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Depressive and manic phases in bipolar disorder show opposite
constellations of affective, cognitive, and psychomotor symptoms. At
a neural level, these may be related to topographical disbalance
between large-scale networks, such as the default mode network
(DMN) and sensorimotor network (SMN). We investigated topo-
graphical patterns of variability in the resting-state signal—measured
by fractional SD (fSD) of the BOLD signal—of the DMN and SMN (and
other networks) in two frequency bands (Slow5 and Slow4) with
their ratio and clinical correlations in depressed (n = 20), manic
(n = 20), euthymic (n = 20) patients, and healthy controls (n = 40).
After controlling for global signal changes, the topographical balance
between the DMN and SMN, specifically in the lowest frequency
band, as calculated by the Slow5 fSD DMN/SMN ratio, was signifi-
cantly increased in depression, whereas the same ratio was signifi-
cantly decreased in mania. Additionally, Slow5 variability was
increased in the DMN and decreased in the SMN in depressed pa-
tients, whereas the opposite topographical pattern was observed in
mania. Finally, the Slow5 fSD DMN/SMN ratio correlated positively
with clinical scores of depressive symptoms and negatively with those
of mania. Results were replicated in a smaller independent bipolar
disorder sample. We demonstrated topographical abnormalities in fre-
quency-specific resting-state variability in the balance between DMN
and SMN with opposing patterns in depression and mania. The Slow5
DMN/SMN ratio was tilted toward the DMN in depression but was
shifted toward the SMN in mania. The Slow5 fSD DMN/SMN pattern
could constitute a state-biomarker in diagnosis and therapy.
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Bipolar disorder (BD) type I is a debilitating psychiatric dis-
ease with recurrent episodes of depression and mania, charac-

terized by opposite constellations of psychopathological symptoms
(1, 2). Typically, depression is characterized by mood biased toward
negative affect, cognitive symptoms with thought internally focused:
that is, self-focused (which manifests in ruminations) and inhibited
psychomotor behavior (which manifests in psychomotor retardation).
In contrast, most commonly mania presents mood biased toward
positive affect, cognitive symptoms with thought externally focused:
that is, environment-focused (which manifests in flight of ideas/
distractibility) and excited psychomotor behavior (which manifests
in psychomotor agitation) (1–7). The neural basis underlying such
co-occurrence of psychopathological symptoms with opposing
constellations in depressive and manic phases of BD, however,
remains unclear.
Affect, thought, and psychomotor functions can be related to

distinct neural networks in the brain’s resting state. One central

network is the default-mode network (DMN), which was first
defined as a group of brain areas consistently showing decrease
from baseline state during task-related activity and is indicative of
an organization within the brain’s intrinsic ongoing activity (8, 9).
Although showing strong intranetwork functional connectivity, the
DMN is also related to other networks, including the sensorimotor
(SMN) (10), salience (SN) (11, 12), and central executive (CEN)
(12, 13) networks with the relationships between networks being
either positive (i.e., correlating) or negative (i.e., anticorrelating).
The DMN is involved in affective regulation and internal thoughts
(14–16), showing major changes in psychiatric illnesses, such as
BD (17–21), and major depressive disorder (22–24). At the same
time, the DMN may be related to psychomotor behavior through
its relationship with the sensorimotor network (10). Because of the
co-occurrence of alterations in affect, thought, and psychomotor
behavior in BD, based on existing evidence one could hypoth-
esize abnormal relationships—topographical patterns in the bal-
ances between these networks—especially between the DMN and
SMN (10) (considering the central clinical role of psychomotor
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disturbances in BD) (25, 26). Although recent findings in other
psychiatric diseases, such as schizophrenia and unipolar depression
(3, 4, 27–29), highlight the need to consider global signal power and
variance (30, 31), as well as the relationships between different
networks (such as DMN–CEN and DMN–SN) (11, 12, 32–34), this
remains unclear in BD and its various phases. The relationships
between networks concern the topographical patterns in signal
power and variance across brain regions, as distinguished from global
signal power and variance (31). A recent study demonstrated normal
global signal power and variance in BD patients (31). This, however,
leaves open changes in the topographical patterns—specifically the
balance between networks—and their relationship to the opposite
psychopathological symptom constellations in bipolar depression and
mania.
Resting-state networks and their relationships have been in-

vestigated in BD by using functional connectivity (FC) (17–21),
which provides information on the spatial structure of neural net-
works, importantly contributing to a better understanding of the
relationship between the activity of different brain regions and how
they interact via networks in different states (35). In addition to
FC, which mainly targets the spatial dimension, the variability of
the amplitude of neural activity, which implies a strong temporal
dimension, has recently been investigated to characterize the rest-
ing state in the healthy brain (36–40). Variability is operationalized
as the SD of blood-oxygen level-dependent signal, as well as the
amplitude, or fractional amplitude, of low-frequency fluctuations
(ALFF and fALFF) (40). Analogous to fALFF in respect to ALFF,
fractional SD (fSD) is a normalized index of SD and can provide a
more specific measure of variability of neuronal oscillatory phe-
nomena with decreased sensitivity to artifacts (35, 41). fSD as a
variability measure has been shown to link directly to neuronal
activity implicated in the neuronal processing of incoming stimuli
and neuronal outputs, thus underscoring its physiological relevance
(40, 42–45). Neuronal variability was found to be altered in Alz-
heimer disease (46, 47), brain injury (48), vegetative state (49),

anesthesia (50), and schizophrenia (51, 52). Together, these find-
ings suggest high neurophysiological and neuropsychiatric relevance
of neuronal variability as an index of neural activity, which remains
to be investigated in BD and its phases.
Using functional MRI (fMRI), neuronal variability can be in-

vestigated in the range of low-frequency oscillations (0.01–0.10 Hz),
which are typically used for the analyses of resting-state activity
(such as FC) (35, 53, 54). Interestingly, variability in the low-
frequency range appears to be strongest along the midline
structures associated with the DMN (35, 55). Recently, the low-
frequency oscillations were further subdivided into two frequency
bands in the healthy brain: Slow5 (0.01–0.027 Hz) is strongest in
the anterior DMN and Slow4 (0.027–0.073 Hz) is strongest
throughout the basal ganglia and thalamus (35, 46, 51, 53, 56–59).
Significant alterations in variability, in Slow5 SD especially, were
found in disorders of consciousness, such as vegetative states (49)
and anesthesia (50). This remains to be investigated in BD and
its phases.
The general aim of the present study is to investigate resting-

state variability in fSD Slow5 and Slow4 frequencies in both global
brain activity and its topographical patterns, particularly in the
relationship between networks during the depressive, manic, and
euthymic phases of a specific and selective sample of severe BD
type I and a smaller independent BD type I sample that served to
replicate our findings. Our specific aims are to investigate: (i) the
global signal variance and, especially, the topographical pattern or
balance of normalized variability (fSD) between the DMN and
other networks in the various phases of BD (i.e., depressive, manic,
and euthymic phases) and in healthy controls (HC); (ii) fSD in the
DMN and SMN (and in others networks) in Slow5 and Slow4 in
the various subgroups, as explorative analysis; and (iii) the corre-
lations between the variability of the networks’ ratios, which show
significant differences between subgroups and clinical parameters
(i.e., depression and mania rating scales). Considering the
opposing constellations of affective, cognitive, and psychomotor
symptoms in the different bipolar phases, we hypothesized
opposing topographical patterns—increased or decreased ratio—
specifically between the DMN and SMN fSD in Slow5 in de-
pressive and manic patients, as well as divergent correlations of
fSD DMN/SMN ratio in Slow5 with depressive and manic symp-
toms. See Supporting Information for a more extensive background,
detailed hypotheses, and analyses overview.

Results
First, we investigated the global signal variance for which no sig-
nificant difference in both Slow5 and Slow4 between BD and
healthy subjects (t = 1.101 and P = 0.274; t = −0.050 and P =
0.960, respectively) was found. Similarly, no difference was found
among the depressive, manic, and euthymic subgroups (F = 1.21
and P = 0.310; F = 0.13 and P = 0.942, respectively). We then
calculated the ratio between the fSD of the DMN and the other
three networks (as normalized by global signal variance); that is,
the SMN, SN, and CEN in Slow5 and in Slow4 for BD patients in
the different phases of illness and HC. The 2 (frequencies) × 4
(subgroups) ANOVA of the fSD DMN/SMN ratio showed a sig-
nificant interaction between the frequency bands and subgroups
(F = 6.43, P = 0.001). A significant main effect of the Slow5 fSD
DMN/SMN ratio between the various subgroups was found (F =
5.78, P = 0.001), but no significant effect between the two fre-
quency bands was detected (F = 2.96, P = 0.089). In contrast,
there were no significant differences between subgroups for the
fSD DMN/SN (interaction between frequency bands and sub-
groups: F = 1.78, P = 0.156; interaction between frequency bands:
F = 1.98, P = 0.172; main effect: F = 1.96, P = 0.124) and fSD
DMN/CEN (interaction between frequency bands and subgroups:
F = 2.00, P = 0.118; interaction between frequency bands: F =
0.52, P = 0.470; main effect: F = 2.69, P = 0.050) ratios. As a result
of these findings, we investigated, by using the post hoc analyses,
the differences in the Slow5 fSD DMN/SMN ratio between all
subgroups. A significant increase in Slow5 fSD DMN/SMN ratio
in depressed patients compared with manic (P = 0.000) and

Fig. 1. The DMN/SMN, DMN/SN, and DMN/CEN ratios in fSD Slow5 and
Slow4 in the various subgroups. Results of the ANOVA and Games–Howell
post hoc test of fSD of the DMN/SMN, DMN/SN, and DMN/CEN ratios in
Slow5 and Slow4 between the various subgroups. Corrected *P < 0.05, **P <
0.01, ***P < 0.001. D, depressive patients; E, euthymic patients; HC, healthy
controls; M, manic patients.
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euthymic patients (P = 0.006), as well as a tendency to a significant
increase in depressed patients compared with HC (P = 0.085) was
found. In contrast, the Slow5 fSD DMN/SMN ratio was signifi-
cantly decreased in manic patients compared with HC (P = 0.040)
(Figs. 1 and 2). Unlike in the depressive and manic phases, pa-
tients in the euthymic phase, as well as BD overall, did not show
any significant difference in the Slow5 fSD DMN/SMN ratio
compared with HC. Testing for Slow4, we found no significant
difference of fSD for the DMN/SMN ratio in all comparisons in

the post hoc analyses (Fig. 1). We found similar results by using a
different DMN template. We controlled the specificity of our
findings on the Slow5 fSD DMN/SMN ratio and found no sig-
nificant differences between the subgroups in any of the tested
variables: the fSD of DMN/SMN, DMN/SN, and DMN/CEN ra-
tios in Slow3 and Slow2, and the SD of the same ratios in Slow5
and Slow4, as well as the DMN–SMN FC, DMN–SN FC, and
DMN–CEN FC in Slow5 and Slow4 (Supporting Information).
We investigated, as explorative analysis, fSD within the dif-

ferent networks in Slow5 and Slow4 in the various subgroups. We
mainly found significant differences in Slow5 fSD in the DMN
and SMN of patients during the depressed and manic phases
(Fig. S1 and Table S1). In particular, we found an increase in the
Slow5 fSD in the DMN with a decrease in the Slow5 fSD in the
SMN of depressed patients compared with manic and euthymic
patients, respectively. In contrast, the Slow5 fSD in the DMN
was decreased in manic compared with euthymic patients.
With regard to clinical correlations in BD patients, the fSD of

the DMN/SMN ratio in Slow5 was found to be positively corre-
lated (after bootstrapping) with the Hamilton depression scale
(HAM-D) total score [r = 0.426; P = 0.001; confidence interval
(CI): 0.203∼0.597], and negatively correlated with the Young
mania rating scale (YMRS) total score (r = −0.378; P = 0.003; CI:
−0.564 ∼ −0.146) (Fig. 3 and Supporting Information). Finally, our
exploratory receiver operator characteristic (ROC) analysis
revealed an area under the curve value of 0.83 for the Slow5 fSD
DMN/SMN ratio, indicating good predictive ability for the de-
pressed and manic phases of BD.
Finally, we confirmed our findings in a replication study on an

independent BD sample, and on follow-up data (Supporting
Information).

Discussion
Our main findings are the following: (i) After controlling for global
signal changes, the balance between the DMN and SMN specifi-
cally in the lowest frequency band, as calculated by the Slow5
fSD DMN/SMN ratio, was significantly increased in depression,
whereas the same ratio was significantly decreased in mania.
Having replicated these findings in an independent BD sample,
this finding suggests topographical changes in slow-frequency var-
iance between the DMN and SMN in the various phases of BD.
(ii) Slow5 variability was increased in the DMN and decreased in
the SMN in depressed patients, whereas the opposite pattern was
observed in mania. (iii) The Slow5 fSD DMN/SMN ratio corre-
lated positively with clinical scores of depressive symptoms and
negatively with those of mania.
To date, there are only few studies on neuronal variability con-

cerning healthy subjects and some pathological conditions, such as
brain injury and vegetative state (36–39, 48, 49). To the best of our
knowledge, this is the first study on the topographical patterns of
neuronal variability in BD concerning the main resting-state net-
works—the DMN, SMN, SN, and CEN—and their balances in the
various phases of illness, the depressive, manic, and euthymic
phases. We first confirmed findings from a recent study (31) that
found no differences in global signal variance between bipolar and
healthy participants. Our findings go further by demonstrating
changes in global signal variance neither in Slow5 and Slow4 in
BD nor in any of the subgroups. Most importantly, we found
significant differences in the relationships between the DMN and
SMN (i.e., DMN/SMN Slow5 fSD ratio) in the depressive and
manic phases. Depressed patients showed an abnormally increased
ratio, but it was abnormally decreased in manic patients. In contrast,
we did not find any difference in the variability balance between
other networks—the DMN/SN or DMN/CEN—nor in Slow4, in
either depressive or manic patients. This finding suggests an op-
posite spatiotemporal topographical pattern in the Slow5 variability
balance between the DMN and SMN, which may, therefore, be
central in distinguishing between depressive and manic phases.
Our exploratory results also show that the variability of neuronal

activity is altered in the DMN (and in the SMN) in Slow5, in the
active phases of BD. In particular, DMN Slow5 variability increases

Fig. 2. Differences in the DMN/SMN balance in the various subgroups. The
Upper part of the figure is a global view of the DMN (red) and SMN (blue)
regions. The Lower Left of the figure is the mean of the fSD values in Slow5
of the DMN and SMN, together with a visual trend of the balance between
the DMN and SMN, for each subgroup. The Lower Right of the figure is the
mean fSD values in Slow5 of the various regions belonging to the DMN and
SMN, for each subgroup. D, depressive patients; E, euthymic patients; HC,
healthy controls; IPL L, inferior parietal lobule left; IPL R, inferior parietal
lobule right; M, manic patients; MCC, middle cingulate cortex; MFG L,
middle frontal gyrus left; mPFC, medial preFrontal cortex; MTG L, middle
temporal gyrus left; MTG R, middle temporal gyrus right; Pc, precuneus;
PCC, posterior cingulate cortex; PMA L1, premotor area left; PMA L3,
premotor area left; PMA R1, premotor area right; PostCG R1, postcentral
gyrus right; PreCG R3, precentral gyrus right; SMA L3, supplementar motor
area left; SupPA L1, superior parietal area left; vACC, ventral anterior
cingulate cortex.

4826 | www.pnas.org/cgi/doi/10.1073/pnas.1517558113 Martino et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517558113/-/DCSupplemental/pnas.201517558SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517558113/-/DCSupplemental/pnas.201517558SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517558113/-/DCSupplemental/pnas.201517558SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517558113/-/DCSupplemental/pnas.201517558SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517558113/-/DCSupplemental/pnas.201517558SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517558113/-/DCSupplemental/pnas.201517558SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1517558113


in depression and decreases in mania. The opposite pattern is seen in
Slow5 variability in the SMN, with a decrease in depression espe-
cially. Taken together, these data suggest: first, a special role of DMN
and SMN variability and particularly their balance in distinguishing
depressive and manic phases; and second, a relevance of resting-
state variability in slow-frequency ranges, Slow5 especially, with
contrasting changes in depressive and manic phases. Because
these changes were observed only in depressive and manic states,
not in euthymic patients, one may tentatively consider an abnor-
mality in Slow5 fSD as a state—rather than trait—marker of BD.
The relationship between the Slow5 DMN/SMN ratio and

depressive and manic states is further supported by our corre-
lation findings. We found significant and contrasting correlations
of the DMN/SMN Slow5 fSD ratio with the HAM-D total score
(positive correlation) and the YMRS total score (negative cor-
relation) in the total BD sample. This finding further strengthens
the link between the contrasting topographical patterns in the
DMN/SMN Slow5 fSD ratio in depression and mania on the one
hand, and their opposite clinical symptoms on the other. This
was further, although tentatively, supported by our ROC analysis,
which showed values higher than 0.80 in predicting the depressive
or manic phase. If confirmed in a larger sample, the DMN/SMN
Slow5 fSD ratio may be considered a diagnostic marker of BD
depression and mania, including their opposite constellations of
affect, thought, and psychomotor alterations.
In sum, the baseline Slow5 variability may be abnormally altered

in the topographical pattern or balances between networks, pri-
marily involving the DMN and its relationship with the SMN.
Accordingly, major functional and structural alterations were
found in the anterior DMN (17, 19–21). The ultraslow frequency
band, Slow5, was interestingly found to be more dominant, espe-
cially in the ventromedial prefrontal cortices; that is, the anterior
cortical midline structures, which are central to the DMN (35, 56).
The DMN/SMN abnormal topographical resting-state pattern

may affect all subsequent neuronal processing of both input and
outputs, leading to the opposing constellations of affective,
cognitive, and psychomotor symptoms in depression and mania.
How and why does the abnormal balancing of the DMN/SMN
Slow5 fSD ratio lead to such contrasting clinical symptom pat-
terns, as are seen in depression and mania (Fig. 4)?
Our findings show that in depression the network Slow5 var-

iability balance is tilted toward the DMN at the expense of the

Fig. 3. Clinical correlations. Pearson correlation (after bootstrapping) between
fSD of the DMN/SMN ratio in Slow5 and the HAM-D and YMRS in BD. D, de-
pressive patients; E, euthymic patients; M, manic patients.

Fig. 4. Schema of DMN/SMN disbalance in depression and mania. The
changes in the fSD of the DMN/SMN ratio in Slow5 (green triangle). The model
represents the hypothetical relationship between changes in DMN/SMN bal-
ance and the most typical clinical presentation of BD depression and mania.
Changes of the relative weight of the lower frequency Slow5 band (wave)
could affect the balance between different resting-state networks, in the
various phases of BD. In depression, the increase of the ratio could tilt the
network disbalance toward the DMN (red and higher amplitude of the wave)
at the expense of the SMN (blue and lower amplitude of the wave), which may
lead to internal thought (focused on internal contents at the expense of the
external contents) and psychomotor inhibition. In mania, the decrease of the
ratio could tilt the network disbalance toward the SMN (red and higher am-
plitude of the wave) at the expense of the DMN (blue and lower amplitude of
the wave), which may lead to external thought (focused on external contents
at the expense of the internal contents) and psychomotor excitation.
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SMN. The DMN has been shown to be involved in self-related
processing and internal mental states (60–62), as well as was
found to be hyperactive in bipolar and unipolar depression (22–
24, 63). Increased variability, particularly in Slow5 fSD, may thus
lead to increased internal thoughts and self-referential process-
ing, manifesting clinically in ruminations and increased self-focus
(3, 7). At the same time, depressed patients exhibit a decrease in
movements and action and are often withdrawn from their
environment, showing psychomotor retardation and decreased
environment-focus (61, 62), which, at the neuronal level, may be
closely related to their decreased variability in the SMN. Taken
together, the topographical pattern with increased Slow5 vari-
ability in the DMN and decreased Slow5 variability in SMN may
result in an excessive focus on internal thought contents at the
expense of external environmental contents (as related to in-
creased variability in DMN) with inhibition in psychomotor be-
haviors (as related to decreased variability in SMN) (3).
The opposite appears to occur in mania. During this phase, the

Slow5 variability network balance is tilted toward the SMN at the
expense of the DMN. External environmental contents related to
both sensory and motor functions predominate over internal thought
contents, resulting in decreased self-related processing—as manifest
in decreased self-focus and internal thoughts—and excessive senso-
rimotor recruitment, as manifest in increases in both perceptual
distraction and motor behavior. Taken together, the topographical
pattern with decreased Slow5 variability in the DMN and increased
Slow5 variability in the SMN may result in an excessive focus on
external environmental contents at the expense of internal thought
contents (as related to decreased variability in DMN), with over-
excitement in psychomotor behaviors (as related to increased vari-
ability in SMN). Accordingly, the contrasting symptoms seen in
depression and mania may be related to opposite spatial topo-
graphical patterns (DMN and SMN) in the resting state’s temporal
structure (variability as indexed by Slow5 fSD), reflecting what has
been recently described as “spatiotemporal psychopathology” (3, 4).
The main limitation of the study is medication confounds, be-

cause almost all of the patients in our sample were undergoing

pharmacotherapy. Furthermore, our sample consisted of patients
at varying stages of the disease. However, when investigated, the
medication load and duration of illness did not correlate with the
fSD in DMN/SMN ratio in Slow5, suggesting the absence of major
effects of these clinical factors on the investigated parameters
(Supporting Information).
In conclusion, our findings demonstrate a specific abnormal

topographical resting-state pattern in the balance between the
DMN and SMN infra-slow signal variance, which, in turn, may
affect all subsequent neuronal processing of both input and out-
puts leading to the opposing constellations of affect, thought, and
psychomotor disturbances during the active depressive and manic
phases of BD. If confirmed in larger samples, this may serve as a
biomarker in the diagnosis and therapy of BD, further improving
understanding of the relationship between the spatiotemporal
structure of intrinsic brain activity and behavioral correlates.

Materials and Methods
The study consisted of a specific and selective sample of 60 severe BD type I
patients (20 depressed, 20 manic, and 20 euthymic) on their current medi-
cation regiment, and 40 HC. The Ethics Committee of San Martino Hospital
approved the study, and written informed consent was obtained from all
participants. After controlling for global signal variance, we calculated the
balances (i.e., ratio) between networks (DMN, SMN, SN, and CEN) fSD in Slow5
and Slow4, and investigated potential differences between subgroups. We
then explored the single networks fSD differences and investigated potential
clinical correlations. Finally, we performed additional analyses of control and
explorative analyses on an independent BD sample and follow-up data. For a
detailed description of samples, acquisition parameters, processing, and all
neuroimaging and statistical analyses, see Supporting Information, including
Figs. S1–S4 and Tables S1–S5.
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