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Social learning is critical for humans to adapt and cope with rapidly changing

surroundings. Although, neuroscience has focused on associative learning and pain

empathy, the neural mechanisms of social learning through fleeting pain remains to be

determined. This functional MRI study included three participant groups, to investigate

how the neuro-hemodynamic response and subjective evaluation in response to the

observation of hand actions were modulated by first-hand experience (FH), as well as

indirect experience through social-observational (SO), and verbal-informed (VI) learning

from fleeting pain. The results indicated, that these three learning groups share the

common neuro-hemodynamic activations in the brain regions implicated in emotional

awareness, memory, mentalizing, perspective taking, and emotional regulation. The

anterior insular cortex (AIC) was commonly activated during these learning procedures.

The amygdala was only activated by the FH. Dynamic causal modeling further indicated,

that the SO and VI learning exhibited weaker connectivity strength from the AIC to

superior frontal gyrus than did the FH. These findings demonstrate, that social learning

elicits distinct neural responses from associative learning. The ontogeny of human

empathy could be better understood with social learning from fleeting experience with

pain.
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INTRODUCTION

Social learning has been recognized as a powerful and evolutionarily derived mechanism for
assisting humans and animals in adapting and coping with their rapidly changing surroundings
(Plotkin and Odling-Smee, 1981; Öhman and Dimberg, 1984; Bandura, 1986; Öhman and Mineka,
2001; Sweller and Sweller, 2006). Although neuroscience has focused on learning and empathy,
little is known about the neural mechanisms of social learning whereby an individual can learn
feelings of concern for others who suffer in the real world.

The neural mechanisms of social learning have been examined by classical fear conditioning
(Phelps et al., 2001; Olsson and Phelps, 2004, 2007; Galef and Laland, 2005; Phelps and LeDoux,
2005). This amygdala-centered model (Olsson et al., 2007) posited, that indirectly attained fears
could be as powerful as fears originating from direct experiences. The conditioned stimulus-
unconditioned stimulus (CS-US) contingency is expressed in the amygdala, hippocampus, anterior
cingulate cortex (ACC), and anterior insular cortex (AIC) when direct experiences and social
learning take place. While fears can be acquired through observation, the strength of the
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CS-US association may be modified by input from the medial
prefrontal cortex (mPFC), which is associated with thinking
about one’s own and others’ mental status. As for another social
transmission procedure, verbal communication learning is relied
on the left-lateralized cortical network. Fear conditioning is quite
predictable in which a series of trials are separated by short inter-
trial intervals. In the real world, however, the same stimulus is
unlikely to repeatedly link to the same outcome within such a
short period (Parsons and Davis, 2012).

The overlap between the perception of others’ pain and first-
hand experience (FH) of pain has been interpreted as a neural
mechanism of empathy by which one may share the pain of
another (Decety, 2011a). A large body of neuroimaging research
revealed that perceiving other individuals in physical pain elicit
neurohemodynamic responses in a restricted number of brain
regions, including the AIC, ACC, somatosensory cortex (SI/II),
and brainstem (see Lamm et al., 2011 for a meta-analysis). These
brain regions were also consistently activated by acute physical
pain, belonging to the so-called “pain-matrix.”

The pain-matrix may mediate aversive learning (Papini, 2002;
Tucker et al., 2005). Lesion of the ACC substantially impairs
observational fear learning in mice (Jeon et al., 2010). The AIC
is involved in learning the associations between stimuli and
outcomes (Ploghaus et al., 1999). Anticipation of pain activates
the AIC, which provides information regarding aversive body
states in relation to conditional stimuli (Paulus and Stein 2006).
Hence, the pain system is not only essential to the modulation
of emotionally negative events, but also linked to the cognitive
and affective processes that occur during learning (Nitschke et al.,
2006; Paulus and Stein, 2006).

In response to action observation, we scanned fMRI before
and after direct experiences and indirect social transmissions of
fleeting pain (Figure 1). During the interval between the first and
second scanning, participants left the scanner and were randomly
assigned to one of three learning groups. There were two kinds
of mugs: one was heated (75◦C) and the other was non-heated
(30◦C). In the FH group, participants touched the mug to learn
whether the mug was heated or not. In the social-observational
(SO) group, participants watched an animation, in which an actor
showed a painful expression when holding a heated mug (H) and
a neutral expression when holding a non-heated mug (N). In the
verbal-informed (VI) group, the experimenter told participants,
that the white-colored mug was heated and the black-colored

FIGURE 1 | Direct experiences and social learning involving pain. Participants learn the association of the stimuli and pain through (A) Touching the heated

mug (FH). (B) Viewing a learning model’s expression of distress (SO). (C) Verbal information about its aversive qualities (VI).

mug was non-heated. We hypothesized that, if learning through
fleeting pain were centered in the amygdala, then various learning
procedures would have the common activation in the amygdala.
Alternatively, learning indirectly through SO, VI, and FH would
recruit the pain matrix, such as ACC and AIC. Furthermore,
we explored the effectively causal connections among various
learning strategies.

MATERIALS AND METHODS

Participants
Fifty-four healthy female volunteers, aged between 20 and 30
years, participated in the study after providing written informed
consent. They were mainly recruited from campuses and paid
for their participation. All of the participants exhibited normal
or corrected-to-normal vision, and were free of neurological
and psychiatric symptoms or signs. Considering sex differences
in emotional memories and pain empathy (Manstead, 1992;
Yang et al., 2009), we enrolled female participants only. The
participants were divided into three learning groups, whose
age, handedness, IQ, and pressure-pain thresholds (PPT) were
matched to each other (Table 1). The study was approved by
the local ethics committee (Yang-Ming University Hospital) and
conducted in accordance with the Declaration of Helsinki.

Procedures
Before fMRI scanning, each participant underwent assessments
of handedness, IQ, and PPT. Given the fact that the pain
threshold might have an impact on the perception of other’s
pain (Cheng et al., 2012; Fan et al., 2014), we assessed the PPT,
indexing the sensitivity of peripheral nociceptors. The fMRI
scanning comprised two sessions with a functional activation
paradigm, in which participants were asked to watch the stimuli.
During the interval (∼10min) between the first and second fMRI
scanning sessions, participants left out the MRI scanner to be
randomly assigned to one of three learning groups: FH, SO,
or VI. Immediately after the learning procedures, participants
were presented with the stimuli they had viewed during the
first fMRI scanning and were asked to evaluate the subjective
unpleasantness by using a computerized version of the Facial
Pain Scale-Revised (FPS-R) (Bieri et al., 1990; Li et al., 2007). The
experimenter was always a male.
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TABLE 1 | Demographic data of the study participants.

FH group n = 18 SO group n = 18 VI group n = 18 p

Age 24.8± 3.3 25.4± 3.1 25.2± 3.2 0.78

FIQ 106.2± 4.5 105.8± 4.1 106.6± 3.7 0.77

PPT (kg/cm2) 2.62± 0.14 2.56± 0.17 2.49± 0.27 0.17

Handedness R/L (17/1) R/L (17/1) R/L (18/0) 0.60

FH, first-hand experiences; SO, social-observational; VI, verbal-informed; FIQ, full-scale

intelligence quotient; PPT, pressure-pain threshold.

Visual Stimuli
The stimuli had 12 animations, depicting an actor’s right hand
approaching and holding the white or black mug. Each stimulus
consisted of the successive presentation of three digital color
pictures, which were edited to the same size (205 × 154 pixels).
The duration of the first, second, and third pictures was 1000,
100, and 1000ms, respectively. The mugs had the same size and
shape. Six actors (three of whom were females) were involved in
the presentations, and their facial expressions were not shown.

Pressure Pain Threshold (PPT)
The PPT was assessed using a hand-held pressure algometer
(UTECH pain track, Zevex international, Salt Lake City, UT,
USA), which consists of an ergonomic dynamometer with a
flat stainless steel circular probe (1.52 cm2) connected to a
commander console. The algometer was placed perpendicularly
against the skin. The PPT value was determined by applying
gradual pressure at the dorsal side of the right and left proximal
phalanx of the index finger until the subject reported feeling pain.
This procedure was repeated three times, alternating left and
right sides, in order to improve reliability. The mean of the six
evaluations was calculated for the PPT value.

MRI Data Acquisition, Imaging Processing,
and Statistical Analysis
Structural and functional MRI data were collected using a
3T MRI scanner (Magnetom Tim Trio, Siemens, Erlangen,
Germany) equipped with a high-resolution 12-channel head
array coil. Changes in blood oxygenation level-dependent
(BOLD) T2∗ weightedMR signal were measured using a gradient
echo-planar imaging (EPI) sequence (repetition time TR =

2600ms, echo time TE = 30ms, FOV = 220mm, flip angle =

90◦, 64× 64 matrix, 36 slices/slab covering the whole brain, slice
thickness 3mm, no gap). For each run, a total of 98 EPI volume
images were acquired along the AC-PC plane. Structural MR
images were acquired with a MPRAGE sequence (TR = 2530,
TE = 3.5, FoV = 256mm, flip angle = 7◦, 256 × 256 matrix,
176 slices/slab, slice thickness= 1mm, no gap).

A factorial design with one between-group factor, learning
group (FH vs. SO vs. VI), and two within-group factors, (1)
session (first vs. second fMRI scanning), and (2) stimulus (heated
mug, H vs. non-heated mug, N), were tested. Each scanning
session consisted of two functional runs. Each run included two
condition blocks and three fixation blocks. Each condition block
(duration 15.6 s each) consisted of six trials that belonged to

the same stimulus category (2.1 s each), and six inter-stimulus
intervals (500ms each) with a white fixation presented against
a gray background. A 20.8-s fixation block was inserted at the
beginning, after each condition block, and at the end of each run.
The order of the stimulus conditions was randomized within each
run. The sequence and order of the runs and the blocks were
counterbalanced across the participants.

Image processing was conducted using SPM8 (Wellcome
Department of Imaging Neuroscience, London, UK). The first
four volumes of each functional session were discarded to allow
for T1 equilibration effects. The remaining images underwent
preprocessing, including reorientation, slice-timing correction,
correction for head motion, normalization to the EPI template
with a resampled voxel size of 3 × 3 × 3mm, and smoothing
with an isotropic 10-mm full-width half-maximum (FWHM)
Gaussian Kernel. A two-stage general linear model was used to
examine the effect sizes of each condition and to compare them
at the group level. At the first level, we created the images of
parameter estimate for the following contrasts in each subject:

1) The session effect to identify the brain regions involved in
learning procedures, irrespective of the mugs: the second
session (H+ N)− the first session (H+ N).

2) The stimulus effect to identify the brain regions involved
in processing pain, irrespective of the sessions: the (first +
second) session H− the (first+ second) session N.

3) The session-by-stimulus interaction, which was assumed to
be associated with the processing of learning procedures
regarding pain effect: the second session (H − N) − the first
session (H− N).

A statistical threshold of p = 0.05, false discovery rate (FDR)
corrected, was used for the whole brain analysis. Activations
were overlaid on a representative high-resolution structural T1-
weighted image from a canonical image set, coregistered to the
Montreal Neurological Institute space.

Region of Interest (ROI) Definition and
Analysis
Using the MarsBar toolbox, we defined the ROIs as a 6-mm
spherical region centered on the following MMI coordinates,
including the SI/II (x − 41, y − 43, z 60), amygdala (−20, −2,
24), AIC (−40, 22, 0), ACC (−2, 23, 40), and superior frontal
gyrus (SFG:−24,−8, 62). These coordinates were determined on
the basis of neuroanatomical atlases as well as one meta-analyses
regarding pain empathy (Lamm et al., 2011). The average beta
estimates of all the voxels in these ROIs were analyzed using
an analysis of variance (ANOVA) to test session-by-stimulus
interactions [the second session (H – N) – the first session
(H – N)] at the group level. A Bonferroni correction was applied
to account for multiple comparisons.

Dynamic Causal Modeling (DCM)
Effective connectivity analyses were conducted using the
dynamic causal modeling (DCM) toolbox. Functional imaging
data were remodeled at the first level for each subject and for
each session. The general linear model for DCM consisted of
two regressors, encoding the visual and the heated-mug trials
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during the second fMRI scanning. DCM was constructed for
each subject, involving the four left-lateralized ROIs: the superior
temporal sulcus (STS), AIC, ACC, and SFG. After determining
the optimal model, we extracted the parameter representing the
modulatory effect of aversive learning from the winning model.
We used a statistical threshold of p < 0.05 (corrected) for
effective connectivity analyses.

Extracting the Time Series
Treating the brain as an input-state-output system, DCM
estimates how (output) hemodynamic activity from a given
brain region depends on (input) variables manipulated in an
experiment. These ROIs were defined as 8mm-radius spheres
and were extracted at peak effects for each subject-specific
statistical parametric map at p = 0.05. Two t-contrasts (visual
and the heated-mug/2nd trial) were defined in order to extract
the time series. One “effect of interest” F-contrast was defined for
the global mean correcting of the extracted time series. Primary
eigenvariate values were drawn from individually selected ROIs
from each subject.

Model Specification and Bayesian Model Selection
The four ROIs were then fed into separate DCMs for each
session with each subject. Six models were constructed in
order to determine the fittest in terms of connectivity. The
intrinsic connectivity was based on anatomical structure, namely
reciprocal connection between SFG-AIC, AIC-ACC, AIC-SFG,
and ACC-SFG (Cauda et al., 2011). In Model 1, we proposed
that the heated-mug situation would modulate the connectivity
from AIC to ACC. In Model 2, the heated-mug situation
would modulate the connectivity from AIC to SFG. In Model
3, the heated-mug situation would modulate all reciprocal
connectivities across the model areas. In Model 4, the heated-
mug situation would modulate the connectivities between AIC-
SFG, AIC-ACC, SFG-AIC, and ACC-AIC. In Model 5, the
heated-mug situation wouldmodulate the connectivity from SFG
toAIC. InModel 6, the heated-mug situationwouldmodulate the
connectivity from ACC to SFG.

RESULTS

Behavioral Results
The ANOVA of subjective unpleasantness ratings on the stimuli
immediately after learning procedures showed main effects for
group [F(2, 51) = 17.76, p < 0.001] and stimulus [F(1, 51) =

74.24, p < 0.001]. Participants felt increased unpleasantness
toward the heated mugs relative to the non-heated mugs,
suggesting that the manipulation of fleeting experiences with
pain can be effective. In addition, there was an interaction of
group and stimulus [F(2, 51) = 17.76, p < 0.001]. Post-hoc tests
indicated that the FH group had more unpleasantness ratings to
the heated mugs than the SO (p = 0.016) and VI (p < 0.001), but
none was in the non-heated mugs.

fMRI Results
Irrespective of the stimulus, the session effect among groups [the
second session (H + N) – the first session (H + N)] indicated

significant activations in the regions implicated in emotional
awareness, perspective taking, and emotional regulation. These
included AIC, TPJ, ACC, and SFG. However, the inferior frontal
gyrus (IFG), a region belonging to the mirror neuron system,
was activated in the FH group, but not in the SO and VI.
Direct comparisons between learning groups revealed that the
FH relative to the SO exhibited a signal increase in the SFG, ACC,
and posterior cingulate cortex (PCC). When compared with the
VI, the FH group showed stronger signals in the ACC, SFG,
mPFC, IFG, and AIC, whereas the SO was associated with signal
changes in the SFG, ACC, and mPFC (Table S1).

Irrespective of the session, the stimulus effect among groups
[the (first + second) session H – the (first + second) session N]
showed activations in the ACC, precentral gyrus, and SI/II. Direct
comparisons among groups revealed that the FH group, relative
to the SO, showed increased activations in the left precentral
gyrus, right IFG, and left TPJ, whereas weaker activations were
observed in the midbrain and left superior temporal gyrus. When
compared with the VI group, the FH group showed stronger
activations in the SI/II, TPJ, and AIC, whereas the SO was
associated with a signal increase in the SI/II, precentral gyrus,
ACC, and SFG. In particular, the VI group, relative to the FH
group, showed stronger activations in the SFG, PCC, precentral
gyrus, and thalamus. The VI relative to the SO did not reveal any
significant activation (Table S2).

When the session-by-stimulus interaction [the second session
(H – N) – the first session (H – N)] were explored, participants
from the SO group, as well as the FH and VI groups, exhibited
significant activations in the regions implicated in emotional
awareness, mentalizing/perspective taking, emotional regulation,
and memory/learning (Figure 2). These included the AIC, ACC,
TPJ, SFG, and hippocampus. However, the amygdala activation
was detected only in the FH group. Furthermore, the SI/II was
activated in the FH and SO groups, but not in the VI. Direct
comparisons among groups revealed that the FH group, relative
to the SO, showed increased activation in the left SI/II and SFG,
whereas the reverse comparison revealed significant activations
in the left precuneus and right TPJ. When compared with the VI
group, the FH group showed stronger activations in the bilateral
TPJ, left SI/II, right IFG, right AIC, and right hippocampus,
whereas the SO group were associated with stronger signals in
the right-lateralized areas, including the SI/II, TPJ, AIC, SFG, and
hippocampus. In contrast, the VI group, relative to the FH or SO
group, showed no significant activation.

To assess the commonalities among three learning groups, a
conjunction analysis on the session-by-stimulus interaction [the
second session (H – N) – the first session (H – N)] reavealed
overlapping activations in the right medial prefrontal cortex
(mPFC), left SFG, TPJ, ACC, and AIC (Tables S3, S4).

ROI Analysis
ANOVAs on selected ROIs were reported to have significant
group-by-session and stimulus interactions in the left SI/II,
amygdala, and SFG, but none in the AIC and ACC. Post-hoc
tests indicated that the FH relative to the SO had stronger
activations in the SI/II and SFG. In comparison with the VI,
the FH showed more activation in the SI/II, amygdala, and SFG,
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FIGURE 2 | Hemodynamic responses to the session-by-stimulus interaction among the three learning group: [the second session (H – N) – the first

session (H – N)]. Participants from the SO, FH, and VI groups exhibited significant activations in the anterior insular cortex (AIC), ACC (anterior cingulate cortex),

temporoparietal junction (TPJ), superior frontal gyrus (SFG), and hippocampus. The amygdala was activated only in the FH group.

whereas the SO showed stronger activations in the SI/II (please
see Supplementary Materials for the statistical details).

Effective Connectivity
Bayesian model selection (BMS) was carried out with random
effect using standard procedures (Penny et al., 2010). Based on
BMS (Figure 3), the expected posterior probabilities for models
1-6 were 0.14, 0.66, 0.0088, 0.0057, 0.0055, and 0.18 for the FH;
0.054, 0.68, 0.011, 0.0035, 0.00061, and 0.21 for the SO; and
0.10, 0.58, 0.022, 0.0048, 0.023, and 0.27 for the VI. The model
exceedance probabilities were 0.014, 0.78, 0.0058, 0.010, 0.0008,
and 0.19 for the FH; 0.01, 0.71, 0.00013, 0.00087, 0.029, and 0.25
for the SO; and 0.017, 0.64, 0.009, 0.0009, 0.023, and 0.31 for the
VI.

Model 2 was superior to the other models among all three
learning groups, suggesting, that learning experience exerted its
modulatory effect through the connectivity from AIC to SFG.
We conducted a one-way ANOVA to compare the AIC-SFG
connectivity strength among three learning groups during the
second fMRI session. The results indicated that the SO group had
less connectivity strength than did the FH (p = 0.016). Moreover,
the FH and SO groups had more connectivity strength than did
the VI (p < 0.001; p = 0.042; Figure 4).

DISCUSSION

Although social neuroscience focused attention on the neural
underpinnings of pain empathy, little is known about the roles
of social learning whereby an individual can acquire and learn

feelings of concern for others who suffer in the real world. We
investigated various types of aversive learning after fleeting pain
and elucidate the neural mechanisms involved in human social
learning.

Using a realistic paradigm, we demonstrated that various
learning procedures of pain produce similar neural responses.
Essentially, both the exploratory and confirmatory analyses
indicated that the AIC plays a critical role among three learning
procedures. In addition, each procedure recruited other non-
overlapping neural regions. These differential activations seem
related to distinct functional processes that occur during the FH,
SO, and VI acquisition (Olsson and Phelps, 2004). The amygdala
was only activated in FH learning. Participants undergoing SO
learning exhibited brain activations in the affective component
of pain, which was similar to people learning through FH, but
demonstrated weaker activation in the sensory discrimination
of the pain matrix. Nevertheless, VI learning indicated less
activation and fewer connections in neural substrates of pain
processing.

The SO learning exhibited compatible neural activations
in regions implicated in emotional awareness/understanding,
memory, perspective taking, and emotional regulation. The
shared neural representations of an individual’s emotional
experience and perception of the corresponding emotion in
another individual are critical to emotional understanding and
to empathizing with others (Preston and de Waal, 2002; Gallese
et al., 2004). Numerous studies have indicated that the AIC
and ACC encode the affective-motivational aspects of pain
(Peyron et al., 2000; Critchley et al., 2005) particularly when
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FIGURE 3 | Outline of the six DCMmodels tested in this study. DCM was constructed on the superior temporal sulcus (STS), anterior insular cortex (AIC), anterior

cingulate cortex (ACC), and superior frontal gyrus (SFG). The heated-mug situation was proposed to modulate the AIC-ACC connectivity in Model 1, the AIC-SFG

connectivity in Model 2, and all reciprocal connectivities in Model 3. Model 4 proposed that the heated-mug situation would modulate the AIC-SFG, AIC-ACC,

SFG-AIC, and ACC-AIC connectivities. The heated-mug situation would modulate the SFG-AIC connectivity in Model 5 and the ACC-SFG connectivity in Model 6.

people observe another person’s pain (Singer et al., 2004; Cheng
et al., 2010). One fMRI study on observational fear conditioning
reported activation in both the ACC and AIC during observation
of another person receiving shocks paired with a conditioned
stimulus, and also when the person being expected to receive
shocks accompanying the same stimulus (Olsson et al., 2007).
Ploghaus et al. (1999) used the cue-based paradigm and reported
that the hemodynamic responses in the ACC and AIC responded
to a colored light signaling pain, but not to a color signaling
warmth. Understanding the circumstances, that cause distress in
another individual involves taking the other person’s perspective,
which can trigger empathic responses in the observer (Olsson
and Phelps, 2007). In animals, fear can be acquired through
social observation of others suffering from aversive stimuli (John
et al., 1968; Mineka et al., 1984; Kavaliers et al., 2001). When
lidocaine was injected into the ACC, observer mice showed
impaired observational fear learning compared with control mice
(Jeon et al., 2010). Here, the AIC-SFG connectivity yielded better
causal inference than did other connections after three learning
procedures. These results supported the notion that the AIC and
ACC play a crucial role in social learning.

In spite, of distinct neural activation patterns, VI learning
could engage similar neural mechanisms to those evoked by
direct experience and by indirect social observation. Similarly to

FH and SO, VI learning elicited hemodynamic responses in brain
regions associated with the pain system, but these activations
showed a left-lateralized tendency. Learning based on language
depends on awareness (Phelps et al., 2001; Olsson and Phelps,
2004), likely involving more explicit representations (Olsson and
Phelps 2007). The difference in laterality of brain activation
might reflect the extent to which participants elaborated and
interpreted the representation elicited by aversive stimuli (Phelps
et al., 2001). Moreover, the VI relative to FH and SO evoked
weaker hemodynamic responses in the SI/II, AIC, and SFG. The
neural connectivity from AIC to SFG was weaker than those
from the other learning procedures. Learning through FH and
SO can immediately elicit a negative representation that are
not dependent on higher cortical awareness, whereas aversive
learning through a verbal route, during which participants must
generate a mental representation of the aversive event, does not
exist in the immediate context (Phelps et al., 2001). Accordingly,
the results suggested that learning acquired through linguistic
inputs, requiring more abstract representations, relies on a neural
network distinct from the other learning forms.

The SO and VI groups exhibited less activation in the left SI/II
and SFG than did the FH. The FH participants were required
to touch the mugs with their own hands. Neurophysiological
evidence for nociceptive information processing indicates the
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FIGURE 4 | DCM results demonstrate the connectivity strength from anterior insular cortex (AIC) to superior frontal gyrus (SFG) among three learning

groups during the second fMRI session. Error bars represent standard errors.

involvement of SI/II (Decety, 2007; Liang et al., 2011).
During FH, SI/II representation might be primed by directly
experiencing actual pain. Alternatively, SI/II representation
might be primed by the observation of another individual’s
emotional display or by abstract instruction during SO and VI
learning (Olsson and Phelps, 2007). The SO and VI relative
to the FH group did not elicit comparable SI/II activation.
The regulation of internal emotional states and processes is
particularly relevant to the modulation of vicarious emotion
and the experience of empathy (Decety, 2011b). The SFG has
been previously linked to the self-regulation of emotions (Cheng
et al., 2007; Decety, 2007). Our results demonstrated, that the
SFG was involved in the SO and VI, but less activated than
in the FH. Based on the modulatory effects on the DCM, the
SO, and VI exhibited weaker connectivity from AIC to SFG.
Accordingly, we assumed that the SFG activation is modulated by
the neural connections through a bottom-up mechanism, which
affects regulatory processing during social transmission learning.

The major discrepancy between our results and previous
reports (Phelps et al., 2001; Olsson and Phelps, 2004, 2007)
was the absence of amygdala activation among various learning
procedures. Recent animal studies have reported that a single
pairing of a light with a weak shock primes future learning, so
that a second trial would result in the formation of a long-lasting
memory (Parsons and Davis, 2012). We used the picture-based
paradigm based on fleeting exposure to aversive stimuli, rather

than repeated CS-US associations where it is likely that the
same stimulus predicts the same outcome repeatedly. In the
learning model, emotional expressions served as an US and its
co-occurrence with the colored squares (CS) was made directly
self-relevant to the subject because of its stability to predict
future potentially harmful events. The motivation to understand
potentially harmful qualities in the surroundings might trigger
fear-learning mechanisms, which are known to depend on the
amygdala (Phelps and LeDoux, 2005). Furthermore, the neuronal
basis of behaviors must consider the connectivity characteristics
of functional networks (Passingham et al., 2002). The DCM is
considered to be able to assess effective connectivity between
brain regions, which can estimate the coupling among brain
regions and facilitate the exploration of experimental condition-
specific influences of these couplings (Friston et al., 2003). This
study combining exploratory and confirmatory analyses can
provide more favorable and clear-cut neural evidence in relation
to aversive learning.

The limitations of the present study must be acknowledged.
Firstly, regarding sample homogeneity, the generalizability of
the results may be limited because participants were only
females. The experimenter was always a male. The visual stimuli
included both male and female actors. Despite, of no statistical
significance for the same-gender (female participants/female
actors) and opposite-gender (female participants/male actors)
interactions in terms of unpleasantness ratings and neuroimaging
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results, the potential interference of the gender factor in social
learning needs to be further clarified. Secondly, only young
adults were enrolled. Aging is associated with changes in the
neural circuits underlying learning systems and empathy (Dennis
and Cabeza, 2011; Chen et al., 2014). Finally, a sample size of
only 19 women rendered this study underpowered to detect
a statistically significant change. This may not be the optimal
design, and future studies in which recruit a larger sample
size with female and male subjects across all age groups are
warranted.

CONCLUSION

Our results revealed the neural mechanisms involved in learning
from fleeting pain. Although numerous similarities among
the FH, SO, and VI learning emerged, obvious differences
were also observed. Social learning elicits distinct neural
responses from associative learning. The AIC, a region being
a critical hub to integrate salient stimuli and events with
visceral and autonomic information (Menon and Uddin, 2010),
played a pivotal role in emotional learning. The ontogeny
of human empathy could be better understood with learning
from fleeting experience with pain. Our findings might benefit
future studies exploring the pathological mechanisms associated
with socioemotional disturbances and assist with improving

knowledge in the area of social transmission of emotional
learning.
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