates,
learning epochs, and local minima (Huang et al. 2006; Chen and Ou 2011; Xia et al.
2012; Lu and Shao 2012). In recent years, ELM has attracted considerable attention
and become an important method in nonlinear modeling (Chen and Ou 2011; Xia et al.
2012; Lu and Shao 2012).

When building intelligent prediction models directly using original values, obtain-
ing satisfactory forecast results is difficult because of the high-frequency, nonstation-
ary, and chaotic properties of financial data. Hence, to further improve prediction
performance, recent research efforts on modeling time series with complex nonlinear-
ity, dynamic variation, and high irregularity have initially used information extraction
techniques to extract features hidden in the data. They then use these extracted char-
acteristics to construct a forecasting model (Lu et al. 2009; Chen et al. 2012b; Liu
and Wang 2011; Lu 2010). In other words, by means of suitable feature extractions or
signal processing methods, useful or interesting information that may not be observed
directly from the original data can be revealed in the extracted features. Therefore, an
effective forecasting model possessing more precise prediction capabilities must be
developed.

Empirical mode decomposition (EMD), based on Hilbert-Huang transform (HHT),
is suitable for decomposing nonlinear and nonstationary time series, which adaptively
represent the local characteristics of the given signal (Huang et al. 1998, 2003).Though
the use of EMD, any complicated signal can be decomposed into a finite and often
small number of intrinsic mode functions (IMFs). IMFs possess simple frequency
components and strong correlations, and thus are easy and accurate to forecast (Jaeger
and Haas 2004). EMD has been widely used in many fields, including in the analysis
of the atmosphere time series (Xuan and Yang 2008), river water turbidity forecasting
(Wang and Qi 2009), crude oil price prediction (Yang et al. 2010), short-term wind
power prediction, and others (Jaeger and Haas 2004; Lu and Shao 2012; Chen et al.
2012a; Bao et al. 2012; Ye and Liu 2011).

Another critical reason that financial time series are notoriously difficult to predict
is their chaotic nature. Chaos is often identified in the fields of physics and other natural
sciences. Empirical evidence of chaotic behavior in financial time series has also been
identified (Barkoulas and Travos 1998; Gimore 2001; McKenzie 2001). Chaos theory
points out that an adequate method can help reveal underlying information in compli-
cated matters believed to be unpredictable (Takens 1981). For chaotic time series, the
techniques of prediction based on phase space reconstruction (PSR) can be employed
to extract information and characteristics hidden in dynamic systems of time series.
PSR can transform a one-dimensional signal into a structure that embeds sufficiently
high dimensions. In this new high dimensional space, a structure is formed that is
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topologically equivalent to the original phase space. This has led some researchers to
apply chaos theory to time series forecasting.

In this study, we propose a hybrid exchange rate forecasting model by integrat-
ing EMD, PSR, and ELM (EMD + PSR + ELM). First, the original exchange rate
time series are first decomposed into a finite number of independent IMFs employ-
ing different frequencies. Second, based on PSR, different ELM models are used to
model and forecast the four sub-series, respectively, according to reconstructed time
series. Finally, these forecasting results are combined with the ultimate forecasting
result output. Moreover, experimental results from four sets of real exchange rate
data demonstrate that the proposed hybrid forecasting method outperforms methods
of Naïve RW, single ELM, and other hybrid models in terms of mean absolute error
(MAE), root mean-square error (RMSE), and mean absolute error (MAPE).

2 Literature Review of Major Methods

2.1 EMD

The EMD method based on HHT is based on the simple assumption that any signal
consists of different but simple intrinsic mode oscillations. The essence of the method
is to identify the intrinsic oscillatory modes (IMFs) (Huang et al. 1998) based on
their characteristic time scales in the signal and then decompose the signal accord-
ingly. A characteristic time scale is defined by the time lapse between the successive
extremes.

To extract the IMF from a given data set, the sifting process is implemented as
follows. First, we identify all local extrema, and then connect all local maxima by a
cubic spline line that thus acts as the upper envelope. Then, we repeat the procedure for
the local minima to produce the lower envelope. The upper and lower envelopes should
cover all the data between them. Their mean is designated m1(t), and the difference
between the data and m1(t) is h(t), given by the following:

x(t) − m1(t) = h1(t). (1)

Ideally, h1(t) should be an IMF. Because the construction of h1(t) described previ-
ously should have forced the result to satisfy all definitions of an IMF, we demand the
following conditions: (i) h1(t) should be free of riding waves, that is, the first compo-
nent should not display under- or over-shots that ride on the data and produce local
extremes without zero crossing; (ii) symmetry of the upper and lower envelops with
respect to zero should be displayed; (iii) the number of zero crossing and extremes
should be the same in both functions.

The sifting process must be repeated as many times as required to reduce the
extracted signal to an IMF. In the subsequent sifting process steps, h1(t) is treated as
the data:

h1(t) − m11(t) = h11(t), (2)
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where m11(t) is the mean of the upper and lower envelops of hs(t). This process can
be repeated as many as k times and h1k(t) is then defined as:

h1(k−1)(t) − m1k(t) = h1k(t). (3)

After each processing step, we must confirm that the number of zero crossings
equals the number of extrema. The resulting time series is the first IMF and then is
designated as c1(t) = h1k(t). The first IMF component from the data contains the
highest oscillation frequencies found in the original data x(t).

This first IMF is subtracted from the original data, and this difference is called a
residue r1(t) by means of the following:

x(t) − c1(t) = r1(t). (4)

The residue r1(t) is considered as if itwas the original data andwe reapply the sifting
process to it. The process of locating additional intrinsic modes c1(t) continues until
the last mode is found. The final residue will be a constant or a monotonic function.
In this last case, it will be the general trend of the data.

x(t) =
n∑

j=1

c j (t) + rn(t). (5)

Thus, the data is decomposed into n-empirical IMF modes plus a residue, rn(t),
which can be either the mean trend or a constant.

2.2 Phase Space Reconstruction

The analysis of time series generated by non-linear dynamic systems can be accom-
plished in accordance with Takens’ embedding theory (Takens 1981). Given a
univariate time series {xi }N

i=1 generated from a d-dimension chaotic attractor and
where N is the length of the time series, a phase space Rd of the attractor can be
reconstructed by using a delay coordinate defined as:

Xi = (xi , xi−π , . . . , xi−(m−1)π ), (6)

where m is both the embedding dimension of reconstructed phase space and the time
delay constant. Choosing the correct embedding dimension is crucial for predicting
xt+1. Takens (Takens 1981) considered that a sufficient condition for the embedding
dimension is m ≥ 2d +1. However, an embedding dimension that is too large requires
additional observations and complex computation. Moreover, if we choose an embed-
ding dimension that is too large, noise and other unwanted inputs will be embedded
with the real source input information. This may then corrupt the underlying system
dynamic information. Therefore, in accordance with Sauer et al. (1991), if the dimen-
sion of the original attractor is d, then an embedding dimension of m = 2d + 1 is
adequate for reconstructing the attractor.
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An efficient method of locating the minimal sufficient embedding dimension is the
false nearest neighbors (FNN) procedure proposed by Kennel et al. (1992). Two near
points in reconstructed phase space are called false neighbors if they are considerably
far apart in the original phase space. Such a phenomenon occurs if we select an embed-
ding dimension that is lower than the minimal sufficient value and if the reconstructed
attractor does not therefore preserve the topological properties of the real phase space.
In this case, points are projected into the false neighborhood of other points. The idea
behind the FNN procedure is as follows. Suppose X i has a nearest neighbor X j in an
m-dimensional space. Calculate the Euclidean distance ||X i − X j|| and compute the
following:

Ri =
∥∥Xi+1 − X j+1

∥∥
∥∥Xi − X j

∥∥ . (7)

If Ri exceeds a given threshold Rtol (say, 10 or 15), the point X j is considered a
false nearest neighbor in dimension m. We can say that the embedding dimension m
is sufficiently high if the fraction of points that have false nearest neighbors is zero or
considerably small.

Estimation of time delay τ is another major concern. If τ is too small, redundancy
will occur. However, if τ is too large, it will probably lead to a complex phenomenon
called irrelevance. In this study, we use the first minimum of mutual information (MI)
function (Huang et al. 2006a) to determine τ as follows:

M I (τ ) =
N−π∑

n=1

P(xn, xn+π ) log2

(
P(xn, xn+π )

P(xn)P(xn+π )

)
, (8)

where P(xn) is the probability density of xn and P(xn, xn+τ ) is the joint probability
density of xn and xn+τ .

2.3 ELM

ELM is an improved learning algorithm for the SLFN architecture. ELM is different
from the traditional neural network methodology in that all the parameters of the feed-
forward networks (input weights and hidden layer biases) are not required to be tuned.
The ability of SLFNs to choose input weights randomly, as well as hidden layer biases
and a nonzero activation function to approximate any continuous functions on any
input set, has been demonstrated in Rao and Mitra (1971). The SLFN with randomly
chosen input weights and hidden layer biases can be considered a linear system. For
this linear system, the output weights that link the hidden layer to the output layer
can be analytically determined through a simple generalized inverse operation of the
hidden layer output matrices. This simple approach enables ELM to be extremely
efficient and many times faster than the traditional feed-forward learning algorithms.

The structure of ELM consists of an SLFN in which the input weight matrix
W is randomly chosen and the output weight matrix β is analytically determined.
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Suppose we are given a data set with N arbitrary distinct samples (xi, ti), where
xi = [xi1, xi2, ..., xi1]T2 ∈ Rn and ti = [ti1, ti2, ..., tim]T ∈ Rm. The mathematical
model of a standard SLFN with Ñ hidden nodes and activation function g(x) for the
given data can be formulated as follows (Huang et al. 2006):

Ñ∑

i=1

βi gi (x j ) =
Ñ∑

i=1

βi gi (wi x j + bi ) = y j , j = 1, . . . , N , (9)

where wi = [wi1, wi2, ..., win]T denotes the weight vector that connects the input
nodes to the i th hidden node and bi = [bi1, bi2, ..., bim]T is the weight vector that
connects the output nodes with the i th hidden node. In addition, bi is the threshold
of the i th hidden node. The inner product of wi and xj is denoted by the operation
wi · xj in (9). Let us consider that standard SLFNs with Ñ hidden nodes employing
activation function g(x) can approximate these N samples with zero error. In such a
situation, we obtain the following equation:

N∑

j=1

∥∥y j − t j
∥∥ = 0, (10)

where y denotes the actual output value of the SLFN. This indicates the existence of
βi , wi , and bi such that:

Ñ∑

i=1

βi gi (wi x j + bi ) = t j , j = 1, . . . , N . (11)

A succinct expression of the previous N equations can be written as:

Hβ = T, (12)

where H is the hidden layer output matrix.

H =
⎡

⎢⎣
h(x1)

...

h(xN )

⎤

⎥⎦ =
⎡

⎣
h1(x1) · · · hÑ (x1)

· · · · · · · · ·
h1(xN ) · · · hÑ (xN )

⎤

⎦ , (13)

β =
⎡

⎢⎣
βT
1
...

βT
Ñ

⎤

⎥⎦ , (14)

T =
⎡

⎢⎣
T T
1
...

T T
N

⎤

⎥⎦ . (15)
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As previously discussed, the input weights and hidden biases are randomly gener-
ated and do not require any tuning as in the case with traditional SLFN methodology.
The evaluation of the output weights that link the hidden layer to the output layer
is equivalent to determining the least-square solution to the given linear system. The
minimum norm least-square (LS) solution to the linear system defined in (12) is:

β̂ = H+T . (16)

The H+ in the previous equation is the Moore–Penrose (MP) generalized inverse
of matrix H (Babovic et al. 2000). The minimum norm LS solution is unique and has
the smallest norm among all the LS solutions. The MP inverse-method-based ELM
is shown to achieve a quality generalization performance with a radically increased
learning speed. A general algorithm for ELM can be stated as follows. For a given
training set, including activation function g(x) and hidden neuron number L:

Step 1: Assign random input weight wi and bias bi , i = 1, ..., L .
Step 2: Calculate the hidden layer output matrix H .
Step 3: Calculate the output weight β : β = H+T .

3 Proposed Model

The proposed hybrid approach for exchange rate forecasting (EMD-PSR-ELM) com-
bines EMD, PSR, and ELM, and consists of four main stages. These four stages are
described as follows.

Stage 1 EMD Decomposition

The original time series x(t), t = 1, 2, . . ., N is decomposed into n IMF components,
cj(t), j = 1, 2, . . ., n, and one residual component rn(t) by using EMD.

Stage 2 Phase Space Reconstruction

First, the MI function in (8) is calculated for each cj(t) and rn(t) time series. Second,
the first delay time in which the MI function minimum value occurs is considered
the optimum time delay τ . Third, the FNN method is employed to find the minimum
sufficient embedding dimension m. Fourth, according to the optimum time delay τ

and embedding dimension m, the time series phase space is reconstructed to reveal its
unseen dynamics.

Therefore, the input and output samples can be represented by the matrix X and Y ,
respectively, in the following forms (where x can denote cj and rn):

X =

⎡

⎢⎢⎢⎣

x(1) x(1 + τ) · · · x(1 + (m − 1)τ )

x(2) x(2 + τ) · · · x(2 + (m − 1)τ )

...
...

...
...

x(M) x(M + τ) · · · x(M + (m − 1)τ )

⎤

⎥⎥⎥⎦ , Y =

⎡

⎢⎢⎢⎣

x(1 + (m − 1)τ + lag)

x(2 + (m − 1)τ + lag)

...

x(M + (m − 1)τ + lag)

⎤

⎥⎥⎥⎦ .

(17)
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Fig. 1 Flow chart of the proposed EMD-PSR-ELM Model

Some forecasting techniques for chaotic time series nearly fix their selected time
lag at 1 (Liong and Sivapragasam 2002; Makridakis 1993). Therefore, for this study,
we also fix time lag = 1.

Stage 3 ELM Modeling

The reconstructed time series datasets are divided into training and testing datasets.
The training datasets are used to build ELM models.

Stage 4 Result Composition

Aregression forecastmodel is set up for each IMFwhereas the residue is set up byusing
ELM. The final prediction results are obtained by compositing the prediction values.
F is the ELM predictor function. The final forecasting result is

∑n−1
j=1 Fj (c j (t)) +

Fn(rn(t)).
The flow chart of the proposed EMD-PSR-ELM model is shown in Fig. 1.
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4 Experimental Results and Analysis

4.1 Data Sets

Daily exchange rate values for USD/TWD, EUD/TWD, GBP/TWD, and AUD/TWD
were extracted from the data stream provided by OANDA (http://www.oanda.com)
and used in this study. The entire data set covers the period from January 1, 2007 to
December 31, 2013, yielding a total of 2557 observations. The data set was divided
into two sets, training and testing data. The daily data from January 1, 2007 to April
19, 2013, generating a total of 2301 observations, were used as the training data set.
Others of the daily data from April 20, 2013 to December 31, 2013, producing a total
of 256 observations, were used as the testing data set. In the next section, we explain
the manner in which we implement our EMD-PSR-ELM model.

4.2 Benchmark Prediction Models

As mentioned in Sect. 1, this study adopts the Naïve RW, ELM, EMD-ELM, and
PSR-ELM as the benchmarks for the experiment.

(1) Naïve RW the Naïve RW simply takes the forecast for the next value from the
current value. Thus, no fitting process is required.

(2) ELM the original time series x(t) are directly used to build ELM models and to
forecast final results. The function can be expressed as x̂(t + 1) = F(x(t)), F
refers to the ELM predictor function.

(3) EMD-ELM first, the original time series are decomposed by EMD into several
IMF time series and one residual time series. These decomposed datasets are
then utilized to build the ELMmodels previously mentioned into the EMD-ELM
models.

(4) PSR-ELM we use the PSR method to reconstruct the original time series space,
fromwhichwe can obtain optimumembedded dimensionm and delay time τ . The
reconstruction datasets are adopted to build ELM models as well. The function
can be expressed as the following:

x̂(t + 1) = F(x(t), x(t − τ), ..., x(t − (m − 1) · τ)). (18)

4.3 Evaluation Criteria

To evaluate the forecasting performance of the proposed model, we adopt the MAE,
RMSE, and MAPE. These measures are defined as follows:

MAE = N−1
N∑

t=1

∣∣∣Y(t) − Ŷ(t)

∣∣∣, (19)

RMSE =
(

N−1
N∑

t=1

(Y(t) − Ŷ(t))
2

)1/2

, (20)
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MAPE = N−1
N∑

t=1

∣∣∣(Y(t) − Y(t))/Ŷ(t)

∣∣∣, (21)

where Y(t) and Ŷ(t) are the actual and prediction values, respectively, at time t , and N is
the sample size. Note that MAE, RMSE, and MAPE are the measures of the deviation
between actual and prediction values. Therefore, improved forecasting performance
occurs when the values of these measures are small. However, if the results are not
consistent among these criteria, we choose MAPE as suggested by Makridakis (1993)
as the benchmark because MAPE is relatively more stable than are other criteria.

4.4 Implementation of EMD

Based on the previous steps described in Sect. 3, we conducted prediction exper-
iments. First, using the EMD technique, the four exchange rate series (USD/TWD,
EUD/TWD,GBP/TWD,AUD/TWD)were decomposed into 10 IMFs (IMF1–IMF10)
and one residual (Residual), as shown in Fig. 2. All the extracted IMF components
are graphically illustrated in the order in which they were extracted. The order of
frequency (or period) from the highest frequency to the lowest is indicated. The last
component is the residual of sifting. This generally represents the trend of the time
series. In this study, EMD components were obtained by using the HHT MATLAB
program (http://rcada.ncu.edu.tw/research1_clip_program.htm).

4.5 Implementation of PSR

In the PSR stage, MI was used to select the optimal delay time τ , which was selected
based on the first minimum value of theMI function. After the optimal τ was selected,
FNN (was then used to extract the minimum embedding dimension. Table 1 shows the
optimal m and τ for each IMF and the residual. These optimal embedding dimensions
and delay times are used to construct the input matrix (X). The data were fed to ELM
forecast models and set up for each IMF and the residual. The final prediction results
of the EMD-PSR-ELMmodel were obtained by compositing (i.e., combining separate
prediction values into one value). We used Hao Cheng’s Fractal MATLAB toolbox to
implement the MI and FNN functions.

4.6 Forecasting Results and Analysis

To compare the performance of different models, we first applied the benchmarks,
Naïve RW, ELM, PSR+ ELM, and EMD+ ELM, to forecast the four exchange rates,
respectively. The performance comparison of five models (Naïve RW, ARIMA, back
propagation neural network (BPNN), ELM, PSR+ELM, EMD+ELM, and the EMD
+ PSR + ELM) according to three evaluation criteria (MAPE, MAE and RMSE) is
reported in Table 2. Relative errors defined as “the ratio of error to the actual value”
of the five models are shown in Fig. 3.
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Table 1 Optimal m and τ for
each IMF and residual

USD/TWD EUR/TWD GBP/TWD AUD/TWD

m τ m τ m τ m τ

IMF1 7 5 7 5 6 5 5 3

IMF2 8 2 8 2 6 2 5 3

IMF3 5 4 5 4 5 7 5 5

IMF4 4 9 4 9 4 6 4 11

IMF5 3 7 3 7 3 9 3 7

IMF6 2 9 2 9 3 10 2 9

IMF7 2 9 2 9 2 9 2 7

IMF8 2 9 2 9 2 9 2 9

IMF9 1 9 1 9 2 9 1 9

IMF10 1 9 1 9 1 9 1 9

Residual 2 9 2 9 1 9 2 9

The empirical analysis confirms that the performance of EMD + PSR + ELM is
the best among the five models with respect to the four exchange rates. The empirical
results demonstrated the usefulness of the two-stage data preprocessing (stage 1 EMD,
stage 2 PSR) of the ELM model we proposed. We can observe some phenomenon in
Fig. 3 to identify possible superiority. In the high-frequency points, relative errors of
the hybridmodel aremuch smaller than in othermodels. This observation demonstrates
that the EMD method can reduce noise contained in time series and can thus enhance
accuracy.

The average error of pure ELM was the worst for MAPE, MAE, and RMSE in the
four exchange rates. It was even worse than the Naïve RW in nearly all measures.
This indicates that single ELM is unsuitable for exchange rate time series forecasting.
However, if we combine the EMD data processing method into a single ELM model,
that is, EMD + ELM model, its performance would improve.

Table 2 reveals that the accurate rates in the PSR + ELM model for the four
exchange rates are not better than those in the single ELM model, even is the worst
in AUD/TWD exchange rate dataset. The optimal embedding dimension m and delay
time τ for the four exchange rates by using the PSRmethod are presented in the Tables
(m = 1, τ = 7), (m = 1, τ = 7), (m = 1, τ = 7) and (m = 6, τ = 7). When m = 1,
the input matrix (X) constructed is the same as that does not use the PSR method.
Therefore, the performance for the three exchange rates, USD/TWD, EUD/TWD, and
GBP/TWD, is the same as that presented in Table 2. We have no sufficient evidence
to demonstrate that PSR does not enhance accuracy for exchange rate forecasting.

Furthermore, to demonstrate the effectiveness of the EMD + PSR + ELM model,
we also compared ARIMA and BPNN, the most popular neural network modules,
to our model. Experimental results also revealed that our model outperforms these
other two with respect to MAPE, MAE, and RMSE criteria for the four data sets. This
information is also shown in Table 2. It proved the strong robustness of our proposed
hybrid model. Optimal parameters for ARIMA, BPNN, and PSR + ELM for the four
data sets are shown in Table 3.
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Table 3 Optimal parameter for ARIMA, BPNN, PSR + ELM

Exchange rate Optimal parameter

ARIMA (p, q, r ) BPNN (hidden nodes, epochs) PSR + ELM (m, τ )

USD/TWD (4, 1, 4) (2, 100) (1, 7)

EUD/TWD (4, 1, 4) (1, 200) (1, 7)

GBP/TWD (3, 1, 3) (1, 200) (1, 7)

AUD/TWD (3, 1, 1) (4, 200) (6, 7)

For optimal parameters of the BPNNmodel, 1, 2, 4 hidden nodes and 50, 100, 200, 400 epochs are employed
for each stopping criterion. The learning rate is 0.001 (default). The activation function of the hidden layer
is tansig and the output node uses the linear transfer function

5 Conclusions

Designing an appropriate model to forecast financial data is a major challenge for time
series analysts and researchers. This is mainly because the irregular movements and
several changing turning points of these series are practically too difficult to understand
and predict. In this study, a new hybrid model that intelligently combines the EMD,
PSR and ELMmodels (EMD+ PSR+ ELM), is proposed to forecast exchange rates.
From the experimental results of this study, we can draw the following conclusions:

(1) EMD can fully capture the local fluctuations of data and can be used as a pre-
processor to decompose the complicated raw data into a finite set of IMFs and a
residue, which can improve rate predicting accuracy.

(2) The network topology of the model has a major influence on prediction perfor-
mance for ELM. It is more objective in identifying the chaotic characteristics
of exchange rate time series and determining the embedding dimension of the
reconstructed phase space through the FNN function. The determined embedding
dimension can then be served as the numbers of nodes in the input layer for the
SLFN.

(3) Empirical results from four real-world exchange rate time series clearly suggest
that our hybrid method substantially improves the overall accuracy of forecast-
ing and also outperformed both a statistical model (Naïve RW) and an artificial
intelligence model (ELM). Therefore, the proposed method is extremely suitable
for prediction using nonlinear, nonstationary, and highly complex data and is an
efficient method for exchange rate prediction.

Future research should consider the property of data in order to combine time
series and AI method. Direction prediction criteria are crucial to the trading strategies
of investors. In our model, we select only one-dimensional time series of exchange
rates for input variables. Future research might attempt to enhance the performance
of prediction models by including other efficient input variables such as macroeco-
nomic variables and using diverse data for feasibility. One possibility might try to find
important input variables by adopting some strong or emerging mathematical meth-
ods, such as MARS, CMARS for building more perfect integrated model. In addition,
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the relationships between and trading information about different markets might be
examined.
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