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Abstract

The multilevel latent class model (MLCM) is a multilevel extension of a latent class
model (LCM) that is used to analyze nested structure data structure. The non-
parametric version of an MLCM assumes a discrete latent variable at a higher-level
nesting structure to account for the dependency among observations nested
within a higher-level unit. In the present study, a simulation study was conducted
to investigate the impact of ignoring the higher-level nesting structure. Three
criteria—the model selection accuracy, the classification quality, and the para-
meter estimation accuracy—were used to evaluate the impact of ignoring the
nested data structure. The results of the simulation study showed that ignoring
higher-level nesting structure in an MLCM resulted in the poor performance of
the Bayesian information criterion to recover the true latent structure, the inaccu-
rate classification of individuals into latent classes, and the inflation of standard
errors for parameter estimates, while the parameter estimates were not biased.
This article concludes with remarks on ignoring the nested structure in nonpara-
metric MLCMs, as well as recommendations for applied researchers when LCM is
used for data collected from a multilevel nested structure.
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Introduction

One fundamental assumption underlying latent class models (LCMs; Goodman,

1974; Lazarsfeld & Henry, 1968) is that observed responses are conditionally inde-

pendent of each other, given latent class memberships. This local independence

assumption is often violated because individuals are naturally nested within a higher-

level unit, and such a nested structure creates dependency in collected data. This

observed dependency in data can be attributed to the communalities that individuals

share by belonging to the same higher-level unit, such as a school or an organization.

When analyzing data with a nested structure, researchers should consider this addi-

tional dependency.

The multilevel latent class model (MLCM; Vermunt, 2003, 2004) is a multilevel

extension of the LCM that incorporates possible dependency due to a nested struc-

ture. Vermunt (2003) discussed two versions of MLCMs: the parametric MLCM,

which is assumed to have a continuous random effect to deal with dependency due to

the nested structure, and the nonparametric MLCM, on the other hand, has a discrete

latent variable at the higher-level, under the assumption that individuals as well as

groups are assigned to latent classes.1 Several authors have proposed various specifi-

cations for MLCMs. For example, Henry and Muthén (2010) presented MLCMs with

normally distributed random effects at three different levels, while Di and Bandeen-

Roche (2011) introduced an MLCM that assumes a Dirichlet distributed random

effect to capture variability among higher-level units. Furthermore, other authors

(e.g., Muthén & Asparouhov, 2008; Palardy & Vermunt, 2010; Varriale & Vermunt,

2012) have proposed related multilevel extensions of LCMs with either continuous

or discrete random effects at multiple levels.

Ignoring the nested data structure when analyzing data is sometimes unavoidable:

for example, when the higher-level data structure cannot be identified appropriately

(Moerbeek, 2004); when individuals belong to multiple higher-level units simultane-

ously, but cannot be reasonably disentangled (Chen, Kwok, Luo, & Willson, 2010);

or when a model including a multilevel structure has difficulty reaching convergence

(Van Landeghem, De Fraine, & Van Damme, 2005). A number of studies have inves-

tigated the consequences of ignoring a higher-level structure within the context of

mixture modeling when such a misspecification is unavoidable. For example, Chen

et al. (2010) investigated the consequences of ignoring the higher-level structure in a

three-level multilevel growth mixture model. The results of their simulation study

showed that when the higher-level nesting structure was ignored, the classification of

individuals became less accurate. Their findings also revealed that the classification

accuracy was mainly affected by the size of variance at the group level (i.e., intra-

class correlation [ICC]), as well as the within-class variance-covariance and the dis-

tribution of latent classes (i.e., mixing proportion).

Chen et al.’s (2010) results were similar to earlier studies that focused on multile-

vel regression modeling (e.g., Maas & Hox, 2004; Moerbeek, 2004; Moerbeek, van

Breukelen, & Berger, 2003; Tranmer & Steel, 2001; Van Landeghem et al., 2005;

Wampold & Serlin, 2000). These studies noted that when the higher-level nesting
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structure was ignored, the variances of the ignored higher-level structure were relo-

cated to the adjacent level, whereas the estimates of the fixed effects were not biased.

On the other hand, ignoring the higher-level structure resulted in overestimated stan-

dard errors for the fixed effects at the lower level; however, in general, the standard

errors of the fixed effects at the higher-level are only slightly overestimated.

Kaplan and Keller (2011) studied the effects of ignoring the multilevel data in a

parametric MLCM. They generated data using moderately separated MLCMs with

three different ICC values. The values of ICC were manipulated to adjust the amount

of variance among the higher-level units. Their study showed that the ICC and the

ratio of higher-level to lower-level sample sizes are two crucial factors that deter-

mine the classification quality of latent class membership and relative model fit mea-

sures. Specifically, when the amount of variance at the higher-level structure is large

(a larger ICC) and the sample sizes at the higher-level structure are small, ignoring

the higher-level structure results in a greater likelihood that individuals were misclas-

sified and differences in the Bayesian information criterion (BIC; Schwarz, 1978)

between true model (i.e., MLCM) and misspecified model (i.e., LCM) will increase.

These results suggested that under such conditions, misspecified models are less

likely to be chosen from a set of competing models; in other words, the impact of

ignoring the multilevel structure becomes greater. This study explored the impact of

misspecified models with parametric MLCMs. The same issue has not been systema-

tically investigated in the context of nonparametric MLCMs, although it is not clear

whether the results from the parametric approach would generalize to nonparametric

MLCMs.

A number of studies have noted that a choice of underlying latent variables (con-

tinuous or discrete) leads to different consequences in model fit and parameter esti-

mates (e.g., Lubke & Neale, 2006, 2008). Therefore, we hypothesized that the

different specifications of two MLCMs may result in different scenarios when the

multilevel data structure is ignored. The two MLCMs are considerably different in

terms of the random effect that accounts for the variations among the higher-level

units. Specifically, the higher-level effect is represented as a continuous random

effect originating from a normal distribution with estimated variance terms at the

higher level, so that the ICC can be used as a typical measure of the higher-level

effects (see Hedeker, 2003). In contrast, a finite number of mixture components

(latent clusters) were included to represent the higher-level discrete random effects

in a nonparametric MLCM. This mixture component at the higher level is formed by

marginalizing over the distribution of lower-level mixture components (latent

classes). This specification implies that the classes work as indicators of a discrete

latent component at the higher level; thus, the state of the classes (e.g., class separa-

tions) has a direct impact on the composition of the latent clusters (Lukočien_e,

Varriale, & Vermunt, 2010).

Moreover, we believe that examining the impacts of ignoring multilevel data

structures in nonparametric MLCMs has practical importance because the nonpara-

metric version of an MLCM is preferable under certain empirical applications. One
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advantage of using the nonparametric MLCM over the parametric version is that it

provides classification information for both higher-level units and lower-level units.

This additional information about the latent structure and the classification of higher-

level units sometimes provides more useful descriptions and explanations about the

observed dependency than the typical variance decomposition approach. Examples

of applications include the study by Rüdiger and Hans-Dieter (2013), which clus-

tered German students and their universities based on the attitude toward research

methods and statistics. Rindskopf (2006) explored the characteristics of individuals

at risk for alcoholism by considering their areas of residence. More broadly, some

studies have focused on substantive national-level heterogeneity, offering informa-

tive segmentation of countries (e.g., Bijmolt, Paas, & Vermunt, 2004; da Costa &

Dias, 2014; Onwezen et al., 2012; Pirani, 2011). Other advantages of a nonpara-

metric MLCM in comparison with a parametric MLCM are that the former approach

does not introduce unrealistic assumptions about the distribution of the higher-level

random effect (Aitkin, 1999) and it is computationally less intensive than the latter

approach (Vermunt, 2004).

In the present study, the potential risk of misspecification is empirically assessed

to provide general guidelines for applied researchers. Specifically, we investigated

the impact of ignoring multilevel data structures when true latent class solutions were

either known or unknown. Various nonparametric MLCM structures were created by

manipulating factors that are known to influence cluster-class separations (see,

Lukočien_e et al., 2010), and then the impact of ignoring the nested structure was

examined using various criteria.

The rest of this article is organized as follows. The specifications of nonpara-

metric MLCMs are introduced, and the three types of criteria used to evaluate the

misspecification—model selection, classification quality, and the accuracy of para-

meter estimates—are discussed. A simulation study was conducted to evaluate the

impact of ignoring a nested data structure, and the results of the simulation study are

presented and discussed. This article concludes with remarks on ignoring the nested

structure in nonparametric MLCMs, as well as recommendations for applied

researchers about the applications of nonparametric MLCMs in empirical studies.

Nonparametric Multilevel Latent Class Models

A nonparametric MLCM assumes a discrete latent variable (Hg) at the higher-level

with L latent clusters, and a discrete latent variable at the lower-level (Xgi) with M

latent classes. Each outcome of the discrete latent variables can be conceptualized as

a latent cluster-class consisting of groups-individuals that are internally homogenous

within each cluster-class, but distinct between clusters-classes in terms of the

response patterns. The clusters-classes are assumed to be mutually exhaustive and

exclusive; thus, the latent cluster-class probabilities can be conceptualized as cluster-

class sizes. The sum of these probabilities is one.
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Let Ygij be the response to indicator j of individual i in group g, where g = 1, . . .,

G; i = 1, . . ., ng; and j = 1, . . ., J. Ygi represents the J responses for individual i nested

in group g, and Yg denotes the full responses of all individuals in group g. The non-

parametric MLCM is defined by two separate equations for the higher-level and the

lower level. For the lower level, the probability of observing a certain response pat-

tern for individual i in group g can be written as

P(Ygi) =
XM
m = 1

P(Xgi = mjHg = l)
YJ

j = 1

f (YgijjXgi = m, Hg = l): ð1Þ

The term P(Xig = mjHg = l) = rlm represents the distribution of conditional latent class

probabilities given a particular latent cluster. The conditional response density

f (YgijjXgi = m, Hg = l) in Equation (1) is the probability of observing a certain response

pattern Ygij for variable j of individual i in group g, given the latent cluster member-

ship (l) and latent class membership (m). To facilitate interpretation of the results, a

restricted form of the conditional density f (YgijjXgi = m) = pmj is preferred in most

multilevel extensions of the LCM (e.g., Asparouhov & Muthén, 2008; Vermunt,

2003). This constraint implies that the conditional response density is affected only

by the latent class memberships, but no effects from the higher-level latent cluster

were assumed.

The probability density of the nonparametric MLCM at the higher level is

P(Yg) =
XL

l = 1

P(Hg = l)
Yng

i = 1

P(YgijH = l): ð2Þ

Equation (2) assumes that each group belongs to only one latent cluster, and condi-

tional densities for each of the individuals ng within group g are independent of each

other, given the latent cluster membership. By combining Equations (1) and (2) with

the restricted form of conditional response probabilities, the MLCM is

P(Yg) =
XL

l = 1

P(H = l)
Yng

i = 1

XM
m = 1

P(Xgi = mjHg = l)
YJ

j = 1

f (YgijjXgi = m)

 !
: ð3Þ

Density f (YgijjXgi = m) depends on the assumed distributions of the responses. It can

take the form of a multinomial distribution, or other more general distributions, such

as Poisson or normal. In the MLCM, the estimations of the parameters can be

obtained through a modified version of an expectation-maximization algorithm

(Vermunt, 2003, 2004).

Evaluation of the Impact of Ignoring the Multilevel Structure

We evaluated the impact of ignoring a nested structure using three criteria: model

selection accuracy, lower-level classification quality, and parameter estimation
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accuracy. The first criterion is based on the assumption that the true latent structure

is unknown, whereas the other two presume that the true latent structure is given in

advance.

The accuracy of identifying a true latent class structure (in terms of the number of

latent classes) was used as the criterion for the model selection. In the context of the

LCM, the task of model selection is to determine the optimal number of latent com-

ponents based on the observed responses. A number of prior studies have suggested

using BIC as a standard measure to determine the number of latent classes for a

single-level LCM (e.g., Collins, Fidler, Wugalter, & Long, 1993; Hagenaars &

McCutcheon, 2002). For model selection in the MLCM, BIC has also been reported

to be a good criterion in identifying the true number of latent clusters and classes

with both an iterative approach (Lukočien_e et al., 2010; Lukočien_e, & Vermunt,

2010) and a simultaneous approach (Yu & Park, 2014). In the present study, the

model selection accuracy was assessed in each replication by calculating the percen-

tages of the correctly recovered latent structures using BIC. The obtained percen-

tages under various MLCMs were compared to identify the condition in which a true

latent class structure was better recovered.

The lower-level classification quality was used as a second criterion to evaluate

the impact of ignoring the multilevel structure. The lower-level classification quality

is usually represented by how well an individual’s latent class membership can be

predicted given the observed responses (Vermunt & Magidson, 2013). Two mea-

sures—R-square entropy and classification accuracy rates—were used to measure

the quality of the classification. For these two measures, the difference between the

true model and the misspecified model is considered to be the degree of impact on

the classification quality.

R-square entropy is an index representing the degree of latent class separation for

a given mixture model. This measure is based on a weighted average of the posterior

latent class probability of each individual (Ramaswamy, DeSarbo, Reibstein, &

Robinson, 1993), and it measures the degree of uncertainty on the individual’s classi-

fication into latent classes. Lukočien_e et al. (2010) proposed R-square entropy mea-

sures that quantify the classification quality. The higher-level and lower-level

measures are defined as R2
entropy:high and R2

entropy:low, respectively:

R2
entropy:high = 1�

PG
g = 1

PL
l = 1

�P(Hg = ljYg) log P(Hg = ljYg)

PG
g = 1

PL
l = 1

�P(Hg = l) log P(Hg = l)

: ð4Þ

R2
entropy:low = 1�

PG
g = 1

Png

i = 1

PM
m = 1

�P(Xgi = mjYg) log P(Xgi = mjYg)

PG
g = 1

Png

i = 1

PM
m = 1

�P(Xgi = m) log P(Xgi = m)

: ð5Þ
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The R-square entropy measures range between 0 and 1. A higher value (close to 1)

for a given latent structure indicates that groups-individuals can be classified into

latent clusters-classes with a high degree of certainty. On the other hand, a value close

to 0 suggests greater uncertainty for assigning groups-individuals into latent clusters-

classes, with a relatively greater likelihood of classification error.

We used the classification accuracy rate, which is the proportion of individuals

classified into correct latent classes, as the second measure of classification quality.

This measure can provide an understanding of empirical classification accuracy when

the higher-level structure is ignored. In the LCM, each individual is assigned to a sin-

gle class with the highest posterior probability. However, this class assignment is still

made with a degree of uncertainty, particularly when the dominant posterior latent

class probability is unclear. In such cases, individuals are likely to be incorrectly

assigned to a latent class. The classification quality was evaluated by comparing the

proportion of individuals correctly classified into latent classes (i.e., classification

accuracy rates) between the true and misspecified models.

This present study used two measures to evaluate the impact that ignoring the nested

structure had on parameter estimation accuracy: (1) bias in the parameter estimates and

(2) bias in the standard error (SE). The relative percentage bias (RPB) of a parameter

estimate was used as an index to quantify the relative difference between the population

parameter values and the averaged parameter estimates over replications. The RPB was

calculated as ½(û� u=u)�3100 (Maas & Hox, 2004). An RPB value of 0 indicates that

an estimate is unbiased, whereas a negative bias represents an underestimation of the

parameter; a positive RPB value indicates that the parameter is overestimated.

Similarly, the RPB of the standard error is defined as (SEFalse � SETrue=
SETrue)3100, where SEFalse is the average standard deviation of each parameter esti-

mate from the misspecified model, and SETrue is the standard deviation of the esti-

mated parameter obtained from the true model. An acceptable RPB for both the

parameter and standard error estimates should not exceed 5% (Muthén & Muthén,

2009).

Simulation Study

We conducted a simulation study to investigate the impact of ignoring the level of

the nested structure under a variety of conditions. Data with two levels of latent struc-

ture were first generated using nonparametric MLCMs, given a correct number of

latent clusters and classes. Then, MLCMs from which the data were generated (i.e.,

the true model) was fitted to the data; a single-level LCM (i.e., a misspecified model),

which did not include the higher-level structure (i.e., clusters) in the model, was also

fitted to the data.

Manipulated Factors

Seven design factors were manipulated: (1) number of latent clusters, (2) number of

latent classes, (3) latent cluster size, (4) higher-level sample sizes, (5) lower-level
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sample sizes, (6) conditional latent class probability, and (7) conditional response

probability. Twelve binary indicators were used across all conditions.

The number of clusters and classes was set to either two or three at both levels (L

= 2 or 3 and H = 2 or 3). This specification resulted in four MLCMs with different

levels of model complexity, denoted as H2L2, H2L3, H3L2, and H3L3, where the

number refers to the number of latent clusters and classes. For example, H2L3 repre-

sents the model with two latent clusters and three latent classes.

The latent cluster probabilities P(Hg = l) were used to manipulate the latent cluster

sizes. The sizes of the latent clusters were set to be either equal or unequal. In the

equal condition, the probabilities of a group belonging to each cluster were set to be

equal (1/2 for two clusters and 1/3 for three clusters). The latent cluster probabilities

for the unequal cluster sizes were set to .75 and .25 for H2L2 and H2L3, and .7, .2,

and .1 for the H3L2 and H3L3 conditions, respectively.

The higher-level sample size (i.e., the number of groups) and the lower-level sam-

ple size (i.e., the number of individuals in a group) were manipulated to investigate

the sample size effect at both levels. There were 50 or 100 groups (G) with 10, 20, or

50 individuals per group (Ng) to represent small, medium, and large samples.

The values of the conditional latent class probabilities (rlm) and the conditional

response probabilities (pmj) were manipulated. In the present study, the term cluster-

class distinctness was used to characterize the pattern of rlm and pmj. According to

the definition by Yang and Yang (2007), the distinctness of classes can be considered

to be factor loadings in an exploratory factor analysis, where only selected indicators

are loaded highly on a particular distinct factor. Similarly, if we consider rlm and pmj

as loadings of a particular cluster and class, then patterns close to such a ‘‘simple

structure’’ can be regarded as distinct clusters and classes, respectively.

Two sets of rlm and pmj values were chosen to represent the different levels of dis-

tinctness among the latent clusters and classes. The exact values used in the simula-

tion study are summarized in the appendix. For the more distinct clusters, the values

of rlm differ greatly among the clusters, but the values of rlm are more evenly distrib-

uted among the clusters in less distinct conditions. Likewise, the values of pmj were

designed to differ largely across classes in more distinct conditions, whereas the val-

ues of pmj were more evenly distributed in less distinct conditions. In the analysis, the

two levels of class and cluster distinctness were combined, resulting in four levels of

cluster-class distinctness. These four levels are referred to as H–H (more distinct clus-

ters and classes), H–L (more distinct clusters and less distinct classes), L–H (less dis-

tinct clusters and more distinct classes), and L–L (less distinct classes and clusters).

Data Generation and Analysis

The fully crossed simulation design yields 192 (2 3 2 3 2 3 2 3 3 3 2 3 2) condi-

tions. For each condition, 100 data sets were generated according to the parameter

specifications of that particular condition using R 3.11 software (R Development

Core Team, 2010). When generating the data, the population class memberships of
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each subject were recorded for further analysis. Both the true model and the misspeci-

fied models (LCM with 2, 3, and 4 classes) were then fitted to the simulated data using

the Latent GOLD 5.0 syntax module (Vermunt & Magidson, 2008). Among those four

models, the MLCM was the ‘‘true’’ model with the structure (numbers of clusters and

classes) identical to the structure from which the data were generated, while the other

three LCMs were ‘‘wrong’’ models. The log-likelihood values of each data set fitted to

the four models were recorded to compute the BIC. The number of groups (G) was used

as the sample size for the penalty term in BIC, since using G consistently showed better

accuracy in identifying the true number of latent components at both levels (Lukočien_e
et al., 2010; Lukočien_e & Vermunt, 2010; Yu & Park, 2014). For each replication, the

model with the lowest BIC value was chosen as the best fitting model. The percentage

of replications correctly identified the true model by BIC was calculated.

The outputs obtained from the true model (MLCM) and from one of the misspeci-

fied models (an LCM including the same lower-level structure as the true model)

were used to evaluate the classification quality and the parameter accuracy. The

lower-level R-square entropy values for both the true and misspecified models were

collected from the Latent GOLD outputs over the replications. The classification

accuracy rates were calculated empirically by comparing the population class mem-

berships and the class assignment outcomes from the Latent GOLD output. The para-

meter estimates, as well as the standard errors of conditional response probability

(pmj) for the true and misspecified models, were also recorded for further analysis.

A logistic regression was used to decide which factor had a significant effect on

the model selection accuracy. The dependent variable was whether BIC correctly

identified the true model (MLCM) among the competing models. The seven afore-

mentioned factors and all possible two-way interactions were included as predictors

in the logistic regression. The importance of the effects was evaluated on the basis of

the odds ratio of the predictors, which represents the constant effects of predictors on

the dependent variable.

Analyses of variance (ANOVA) were conducted to study the effects that the

manipulated factors had on the classification quality and the parameter estimation

accuracy. The RPBs of the measures including the R-square entropy, the classifica-

tion accuracy rates, parameter estimates, and the standard errors of pmj were calcu-

lated and then used as the dependent variables. Note that an effect size measure h2

(SSEffect=SSTotal) was used to filter out the trivial effects, and it was used as an index

to determine the relative importance of the seven factors. Any effect with h2 larger

than .01 was considered to be meaningful and was interpreted, further, as was done

in similar previous studies (Chung & Beretvas, 2012; Krull & MacKinnon, 1999).

Simulation Results

Model Selection Accuracy

The model selection accuracy using BIC was examined to investigate the impact of

ignoring the nested structure. The overall probability of correctly identifying the true

832 Educational and Psychological Measurement 76(5)



model (MLCM) was 86.7% across all the simulation conditions, which shows that

BIC correctly identified the true models in the majority of the conditions designed in

the simulation.

Table 1 shows the odds ratio (OR) for the main effects and the significant two-

way interactions of the seven factors. The results indicated that two factors related to

cluster structure, cluster distinctness (OR = 57.497), and cluster size (OR = 7.766),

and the number of individuals per group (Ng; OR = 2.044) are the three important

factors affecting the model selection accuracy. This represents that the odds of reco-

vering the true model under more distinctive clusters is 57.497 times higher than the

odds under less distinctive clusters, while the odds under unequal cluster sizes and

larger sample sizes (Ng = 50) are 7.766 times and 2.044 times higher than equal and

smaller sample sizes, respectively.

Table 2 lists the average model selection accuracy using BIC for the three signifi-

cant factors in the logistic regression analysis. The patterns showed that the model

selection was more accurate under the conditions in which the clusters were more

distinctive, the clusters were unequally distributed, and the sample sizes at the lower-

level were larger. These results indicate that the misspecification has a greater impact

when more distinct and equal-sized clusters are being ignored under larger lower-

level sample sizes.

An interaction effect between cluster size and cluster distinctness was found (OR

= 17.926). A plot of this interaction is shown in Figure 1. It suggests that the perfor-

mance of BIC increased rapidly in the condition of more distinctive clusters with

equal cluster sizes, while BIC almost perfectly recovered the true latent structure

when the clusters are unequally distributed, regardless of whether the clusters were

more or less distinctive.

Classification Quality

Table 3 displays the effect sizes (h2) for the main effects and the significant two-way

interaction effects that the seven factors had on the measures of classification quality:

R-square entropy and the classification accuracy rates.

R-Square Entropy. The lower-level R-square entropy for the true and misspecified

models was examined. The overall results showed that the R-square entropy for true

models ranged from 0.527 to 0.982, whereas the value for misspecified models ran-

ged from 0.152 to 0.981. Furthermore, the mean of R-square entropy for the true

models (M = 0.813, SD = 0.122) was slightly higher than it was for the misspecified

models (M = 0.745, SD = 0.166). The averaged RPB of R-square entropy across 192

conditions was 25.264 (SD = 11.692). This value indicates that the R-square entropy

for the misspecified models (LCM) is, on average, about 5.264% less than it is for

the true model (MLCM). In addition, 94% of the conditions created in the simulation

study had negative RPB values. Therefore, it is clear that ignoring the higher-level
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structure decreased the classification quality in the majority of the conditions

designed in the simulation.

The significant main effects are presented in Table 4. Two factors related to the

lower-level latent structure had substantial effects on the RPB of R-square entropy:

the number of latent classes (h2 = :124) and the distinctness of the latent classes

(h2 = :107). The average RPB was higher under the conditions in which the latent

class structure was more complex (L = 3) than in conditions with a less complex

structure (L = 2). Moreover, the condition of less distinct classes was observed to

have a larger average RPB than the condition of more distinct classes.

Although the effects were less substantial, the RPB of R-square entropy was also

significantly associated with the factors related to the higher-level structure: the dis-

tinctness of the latent clusters (h2 = :080), the number of latent clusters (h2 = :027),

and the cluster sizes (h2 = :016). As shown in Table 4, ignoring more complex latent

clusters (H = 3), more distinct latent clusters, and equally distributed clusters yielded

a substantial increase in the negative average RPB.

In addition to the main effects, significant interaction was observed between the

number of classes and clusters (h2 = :064). Higher average RPBs were found as both

the cluster and class structures became more complex (the number of clusters and

classes increased), but this increasing pattern was not observed in the H3L2 model.

In addition, the average RPB in the H3L2 model was quite small, and it was close to

0 regardless of the cluster-class distinctness and cluster size, ranging from 20.013 to

20.366.

Another interaction between cluster and class distinctness (h2 = :048) was sub-

stantially associated with the RPB of the R-square entropy. Table 5 shows that condi-

tions with more distinct clusters and less distinct classes (H–L) had particularly large

Figure 1. Interaction between the cluster size and cluster distinctness.
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bias among all possible combinations of cluster and class distinctness, except for the

H3L2 conditions. The RPB was even greater under the conditions with equally dis-

tributed clusters. In particular, when the true model is H3L3, ignoring equally distrib-

uted distinct clusters with less distinct classes yielded the largest average RPB

(264.592), indicating that the classification quality of the misspecified models was

inferior to that of the true model in this condition.

These patterns suggested that the class structure (i.e., class distinctness and the

number of classes) is pivotal in determining the level of classification quality.

Although the effects were not substantial as factors related to class structure, ignor-

ing the more complex and more distinct clusters with equal size also had an adverse

effect on the RPB.

Classification Accuracy Rates. In general, the overall classification accuracy rates were

quite high. The overall classification accuracy rates for both the true and misspecified

models was more than 90%, but the accuracy rates in the true models were slightly

higher than the misspecified models. The averaged accuracy rate for the true models

was 92.5% (SD = 1.64); for the misspecified models the averaged accuracy rates were

90.1% (SD = 2.94).

The number of clusters and classes turned out to have a substantial main effect:

h2 = :029 and h2 = :026, respectively. As shown in Table 6, the average RPB

increased as both the numbers of clusters and classes increased (H = 3 and L = 3).

This pattern implies that the classification of the misspecified models was relatively

inaccurate compared with the true model under more complex latent structure, at

both levels. Moreover, distinctness among classes was found to have a substantial

effect on the RPB, h2 = :017, yielding larger bias under less distinct conditions.

The ANOVA results also revealed that the number of latent clusters significantly

interacted with the number of latent classes, h2 = :031, as well as the class distinct-

ness, h2 = :016. Figure 2 shows that negative RPB values increased as both the latent

Table 5. The Average Relative Percentage Bias of R2 Entropy Under Different Conditions of
Latent Classes/Cluster Complexity and Distinctness.

Cluster size Model

Classes/cluster distinctness

H–H H–L L–H L–L

Equal H2L2 20.845 27.087 20.046 20.436
H2L3 22.120 211.833 20.741 24.043
H3L2 20.045 20.366 20.017 20.176
H3L3 26.417 264.592 21.913 27.315

Unequal H2L2 20.698 25.909 20.237 22.144
H2L3 21.888 210.578 20.758 24.032
H3L2 20.029 20.255 20.013 20.127
H3L3 25.271 219.101 21.937 27.497
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cluster and class structures became more complex (H3L3), while the increase in RPB

was particularly prominent when the classes were less distinct, which indicates that

the influence of the number of clusters-classes was more evident in the less distinct

classes. In summary, the adverse impact of ignoring the multilevel data structure was

pronounced when the latent structure was complex, and this effect became more sub-

stantial when the classes were less distinct.

Parameter Estimate Accuracy

The parameter estimate accuracy results are summarized in this section. The main

effects and the two-way interaction effects that the seven factors had on the parameter

estimate bias and the standard error bias are summarized in Table 7.

Figure 2. Interaction between the numbers of latent clusters/classes and class distinctness.

Table 6. The Average RPB of Classification Accuracy Rates Under Different Numbers of
Latent Components and Class Distinctness.

Factors Level Average RPB

Cluster# 2 20.132
3 21.963

Class# 2 20.223
3 21.871

Class distinctness Less 21.697
More 20.397

Note. RPB = Relative percentage bias.
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Parameter Estimation Bias. Ignoring the multilevel data structure did not have a sub-

stantial impact on the accuracy of the parameter estimates. The results indicated that

both the true and misspecified models almost perfectly recovered the parameters,

pmj. The calculated RPB was extremely small, ranging from 0.000 to 0.806. The

ANOVA results indicated that none of the seven factors or their interaction effects

were larger than 0.01.

Standard Error Bias. The impact of misspecifying the multilevel data structure on the

estimated standard error (SE) of parameter, pmj, was examined. The SE for true mod-

els ranged from 0.071 to 0.428, whereas the SE for the misspecified models ranged

from 0.088 to 0.778. The positive RPB of the SE suggests that the SE in the misspeci-

fied models was inflated, as compared with the SE in the true models. The calculated

average RPB of the SE was 4.92 (SD = 6.878); in general, this indicates that the SE

in the misspecified models was 4.92% higher than it was in the true model.

As shown in Table 8, the ANOVA results demonstrated that three main effects

were substantially associated with the RPB of the SE: the number of latent classes,

h2 = :045; the cluster distinctness, h2 = :026; and the class distinctness, h2 = :014. It

appears that having more complex class structure (L=3) led to a sharp increase in the

RPB of the SE. In addition, the bias increased as the latent classes became more dis-

tinct, but it decreased as the latent clusters became more distinct.

For significant interaction effects, the number of latent classes interacted with the

cluster distinctness, h2 = :019, and the class distinctness, h2 = :011. As shown in

Figure 3, the highest RPB, ranging from 1.553 to 14.256, was found under the H–L

condition, whereas the L–H condition had the lowest RPB, ranging from 20.110 to

1.130. The difference in RPB between the H–L and L–H conditions was particularly

large when the class structure was more complex (L = 3). This pattern generally indi-

cates that the RPB of the SE tended to be inflated when class structure was more

Figure 3. Interaction between the number of classes and cluster/class distinctness.
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complex, but it also interacted with cluster and class distinctness, showing larger bias

under more distinct clusters and less distinct classes (H–L).

Discussion

This study aimed to investigate the impact of ignoring a higher-level nesting structure

in a nonparametric MLCM. We conducted a simulation study with seven manipu-

lated factors, using three evaluation criteria: the accuracy of the model selection, the

classification quality, and the parameter estimate accuracy. In general, ignoring the

higher-level nesting structure in the MLCM resulted in poor performance of BIC in

recovering the true latent structure when the true latent class solution was unknown.

In the condition in which the true solution is given, individuals were inaccurately

classified into latent classes and the standard errors for the parameter estimates were

inflated, but the parameter estimates were not affected.

The previous study using parametric MLCM (Kaplan & Keller, 2011) showed that

the amount of variation among the higher-level units (size of the ICC) was a crucial

determinant for the model fit using BIC and the classification quality. Specifically,

the poorer model fit and the less accurate classification of individuals are found when

the higher-level structure with larger ICC is ignored.

In general, the results of this study are consistent with the findings from the previ-

ous study on a parametric MLCM, although the specification of a nonparametric

MLCM is quite different from those of a parametric MLCM. We found that factors

related to the variations among the higher-level units (cluster distinctness) as well as

the structure of higher-level components (number of clusters) have substantial effects,

judging by the three criteria that were chosen. The results suggest that the perfor-

mance of BIC becomes significantly worse as more distinct clusters are ignored. The

larger bias of R-square entropy was associated with ignoring more distinct and more

complex clusters, whereas the larger bias of the classification accuracy rates was

observed when more complex clusters were ignored. The results also revealed that

ignoring the more distinct cluster structure yields inflated standard errors.

One possible explanation for why these patterns occur can be found in whether or

not the underlying dependency is well captured. Specifically, the dependency in the

responses due to the nested structure cannot be appropriately captured by the single-

level latent class structure if the presence of the dependency is evident. Thus, the

model selection accuracy, the classification quality, and the parameter estimate accu-

racy are hindered by this model misspecification (i.e., ignoring the nested structure

and fitting only a single-level LCM). As more distinct and complex clusters are

ignored—which represent larger amounts of dependency in the data—poorer perfor-

mance in model selection, less accurate classification, and inflated standard errors

for the parameter estimates were observed. This finding led to our recommendation

that when applied researchers analyze data with a multilevel structure they should

carefully model the dependency in the latent structure using either a parametric

MLCM or a nonparametric MLCM.
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Moreover, we also found that the three criteria depend heavily on factors related

to the lower-level structure (class distinctness, the number of classes, and the lower-

level sample sizes). These results suggested that the larger bias of R-square entropy,

the classification accuracy rates, and the standard error are associated with conditions

in which the classes are more distinct and complex. These findings are not particu-

larly surprising because those measures are based on the properties of lower-level

units. A number of prior studies also reported that the class assignments are less accu-

rate and the standard errors of parameter estimates are biased when the classes are

poorly separated (Chen et al., 2010; Depaoli, 2012; Tolvanen, 2008).

The results related to the effects of sample size are consistent with the findings

presented in Kaplan and Keller’s (2011) study; that is, the model fit by BIC is highly

sensitive to changes in sample sizes, while classification quality measured by R-

square entropy is not affected by the sample sizes. However, in our study, some of

the findings were inconsistent with Kaplan and Keller’s (2011) results. For example,

they reported an interaction effect between class size and ICC on both R-square

entropy and the BIC measures; however, in the present study, the R-square entropy

bias was consistently larger in the equal cluster size than in the unequal cluster size,

across other controlled factors, while no interactions were found between cluster size

and other factors in terms of the accuracy of the parameter estimates.

One important finding of our study is that the criteria are not only associated with

the factors related to cluster and class structure; they are also affected by the interactions

of those factors. Specifically, ignoring more distinct clusters with less distinct classes

(the H–L condition) produced a larger bias in both R-square entropy and standard error;

this pattern became particularly prominent under the complex model (H3L3). On the

other hand, smaller bias was found under less distinct clusters and more distinct classes

(the L2H condition). This pattern was more evident under simpler latent structures

(H2L2), which resulted in the most accurate classification and the lowest bias in stan-

dard error among all possible conditions in the simulation study.

Based on the findings in the present article, we recommend that LCM results

should be interpreted with caution if a higher-level nesting structure is not incorpo-

rated in the analyses, particularly when an obtained LCM (selected number of

classes) solution is complex and the classes are not distinct. In such a case, the classi-

fication quality and the parameter estimates accuracy can be easily affected by the

dependency among the higher-level units. Consequently, if researchers do not

account for the dependency by ignoring the higher-level structure, they might misat-

tribute the inaccurate classification and biased SE to the fact that the selected LCM

fails to fit the data well.

Conclusion

All the previous results suggest that knowledge about the true latent structure is

important to gauge the potential impact of ignoring the multilevel structure, even

though the true latent structure of the data is usually ‘‘unknown.’’ We suggest paying

842 Educational and Psychological Measurement 76(5)



careful attention to the literature and gathering substantive knowledge about the

topics and the patterns of estimated parameters (e.g., latent class probabilities and

conditional response probabilities), as this information can provide clues about the

true latent structure of the data.

In addition to substantive understanding of contents and reviewing the findings

from previous studies, most software dealing with MLCM, such as Latent GOLD or

Mplus (Muthén & Muthén, 2012) provide measures for classification quality that

quantify the separation between classes-clusters (such as R-square entropy) in the

output. We recommend that researchers regularly check the values of these measures

to decide whether or not a higher-level structure should be incorporated in the analy-

sis when LCM is used for multilevel data.

In summary, this study investigated the potential risks of ignoring the higher-level

structure in a nonparametric MLCM; it examined and discussed the effects of the

factors related to class-cluster separation. The article presented the findings from a

simulation study to discuss and evaluate the impact of ignoring the multilevel data

structure in a nonparametric MLCM. As MLCMs have been shown to have a variety

of possible applications, we hope this study’s findings contribute to promoting the

appropriate use of MLCMs in empirical data analysis.
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