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Abstract

A multilevel latent class model (MLCM) is a useful tool for analyzing data arising from
hierarchically nested structures. One important issue for MLCMs is determining the
minimum sample sizes needed to obtain reliable and unbiased results. In this simula-
tion study, the sample sizes required for MLCMs were investigated under various
conditions. A series of design factors, including sample sizes at two levels, the dis-
tinctness and the complexity of the latent structure, and the number of indicators
were manipulated. The results revealed that larger samples are required when the
latent classes are less distinct and more complex with fewer indicators. This study
also provides recommendations about the minimum required sample sizes that satis-
fied all four criteria—model selection accuracy, parameter estimation bias, standard
error bias, and coverage rate—as well as rules of thumb for sample size requirements
when applying MLCMs in data analysis.

Keywords

latent class models, multilevel modeling, sample size

Latent class models (LCMs; Goodman, 1974; Lazarsfeld & Henry, 1968) are a stan-

dard research tool in many fields—such as sociology, psychology, education, market-

ing, and medicine—in which observations are often nested within higher level units.

Over the past decade, researchers have extended LCMs to analyze data arising from

hierarchically nested structures (e.g., Asparouhov & Muthén, 2008; Di & Bandeen-

Roche, 2008; Henry & Muthén, 2010; Varriale & Vermunt, 2012; Vermunt, 2003,
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2004; Vermunt & Magidson, 2008). The multilevel latent class model (MLCM;

Vermunt, 2003, 2004) is an extension of the LCM that incorporates possible depen-

dency on data because of the multilevel structure where individuals are nested within

a group. A number of LCMs also have been introduced to deal with other multilevel

data structures, such as the measurement occasions nested within individuals (Chung,

Anthony, & Schafer, 2011) or the three-level hierarchical structure (Bartolucci,

Pennoni, & Vittadini, 2011; Palardy & Vermunt, 2010).

One common feature of these extensions is the use of random effects to capture

the dependency due to multilevel structures. The incorporation of random effects into

LCMs enables researchers to evaluate the effects of clustering or repeated sampling

and to disentangle them from the lower level. Several researchers have discussed the

various specifications of random effects. For example, Vermunt (2003, 2004) pro-

posed continuous random effects originating from a normal distribution (i.e., a para-

metric MLCM), while Hedeker (2003) and Asparouhov and Muthén (2008)

introduced the factor analytic approach, which includes a common factor in the para-

metric MLCM to reduce the dimensionality of continuous random effects.

Furthermore, Di and Bandeen-Roche (2011) proposed a random effect following the

Dirichlet distribution. The specification of random effects in MLCMs was discussed

in more detail by Finch and French (2013) and Henry and Muthén (2010).

Despite such various extensions of the LCM, the focus of this study is the MLCM

with a nonparametric specification (Aitkin, 1999; Laird, 1978). The nonparametric

version of the MLCM includes a discrete random effect at the higher level. The dis-

crete higher level random effect in this model is represented by a finite number of

latent classes, relying on the assumption that each higher level unit is assigned to one

of the higher level latent classes. Thus, the key feature of the nonparametric MLCM

is providing classification information for both higher level and lower level units

(e.g., Bassi, 2009; Bijmolt, Paas, & Vermunt, 2004; da Costa & Dias, 2014; Finch &

Marchant, 2013; Onwezen et al., 2012; Pirani, 2011; Rindskopf, 2006; Rüdiger &

Hans-Dieter, 2013). Moreover, the nonparametric MLCM does not involve unverifi-

able distributional assumptions regarding the random effects (Aitkin, 1999) and is

computationally less intensive than the parametric approach (Rights & Sterba, 2016;

Vermunt, 2004). Several measures can be used to decide whether a higher level class

structure should be incorporated in analyses using a nonparametric MLCM, such as

the pseudo–intraclass correlation coefficient (ICC)—the ratio of the higher level class

variance to the sum of class variances at both higher and lower levels (Rights &

Sterba, 2016)—and R-square entropy—the index representing the degree of latent

class separation for a given mixture model (Ramaswamy, DeSarbo, Reibstein, &

Robinson, 1993).

When designing a study, one common question is ‘‘What sample size do I need?’’

Unfortunately, there is no standard or simple answer to this question. The answer

depends on many factors, including the purpose of the study, the type of model used

in the analyses, data characteristics, expected power, population size, and cost and

resource considerations. For researchers using highly complex mixture models such
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as the MLCM, this question is even more important, because the maximum likeli-

hood estimation methods used to estimate parameters are asymptotic, meaning prop-

erties of the estimates rely on the assumption that the sample size is sufficiently

large. Therefore, the minimum sample size requirement becomes a crucial question

in empirical applications to obtain reliable and unbiased results.

Prior studies related to the statistical inference regarding the number of latent

classes often provide some insights about sample size requirements for single-level

LCMs (e.g., Henson, Reise, & Kim, 2007; Nylund, Asparouhov, & Muthén, 2007;

Yang & Yang, 2007). These studies indicated that the required sample sizes could

vary depending on many factors, such as the number of indicators, the structure of

latent classes (i.e., the number of classes and structure of conditional response prob-

abilities), and the existence of covariates (Wurpts & Geiser, 2014; Yang, 2006).

Nonetheless, there is no consensus so far regarding the minimum required sample

sizes to achieve satisfactory performance in correctly identifying the number of latent

classes. For example, a simulation study by Nylund et al. (2007) showed that sample

sizes of 500 are sufficient for detecting the correct number of latent classes using the

bootstrapped likelihood ratio test (BLRT) and adjusted BIC statistics under most

simulation conditions. Conversely, Henson et al. (2007) showed that a sample size of

500 was not enough under some conditions to accurately identify the true number of

latent classes due to a lack of statistical power and high estimation error.

More recently, several studies have discussed sample size determinations to attain

a specific power level regarding the model selection test for the single-level LCM.

For example, Dziak, Lanza, and Tan (2014) studied the minimum sample sizes

required to avoid underestimating the number of latent classes when using the

BLRT. The study proposed new effect size measures using Cohen’s w (Cohen, 1998)

and the Kullback–Leibler discrepancy, and provided empirical power curves to illus-

trate the required sample sizes in LCMs. Tekle, Gudicha, and Vermunt (2016) also

performed a power analysis for the BLRT with a new computationally efficient

approach to determine required sample sizes. In addition, Gudicha, Tekle, and

Vermunt (2016) presented power and sample size computations using the Wald test

for LCM parameters.

Several studies have investigated similar topics with other mixture models. For

example, Kim (2012) conducted a simulation study to investigate the sample size

requirement for the growth mixture model, and Tein, Coxe, and Cham (2013)

explored the statistical power of various statistical tests used for determining the

number of latent classes in latent profile analysis. Moreover, Tueller and Lubke

(2011) examined a minimum sample size for structural equation mixture models,

whereas Gudicha, Schmittmann, and Vermunt (2016) conducted a power analysis on

latent Markov models to provide guidance on the required sample size and number

of measurement occasions needed to attain acceptable levels of power.

Determining sample sizes in models with multiple levels is more complicated

than it is for single-level models, mainly because the sample sizes at the higher level

(number of groups) and the lower level (number of individuals per group) should be
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considered simultaneously during a study’s design stage. Despite this difficulty, sam-

ple size requirements have been extensively studied in the context of linear mixed

models, also referred to as random effects models, hierarchical models, and multile-

vel models (Bryk & Raudenbush, 1992; Goldstein, 1995; Hox, 2010; Skrondal &

Rabe-Hesketh, 2004; Snijders & Bosker, 2012). These studies have demonstrated

that the sample size requirements for obtaining unbiased estimates are influenced by

several elements, including the magnitude of the ICC, the scale of the dependent

variables (i.e., binary or continuous), and the estimation methods (i.e., full maximum

likelihood, restricted maximum likelihood or Bayesian estimation methods; Browne

& Draper, 2006; Moineddin, Matheson, & Glazier, 2007; Maas & Hox, 2005;

McNeish & Stapleton, 2016). Although there is no widely accepted minimum sample

size to ensure unbiased estimates, findings from the results of the simulation studies

provided some general guidelines. For example, Kreft (1996) suggested the ‘‘30/30

rule’’: If researchers are interested in the fixed effects, they should strive for a sam-

ple of at least 30 groups with at least 30 individuals per group. Hox (2010) advocated

for 50 groups and 20 individuals per group—or 100 groups and 10 individuals per

cluster—for situations in which the model of interest involves random effects. More

recently, Snijders and Bosker (2012) indicated that a minimum of 20 groups is suffi-

cient to run linear mixed models.

Simulation studies also have found that when the dependent variable is binary,

small sample sizes are more problematic than in the conditions with a continuous

dependent variable, and the sample sizes at the lower level are more important than

the sample sizes at the higher level (Austin, 2010; McNeish & Harring, 2017;

Moineddin et al., 2007). Moreover, Bayesian Markov chain Monte Carlo estimation

methods have been suggested as alternatives to overcome the problems of likelihood-

based estimation methods when the sample sizes are small (Baldwin & Fellingham,

2013; Browne & Draper, 2006; Stegmueller, 2013).

The MLCM has been demonstrated to be a useful tool in many empirical applica-

tions, such as the evaluation of interventions in group randomized trials (e.g., Kaplan

& Keller, 2011; Kaplan, Kim, & Kim, 2009; Van Horn et al., 2008) and, more

broadly, the investigation of national-level heterogeneity (e.g., Bijmolt et al., 2004;

da Costa & Dias, 2014; Pirani, 2011). Despite this wide range of applications, no

previous study has investigated the required and adequate sample sizes for fitting

MLCMs. In this study, we systematically investigate the minimum sample sizes for

fitting the MLCM within a situation in which true latent class solutions were either

known or unknown. The simulation design covered a broad range of MLCM struc-

tures by manipulating design factors (class distinctness, model complexity, and num-

ber of indicators) that are known to influence separations among classes at two

levels (Lukočiené, Varriale, & Vermunt, 2010). The sample size requirements under

various simulation conditions were then determined by using several evaluation

criteria.

Through this study, we aim to (a) evaluate the impact of varying sample sizes

according to different evaluation criteria at both the group and individual levels; (b)
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explore how design factors such as the complexity of the latent structure, distinctness

among latent classes, and number of indicators affect the sample size requirements

in an MLCM; and (c) establish recommendations and guidelines for adequate sample

size (at the individual level) when analyzing data using an MLCM.

The remainder of this article is organized as follows: First, we will introduce the

specification of the MLCM and then discuss the criteria used to evaluate appropriate

sample sizes, including model selection accuracy, parameter bias, standard error bias,

and coverage rates. Simulation studies designed to investigate appropriate sample

sizes are then provided, followed by a summary of the simulation results. Finally, the

‘‘Discussion and Conclusion’’ section provides our recommendations, examines the

limitations of this study, and offers suggestions for future research on sample size

requirements for an MLCM.

Nonparametric Multilevel Latent Class Model

The MLCM with nonparametric specification can be specified as follows: Xgi

denotes the discrete latent variables at the lower level (individuals) with M cate-

gories, and Hg is the discrete latent variable at the higher level (groups level) with L

categories. The categories or levels of discrete latent variables can be conceptualized

as latent classes at each level; these classes are internally homogenous and each class

is characterized with distinct response patterns. The terms latent clusters and latent

classes are used to denote the latent classes at the higher level and lower level in this

study, respectively.

Let Ygij be the response to the jth item of an individual i in a group g, where

g = 1, . . . , G, i = 1, . . . , ng , and j = 1, . . . , J . The vector Ygi denotes J responses for a

subject i nested in group g, and Yg represents the full vector of responses for all indi-

viduals in group g.

The standard LCM could be defined by a latent variable at individual level Xi

without consideration of group level; therefore, the density of the response of subject

i on item j is

P(Yij) =
XM
m = 1

P(Xi = m)
YJ

j = 1

P(YijjXi = m): ð1Þ

An MLCM is defined by two separate equations for the higher and lower levels.

For the higher level, the subscript i in Equation (1) is replaced by g. With these spec-

ifications, the probability of observing a response pattern for all subjects nested in

group g is

P(Yg) =
XL

l = 1

P(Hg = l)
Yng

i = 1

P(YgijHg = l): ð2Þ
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Equation (2) assumes that each group belongs to only one l (latent cluster), and

the conditional densities for each of the individuals (ng) within the group (g) are inde-

pendent of each other given the latent cluster membership. The first term, P(Hg = l)

(called latent cluster probability), is represented by a vector, with each element rep-

resenting the probabilities of g being present in the cluster l (l = 1, . . . , L). Since the

latent clusters are assumed to be mutually exclusive and exhaustive, the elements of

this vector can be conceptualized as cluster sizes and, thus, the sum of this vector

equals 1.

At the individual level, the probability of obtaining a certain response pattern for

each subject is

P(YgijHg = l) =
XM
m = 1

P(Xgi = mjHg = l)
YJ

j = 1

f (YgijjXgi = m): ð3Þ

By combining Equations (2) and (3) with the assumptions of local independence, the

MLCM becomes

P(Yg) =
XL

l = 1

P(Hg = l)
Yng

i = 1

XM
m = 1

P(Xgi = mjHg = l)
YJ

j = 1

f (YgijjXgi = m)

 !
: ð4Þ

The term P(Xgi = mjHg = l) is the conditional latent class probability, which repre-

sents the distribution of latent class probabilities within a particular latent cluster. The

conditional latent class probability can be parameterized as follows:

P(Xgi = mjHg = l) =
exp (glm)PM

m = 1

exp (glm)

: ð5Þ

Note that that g0ml can be rewritten as gm = gm + ulm, where discrete random variable

ulm does not assume any distributional assumption, but it varies across lower level

classes while capturing the differences between the L classes at level 2 (Bijmolt et

al., 2004; Henry & Muthén, 2010). Additional covariates at both the higher and lower

levels can be included to facilitate the identification of the lower level classes and to

predict class memberships (Henry & Muthén, 2010; Vermunt, 2003).

The term, f (YgijjXgi = m), is called the conditional response density, it is the prob-

ability of observing a particular response on variable j for individual i in group g

given latent class membership (m). The conditional response density can have the

various forms of distributions depending on the assumed characteristics of responses.

If the response vector Ygi = (Ygi1, Ygi2, . . . , YgiJ )T consists of J binary indicators, then

the mth latent class density is given by f (YgijjXgi = m) = r
Ygij

mj (1� rmj)
1�Ygij , where rmj

presents the probability of endorsing item j for an individual belonging to latent

class m.
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The parameters of the MLCM can be estimated using the maximum likelihood

(ML) method. The likelihood function is based on the probability density for the data

of the higher level unit; and the log-likelihood to be maximized equals

log L =
XG

g = 1

logP(YgjZg): ð6Þ

A modified expectation–maximization algorithm obtains the ML estimates of the

model parameters. The E-step modified by Vermunt (2003) is called the upward–

downward procedure, which makes use of the conditional independence assump-

tions. Specifically, the latent variables are summed out by moving from higher to

lower level units, and the marginal posteriors are then obtained by going from lower

to higher level units. Vermunt (2003) gave the details of this algorithm.

Evaluation Criteria

The model selection accuracy and three evaluation criteria were considered to deter-

mine the minimum sample size requirements for MLCMs: parameter bias, standard

error bias, and coverage rates. The MLCMs with different combinations of sample

sizes were evaluated under the assumptions that the true numbers of latent classes

are either unknown or known; the first criterion is based on the assumption that the

true latent structure is unknown, whereas the other three criteria presume that the true

latent structure is known in advance.

Although power can be another consideration in determining sample sizes, we did

not include it as a criterion in this study. The main reason for this is that there is no

consensus regarding the components of power calculation in MLCMs, such as effect

size, null and alternative hypotheses, and test statistics. We also used the simulation

approach, which provides power estimates for the individual effects of interest

(Muthén & Muthén, 2002), but any specific parameter effect (whether a parameter is

significantly different from 0) was not of interest in the current study. Finally, power

cannot be calculated for parameters with population values equal to 0 (Kim, 2012);

however, some population parameters in our simulation study were very close to 0.

Model Selection Accuracy

Model selection accuracy was used as the criterion for the sample size requirement.

The model selection task in the MLCM is to determine the number of latent classes at

both the higher and lower levels. Two approaches were suggested to choose the opti-

mal number of latent classes at multiple levels: the stepwise approach (Lukočiené

et al., 2010; Lukočiené & Vermunt, 2010) and the simultaneous approach (Bijmolt

et al., 2004). The first approach sequentially identifies the number of classes at each

level in an iterative fashion, while the latter chooses the number of discrete compo-

nents at two levels simultaneously. Previous studies have shown that the stepwise
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approach and the simultaneous approach performed equally well in identifying the

correct number of latent classes at two levels (Lukočiené et al., 2010; Yu & Park,

2014).

The most common and well-known methods for model selection in an MLCM are

likelihood-based information criteria (IC). The IC measure the relative goodness of

fit by finding a balance between model fit (the log-likelihood value) and model com-

plexity (the number of parameters). Thus, the lowest value of a given IC indicates

the best-fitting model (Nylund et al., 2007). Among many IC, the Bayesian informa-

tion criterion (BIC; Schwarz, 1978) has been suggested as a standard criterion for

identifying the number of latent classes in the MLCM with both stepwise and simul-

taneous approaches even with small sample sizes (Lukočiené et al., 2010; Yu &

Park, 2014). The results of prior simulation studies also showed that using the num-

ber of groups as the penalty term leads to better performance than total sample size

in the BIC (Lukočiené et al., 2010; Yu & Park, 2014). This is because the penalty

using total sample size is too harsh for the BIC and leads to poorer performance

when deciding the number of latent classes at both levels.

In the present study, the model selection accuracy was assessed by the percentages

of simulation replications in which both the number of lower and higher level classes

were correctly recovered simultaneously by the BIC with the number of groups as the

sample size in the penalty term. For each replication, the model with the lowest BIC

value was chosen as the best-fitting model. The percentage of replications correctly

identifying the true model by the BIC was calculated.

The obtained percentages were then observed to determine the minimum sample

sizes for correctly recovering the true number of latent classes when the true latent

structure is unknown. The acceptable recovery rate was set at 80%, which corre-

sponds to the acceptable power level in sample size studies; however, the percen-

tages of correctly recovered latent classes by the IC cannot be exactly interpreted as

‘‘power’’ because the IC are not intended to conduct statistical tests with null and

alternative hypotheses (Dziak et al., 2014).

Parameter Estimate Bias

The bias of parameter estimates is used to assess estimated parameter accuracy in

simulation studies. In practice, the true population parameters can rarely be obtained

from a sample. Therefore, one important task in a simulation study is to evaluate the

precision of estimated model parameters based on samples obtained under ideal sam-

pling conditions and with knowledge of the true parameters.

The relative percentage bias (RPB) of a parameter estimate was used to quantify

the size of the parameter bias. The RPBs of three parameters—P(Hg), P(XgijHg), and

P(YgijjXgi)—were calculated by subtracting the population value from averaged para-

meter estimates over replications and dividing by the population value

(½(û� u=u)�3100) (Muthén & Muthén, 2002). The obtained RPBs were averaged
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over all three parameters to present the overall level of precision for parameter

estimates.

Standard Error Bias

The second criterion is standard error bias. This criterion is important because it

directly relates to the accuracy of statistical decisions, that is, an underestimated stan-

dard error increases the risk of a Type I error, while an inflated Type II error is likely

to occur when the standard error is overestimated.

The standard error bias is based on the central limit theorem, which proposes that

when a population is repeatedly sampled the average sample statistic gradually

approaches the true population value, and the standard deviation of the samples

approximates the standard error associated with population parameters (Muthén &

Muthén, 2002). Based on this theorem, the standard deviation of each parameter esti-

mate over simulation replications is considered the population standard error.

The RPB of standard error was calculated in a way similar to the aforementioned

parameter bias by subtracting the true value (the calculated standard deviation of

each parameter estimate) from the estimate (the estimated standard error of each

parameter) and dividing by the true value. The RPBs of three parameters were then

averaged over simulation replications. In this study, RPB values of 10% or less were

considered acceptable, following recommendations by Muthén and Muthén (2002).

Coverage Rates

The third evaluation criterion is coverage rates, which serve as another assessment of

parameter estimates and their standard error. This criterion examines whether the

95% confidence interval for each parameter contains the true parameter value. When

the MLCM fits well with sufficient sample sizes, the confidence interval will include

the true population values in most simulation replications. The coverage rates refer

to the observed proportion of those replications in which the population value is con-

tained within confidence intervals.

In this study, the coverage rates were calculated by assuming the indicator variable

for each parameter over simulation replications. The indicator variable was coded as

1 when an estimated parameter was within the 95% confidence interval (coveraged);

however, when the estimated parameter was outside the interval (noncoveraged), the

indicator variable was set to 0. The acceptable coverage rates include the population

value of more than 90% of the simulated data.

Simulation Study

Design Factors

A simulation study was designed to investigate sample size requirements when fitting

the MLCM. Because the primary interest of the present study is placed on sample
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sizes at two levels, the number of units at the higher (group) and lower (individual)

levels were varied systematically. Six levels of higher level sample sizes (the number

of groups, G)—10, 20, 25, 30, 50, and 100—and eight levels of lower level sample

sizes (the number of individuals per group, ng) including 5, 10, 20, 30, 40, 50, 75, and

100 were considered. The specification of two factors resulted in 48 different sample

size patterns with total sample sizes ranging from 50 to 100,000. These values were

chosen to cover a wide range of empirical research settings from experiments of small

group designs (e.g., Van Horn et al., 2008) to large-scale survey studies (e.g., Bijmolt

et al., 2004; da Costa & Dias, 2014).

Three factors that are expected to affect required sample sizes in the context of an

MLCM (Finch & French, 2013; Lukočiené et al., 2010) were also manipulated: (a)

the complexity of the latent structure, (b) the distinctness of latent clusters and

classes, and (c) the number of indicators. The complexity of the latent structure was

defined by the number of latent clusters and classes at the higher and lower levels.

Two levels of latent structure complexity were considered; the latent structure with

two clusters and two classes represented the less complex scenario, whereas the

latent structure with three clusters and three classes was chosen to represent the more

complex scenario. These two scenarios are referred to as high and low complexity in

terms of the latent structure and are denoted as CH and CL.

The second design factor was the extent to which the clusters and classes were dis-

tinct from others. Two levels of cluster/class distinctness were considered: high-

distinct conditions and low-distinct conditions, which are denoted as DH and DL,

respectively. These two conditions differed in the values of the conditional latent

class probabilities, P(Xig = mjHg = l), and the conditional response probabilities,

P(YijjXi = m). For high-distinct conditions, the population values of parameters dif-

fered greatly among the clusters as well as classes. The larger difference in popula-

tion values led to more distinguishable clusters and classes, therefore inducing more

separated latent clusters and classes. For example, in the case of CL (two clusters and

two classes), the conditional latent class probabilities were .8 and .2 under the high-

distinct condition, while the probabilities were .65 and .35 under the low-distinct con-

dition. Similarly, the conditional response probabilities for all indicators in classes

with high-distinct conditions were .8 in one class and .2 in another, while the condi-

tional response probabilities for all indicators were .7 and .3 with low-distinct condi-

tions. The number of items in the simulation was set at either 6 or 12 (denoted as J6

and J12).

Note that the separation among latent clusters and classes was manipulated by the

aforementioned factors (Lukočiené et al., 2010). Other factors that may influence

cluster and class separation were fixed in the simulation design, according to other

simulation studies for MLCMs (Lukočiené et al., 2010; Yu & Park, 2014). The latent

cluster probabilities (i.e., the size of the latent clusters) were assumed to be homoge-

neous among latent clusters, and the number of categories of the indicators was fixed

to two (i.e., binary indicators).
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The specification of the five manipulated factors and population values for the

parameters are presented in Table 1. The specification of these factors has been cho-

sen to cover a wide array of MLCM structures, ranging from highly separated to

poorly separated clusters and classes. To ensure that our simulation design covers

various MLCM structures, the levels of separation among clusters and classes were

evaluated using the R2 entropy index1 (Ramaswamy et al., 1993). This index mea-

sures the uniqueness of discrete latent components based on their posterior probabil-

ities; values close to 1 indicate that they are well-separated, whereas values close to

0 suggest that they are not distinguishable.

The specifications of the design resulted in the R2
entropy:high ranging from 0.01 to 1

and the R2
entropy:low ranging from 0.01 to 1. The average R2

entropy:high and R2
entropy:low

across all conditions were 0.70 (SD = 0.31) and 0.66 (SD = 0.24), respectively. The

average values of the two indices were slightly lower than those in the previous simu-

lation study by Lukočiené et al. (2010).

Data Generation and Analysis

The design yielded 384 (6 3 8 3 2 3 2 3 2) simulation conditions by crossing the

five manipulated factors as previously described. Based on the parameter specifica-

tion in Table 1, 500 data sets were generated using the routine of the random number

generator in R 3.1.1 software (R Development Core Team, 2010). The simulated data

set was then fitted to the five models with different latent class structures (single-level

LCMs with two and three classes; MLCMs with two clusters/two classes, two clus-

ters/three classes, and three clusters/three classes) using the Latent GOLD 5.0 syntax

module (Vermunt & Magidson, 2013). We introduced single-level LCMs as alterna-

tive models in addition to the MLCMs to consider the misspecified model in which

Table 1. Multilevel Latent Class Model Parameter Specifications for Simulation Design.

Parameters

Complexity Distinctness P(Hg) P(XgijHg) P(YgijjXgi)

CH DH 1=2
1=2

� �
:80 :20
:20 :80

� �
:80
:20

:80
:20

:80
:20

:80
:20

:80
:20

:80
:20

� �
DL 1=2

1=2

� �
:65 :35
:35 :65

� �
:70
:30

:70
:30

:70
:30

:70
:30

:70
:30

:70
:30

� �
CL DH 1=3

1=3
1=3

2
4

3
5 :60 :20 :20

:20
:20

:60
:20

:20
:60

2
4

3
5 :80

:80
:20

:80
:80
:20

:80
:80
:20

:80
:20
:20

:80
:20
:20

:80
:20
:20

2
4

3
5

DL 1=3
1=3
1=3

2
4

3
5 :50 :25 :25

:25
:25

:50
:25

:25
:50

2
4

3
5 :70

:70
:30

:70
:70
:30

:70
:70
:30

:70
:30
:30

:70
:30
:30

:70
:30
:30

2
4

3
5

Note. The pattern for P(YgijjXgi)is doubled when J = 12.
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higher level structures were not incorporated in the models. Among the five models,

one of them was the ‘‘true model’’ from which the data were generated. The log-

likelihood values of each data set fitted to the five models were collected, and then

we compute the BIC values. The model with the lowest BIC value was considered to

be the best-fitting model, the percentage of correctly identifying the true model was

also calculated among the replications.

The parameter estimates and their standard error were also recorded for each repli-

cation to calculate the RPBs and to determine whether the 95% confidence interval

contained the specified population value or not. The obtained RPB and coverage rates

for each parameter were averaged across the replications to determine whether they

were within the acceptable range.

One potential issue to be considered while fitting the MLCM is label switching

(McLachlan & Peel, 2000). This problem occurs because the ordering of latent

classes and clusters is arbitrary in different iterations. Therefore, the ordering of the

estimated parameters associated with latent clusters and classes may not be identical

across data sets. To avoid the label switching, the estimated parameters were rotated

back to a standard parameter order. This procedure was done by calculating the

means for each parameter and rounding them to the first decimal point; according to

the means, they were then rematched and rotated back to the same order. This proce-

dure ensured that the parameter estimates across different data sets were in the same

order for comparisons.

Simulation Results

Among the 192,000 (6 3 8 3 2 3 2 3 2 3 500) replications, 164 replications

(0.001%) produced a convergence problem. These problems were found mostly

under the conditions of a highly complex latent structure (CH) with the smallest sam-

ple sizes (ng = 5 and G = 10). Any replication with the convergence problem was

excluded from the analysis; thus, a total of 191,836 replications were included in the

following analyses.

The averaged RPB and coverage rates of three MLCM parameters (i.e., latent

cluster probability, conditional latent class probability, and conditional response

probability) were evaluated to understand the effects of design factors in terms of the

evaluation criteria.

Model Selection Accuracy

The percentage of accurately identifying the true model using the BIC is used to

evaluate the model selection accuracy. The percentage of correctly identifying the

true model was 62.5% across all simulation conditions. The detailed patterns showed

that the BIC performed well in determining the correct number of latent classes and

clusters under DH and CL conditions. Under DL and CH conditions, in contrast, the

BIC was likely to underestimate the number of clusters and classes, particularly,
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when sample sizes were small. The reason such underestimation occurred was that

the BIC penalized the complexity of the model (additional estimated model para-

meters) severely in situations where small sample sizes were combined with low-

distinct conditions and more complex latent structures.

Figure 1 exhibits the average model selection accuracy rates under the different

levels of the three design factors. All figures feature the value of the average accuracy

Figure 1. Average model selection accuracy rates across the 48 patterns of sample sizes and
different levels of three design factors.
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rates on the y-axis and the change of ng on the x-axis, which is spaced according to its

size. As shown in the top panel of Figure 1, the average accuracy rates under the DH

condition (M = 87.64, SD = 19.28) were much higher than those under the DL condi-

tion (M = 45.31, SD = 36.05). This pattern indicates that a greater degree of distinct-

ness among clusters/classes provides better accuracy rates over poorer distinctness

under most sample size conditions. The accuracy rate under the DL condition with

the smallest ng (ng = 5) was particularly low, showing nearly 0% of recovery rates (M

= 0.75), while the average accuracy rate with the same ng was 33.5% under the DH

condition.

The middle panel of Figure 1 presents the model selection accuracy rates under

the two levels of model complexity. The results showed that the accuracy rate under

the CL condition was, on average, 75.97% (SD = 19.70), whereas the rate under the

CH condition was 56.98% (SD = 32.32). The accuracy rates clearly increased as the

G and ng increased under both conditions, but this pattern was more prominent under

the CH condition. One notable pattern was that when there was a sufficient ng (ng =

100), the accuracy rates under the CL condition with small G (G = 10) were relatively

lower than those under the CH condition.

The bottom panel of Figure 1 exhibits the accuracy rates under the two different

numbers of indicators. The results showed that slightly lower accuracy rates were

observed under the condition of fewer indictors (J6) (M = 61.82, SD = 25.08) than

under the condition of more indicators (J12) (M = 71.13, SD = 26.82). In particular,

the accuracy rates reached almost 100% under the J12 condition when ng was larger

than 75 (ng . 75) except for the smallest G (G = 10), but a similar level of accuracy

rates could not be achieved under the J6 condition even with the largest ng (ng = 100).

Parameter Estimate Bias

The average RPBs of parameter estimates under the two conditions of cluster/class

distinctness are presented in the top panel of Figure 2. As the figure shows, the para-

meter estimates under the DH condition (M = 9.26, SD = 5.15) were slightly less

biased than the DL condition (M = 11.02, SD = 4.92) in general.

The results also showed that the RPBs under the DH condition were considerably

lower than those under the DL condition, particularly when ng was smaller than 40

(ng \ 40). For instance, when ng was 20 (ng = 20), the average RPB over all of G was

9.18 (SD = 4.45) under the DH condition, while the average value under the DL condi-

tion was 12.60 (SD = 5.54). Furthermore, the RPBs clearly decreased as G increased

under both conditions; however, the decreasing pattern was particularly prominent

under the DH condition with small ng (ng \ 30).

The middle panel of Figure 2 illustrates the RPBs of parameter estimates under

the two conditions of model complexity. In general, higher RPBs were consistently

found under the CH condition (M = 12.94, SD = 6.21) rather than the CL condition

(M = 7.35, SD = 3.81) across all the sample size conditions. The results also revealed

that a drastically larger bias was found under the CH condition, particularly when ng
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was smaller than 20; the average RPB in such cases was 21.13 (SD = 5.24) under the

CH condition, while that under the CL condition was 12.26 (SD = 3.42).

The bottom panel of Figure 2 displays the RPBs of parameter estimates under the

two different conditions of the number of indicators. Overall, a similar pattern was

found between the two conditions; the average RPB under the J6 condition was 11.02

(SD = 5.32), and that under the J12 condition was 10.26 (SD = 4.63). Even with simi-

lar RPB patterns between two conditions, the J6 condition required slightly larger

Figure 2. Average relative percentage bias (RPB) of parameter bias across the 48 patterns
of sample sizes and different levels of three design factors.
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samples than the J12 condition; the results suggest that an ng of 75 was sufficient to

reach the criterion under the J12 condition with any group size, while the J6 condition

needed the largest ng (ng = 100) to satisfy the criterion.

Standard Error Bias

The top panel of Figure 3 shows the RPBs of the standard error under the two levels

of cluster and class distinctness. Largely biased standard errors were found under

Figure 3. Average relative percentage bias (RPB) of standard error across the 48 patterns of
sample sizes and different levels of three design factors.
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both conditions when the sample sizes were smallest (ng = 5 and G = 10); the aver-

age RPB was 42.90 under the DH condition and 93.20 under the DL condition. The

RPBs decreased as G and (or) ng increased, with the decreasing trend being relatively

stronger under the DL condition. Moreover, in the cases of small ng (ng \ 20), the

RPBs decreased rapidly as the sample sizes at both levels increased; however, after

ensuring sufficient samples at both levels (ng . 20 and G . 20), adding more sam-

ples did not influence the bias of standard errors for both conditions.

The RPBs of standard error under different complexity levels are shown in the

middle panel of Figure 3. A similar overall pattern was held for the two conditions,

except when the sample sizes were smallest (ng = 5 and G = 10). In such a case, the

average RPB under the CH condition (M = 55.87) was particularly higher than that

under the CL condition (M = 55.87), and the RPBs dropped rapidly as the number of

samples increased at both levels.

The bottom panel of Figure 3 presents the RPBs of standard error under different

numbers of indicators. The results showed that there was a rapid decrease in the

RPBs as the sample sizes at both levels increased, particularly when ng was less than

20 (ng \ 20), while the decreasing pattern was less pronounced under the J12

condition.

These patterns suggest that the standard error was largely biased when ng was

small (ng \ 30), and such bias was more pronounced under less distinctive and more

complex latent cluster and class structures. However, when there was sufficient ng

(ng . 30), the standard error became stable under most conditions.

Coverage Rates

The average coverage rates under the two conditions of cluster and class distinctness

are presented in the top panel of Figure 4. The overall coverage rates under the two

conditions were within the acceptable range; however, the coverage rates under the

DH condition (M = 92.89, SD = 2.07) were slightly higher than those under the DL

condition (M = 91.03, SD = 2.06).

The results also showed that the coverage rates tended to increase as ng increased

under the DH condition. However, reversed u-shaped patterns were observed under

the DL condition, particularly when G was larger than 25. This pattern was observed

mainly because the parameter was well recovered in such conditions with an

extremely small standard error. This resulted in very narrow confidence intervals

around the sampling estimate distribution, thereby reducing the convergence rates

because of rounding errors.

Coverage rates varied according to the levels of model complexity, as shown in

the middle panel of Figure 4. Higher coverage rates were found under the CL condi-

tion (M = 93.53, SD = 1.53) than under the CH condition (M = 89.48, SD = 2.29), and

the difference between the two conditions was more prominent when ng was rela-

tively small (ng \ 30). Moreover, there was a trend of increasing coverage rates for

Park and Yu 17



both conditions as ng increased, while increased numbers of G did not result in a dra-

matic increase in the coverage rates.

As shown in the bottom panel of Figure 4, the coverage rates were lower under

the J6 condition (M = 90.48, SD = 1.97) than under the J12 condition (M = 93.53, SD

= 1.52), especially when ng was small (ng \ 20). It is notable that reversed U-shaped

patterns were also found under the J12 condition because of the small standard error

estimate.

Figure 4. Average coverage rates across the 48 patterns of sample sizes and the different
levels of three design factors.
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Recommended Sample Sizes for Applying the MLCM

In multilevel studies, the problems related to sample sizes often occur at the group

level because the higher level samples are usually smaller than the lower level sam-

ples, and increasing the number of groups may be more difficult than increasing the

number of individuals due to the costs associated with data collection (Maas & Hox,

2005). Therefore, we suggest the minimum required number of lower level samples

(ng) satisfying the four criteria in each simulation condition.

Table 2 presents the minimum ng required for each of the simulation conditions.

The results revealed that the required ng varied greatly depending on the size of G.

In general, the required ng was negatively associated to G. That is, as the number of

G increased, the required ng clearly decreased across all simulation conditions. For

example, as G increased from 10 to 100, the required ng under the CL condition

decreased from 75 to 5, whereas ng under the CH condition varied from 100 to 10.

This pattern implies that a lower number of groups can be compensated for by an

increased number of individuals within each group.

Three design factors (cluster and class distinctness, latent structure complexity,

and the number of indicators) had substantial impacts on the required sample size.

Table 2. Minimum Sample Size Requirements per Group (ng) Under the Simulation Design.

Distinctness Indicator Number of parameters G Minimum ng (CL) Minimum ng (CH)

DH 6 15/26 10 40 .100
20 20 50
25 20 40
30 10 40
50 10 20

100 10 20
12 27/44 10 30 .100

20 20 30
25 20 30
30 10 20
50 5 20

100 5 10
DL 6 15/26 10 .100 .100

20 75 100
25 75 100
30 50 100
50 40 75

100 30 50
12 27/44 10 .100 .100

20 50 75
25 40 50
30 40 50
50 30 40

100 10 30
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The results revealed that the DL condition required a considerably larger ng than the

DH condition. That is, the required ng to meet the priori criteria under the DH condi-

tion ranged from 10 to 50, while the required ng ranged from 30 to 100 under the DL

condition. Under the DL condition with the smallest G (G = 10), even the largest ng

(ng = 100) could not satisfy all the criteria regardless of other factors, which implies

that ng needed to be more than 100 under this condition.

The sample size requirements for the CL condition satisfying all criteria were gen-

erally less than those under the CH condition across all levels of G. The range of the

minimum required ng was 5 to 75 under the CL condition, whereas the CH condition

necessitated an ng ranging from 10 to 100. For the CH condition with the smallest G

(G = 10), the criteria could not be met even with largest ng (ng = 100), while an ng of

only 40 was sufficient to reach the criteria under the CL condition with the same

group size (G = 10) as long as the clusters and classes were distinctive enough (DH).

Table 2 also suggests that the J6 condition required larger ng to meet the criteria

than the J12 condition. According to the results, ng needed to be at least 40 under the

J6 condition with high distinctness (DH) and low-complex structure (CL), but an ng

of 30 was sufficient to meet the criteria for the J12 condition with the same levels of

distinctness and complexity.

Discussion and Conclusion

The parameters of the MLCM were estimated using the ML methods. The ML esti-

mates would converge to their population values only when the sample size was suffi-

ciently large. Therefore, knowing the minimum sample size requirement is important

to obtain unbiased and reliable parameter estimates when applying the MLCM to

empirical data analysis.

In this study, we conducted a simulation to investigate the sample size require-

ments for fitting MLCMs. We examined the effects of a series of design factors on

the sample size requirements. The results revealed that the sample size requirements

at the lower level depend heavily on the design factors, that is, smaller lower level

samples (ranging from 5 to 30) were required for conditions with high distinctness,

low-complex latent structure, and more indicators, whereas larger samples (ranging

from 50 to 100) were needed in cases with low distinctness, high-complex latent class

structure, and fewer indicators.

To determine the minimum sample size requirements for the MLCM, we consid-

ered four evaluation criteria: the accuracy of model selection, parameter estimate

bias, standard error bias, and coverage rates. The findings from the current study

related to model selection accuracy are consistent with previous studies. The results

showed that the distinctness and complexity among latent clusters and classes, as well

as the number of indicators, play a significant role in recovering the true latent struc-

ture (Lukočiené et al., 2010; Yu & Park, 2014). The findings of standard error bias

and coverage rates are also partially in line with previous studies within linear mixed

models, that is, the estimated standard error was downwardly biased (i.e., positive

20 Educational and Psychological Measurement



values in the RPB) when higher level sample sizes were small (G \ 20) (Maas &

Hox, 2005; McNeish & Stapleton, 2016). Moreover, coverage rates improved as sam-

ple sizes at both levels increased, but the rates were particularly low under the condi-

tion in which the lower level sample was very small (ng = 5) (McNeish & Harring,

2017).

We observed a clear trade-off between required sample sizes at two levels, which

also is found in linear mixed models (Maas & Hox, 2005; Scherbaum & Ferreter,

2009). Specifically, as fewer groups are available, additional lower level samples are

required to meet the evaluation criteria. This indicates that having sufficient numbers

of lower level samples partially compensates for the problems caused by a small num-

ber of groups (e.g., biases in model selection and inaccurate parameter estimations).

Therefore, if researchers are faced with a situation in which the number of available

groups is limited, increasing the number of individuals per group is beneficial.

However, some of the findings are not consistent with previous sample size works.

For example, as the number of indicators increased, the required number of sample

sizes in the MLCM decreased to some extent; however, the decreasing trends are not

as dramatic as those of other models, such as the structural equation model or growth

mixture model (Kim, 2012; Wolf, Harrington, Clark, & Miller, 2013). This result

may be due to the MLCM specification that indicators have a partial effect on only

the lower level classes. Specifically, having a greater number of indicators provides

additional information and results in better separation among the classes (Lukočiené

et al., 2010), while the higher level clusters are built based directly on classes, not

indicators. Furthermore, previous studies reported that the bias in fixed effect para-

meters was not affected by factors such as the ICC values and the number of groups

(McNeish & Harring, 2017), but the bias in the MLCM parameters is heavily associ-

ated with factors related to class structure (model complexity and class distinctness)

as well as sample sizes at both levels.

The main contribution of this study is providing rules of thumb for sample size require-

ments when applying the MLCM in data analysis. Specifically, the recommendations are

as follows: (a) at least 20 groups are needed to meet all four criteria; (b) at least 10 individ-

uals are needed per group to obtain reliable results, unless the number of groups and indi-

cators are large enough; and (c) when fitting the complex model, each group needs to

have at least 30 individuals if the number of indicators is limited. We believe that these

guidelines will significantly help researchers who are in the planning stages.

This study provided some general guidelines for sample sizes in the MLCM; how-

ever, there is one limitation. In theory, various levels of cluster and class complexity

may exist. In this study, only two representative cases were chosen: simple structure

(two clusters, each with two classes) and complex structure (three clusters, each with

three classes). Although the chosen structures reflect two different levels of complex-

ity, they may not cover all possible latent structures in practice. Future direction in

this line of research includes examining a broad array of latent structures, evaluating

the impact of insufficient sample sizes when using MLCMs, and developing indices

to quantify the dependency between higher and lower latent classes.
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