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Abstract 

 
We have designed and implemented a 

high-performance and scalable content-based web 
cluster named LVS-CWARD. The LVS-CWARD 
cluster uses a small amount of memory dedicated to 
cache a small set of most frequently accessed files and 
uses a kernel-level content-based web switch to 
distribute the HTTP requests from clients among the 
web servers. The proposed CWARD policy which 
takes into account the content of requests and 
workload characterization in request dispatching, with 
the aim to increase cluster performance by increasing 
the cache hit rates in web servers. Besides, to 
efficiently support for persistent connection, the fast 
Multiple TCP Rebuilding is proposed. Moreover, we 
propose two request scheduling algorithms to achieve 
more performance gain by more fine-grained loading 
measurement for more effective load sharing. The 
experimental results of practical implementation on 
Linux show that our proposed kernel-level web switch 
which takes into account the content in requests and 
workload information in dispatching requests is 
efficient and scales well without being the system 
bottleneck of the whole cluster. Moreover, the 
trace-driven benchmarking with the real-world 
working sets demonstrates that our proposed system 
can achieve up to 107% and 164% better performance 
respectively than the Linux Virtual Server with a 
content-blind web switch in distributing requests. 
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1. Introduction 

 
To deal with the explosive growth of the World 

Wide Web, locally distributed web-server systems are 
the most popular configuration rather than the single 
scale-up web-server systems. In the distributed 
web-server systems, the cluster-based web systems 
have been widely adopted because they are 
transparent and well balanced. A state-of-the-art 
cluster-based web system (briefly, web cluster) 
employs a web-switch called front-end which 
distributes requests from clients among the request 

handling servers called back-ends to achieve load 
sharing and scalability. 

The front-end of a web cluster could be 
classified as layer-4 or layer-7 web switch according 
to the operating layer in the OSI protocol stack. 
Basically, the layer-4 web switch dispatches the 
requests based on the IP address and TCP port, 
whereas, the layer-7 web switch could perform the 
content-aware dispatching which dispatches the 
requests in accordance with the content (i.e. URI) 
examined from the requested packets. 

Recently, more and more studies [1,2,4,6,7,8] 
focus on the content-aware dispatching and their 
results show that using the content of requests and 
loading information, a web cluster will be more 
efficient in handling all types of requests. For example, 
Aron et al. proposed a novel content-aware 
dispatching policy named LARD [7] which aims at 
optimizing the usage of the overall cluster RAM, thus 
achieving the better cache hit ratio in back-ends. 
Subsequently, Cherkasova et al. proposed the WARD 
strategy [2] which decreases the overhead incurred 
from TCP handoff [7] using LARD policy while still 
optimizing the overall cluster RAM. Besides, using 
content-aware dispatching, partitioning web contents, 
building specialized web services among web servers, 
or maintaining session integrity can be achieved. 

In our previous study, Liu and Chiang proposed 
the TCP-Rebuilding technique [6], a light-weight TCP 
connection transfer technique that enables a web 
cluster to be content-aware. TCP Rebuilding could 
rebuild the TCP connection at one request-handling 
server using only the HTTP request packet and no 
extra packets for connection transfer are required. 
Therefore, we adopt the TCP Rebuilding to construct 
the content-aware platform in this research. 

In this paper, we have designed and 
implemented a high-performance and scalable 
content-based web cluster named LVS-CWARD. The 
LVS-CWARD cluster uses a kernel-level layer-7 web 
switch and uses a small amount of memory dedicated 
to cache a small set of most frequently accessed files, 
with the aim to increase cluster performance by 
increasing the cache hit ratios in servers. We also 
propose a content-based workload-aware request 
distribution policy called CWARD, which takes 
content in requests and workload into account in 
distributing requests. Besides, to efficiently support 



for persistent connection, the fast Multiple TCP 
Rebuilding is proposed and presented. Moreover, we 
propose two request scheduling algorithms to gain 
better performance by achieving more fine-grained 
load sharing.  

The experimental results of practical 
implementation on Linux show that our proposed 
kernel-level web switch which takes into account the 
content in requests and workload information in 
dispatching requests is efficient and scales well 
without being the system bottleneck of the whole 
cluster. Moreover, the trace-driven benchmarking of 
real-world working sets [9] demonstrates that our 
proposed system can achieve up to 107% and 164% 
better performance than the layer-4 LVS web cluster 
[5] respectively. 

 
2. Background 
 
2.1 Linux Virtual Server 

 
The Linux Virtual Server (LVS) [5] is a highly 

scalable and available server built on a cluster of real 
servers, with a load balancer running the Linux 
operating system. The architecture of the server 
cluster is fully transparent to end users, and the users 
interact as if it was a single high-performance virtual 
server. 

The architecture of LVS comprises a front-end 
server (FE) and several back-end real servers (BEs). 
The front-end server is a load balancer responsible for 
dispatching and routing requests from clients to the 
real servers. The real servers handle requests and 
respond to clients. The cluster system is transparent to 
clients as a virtual service using a single IP address. 
LVS has three routing mechanisms, i.e. NAT (Network 
Address Translation), IP tunneling, and direct routing 
[5]. The most efficient one is the direct routing 
mechanism, in which the FE forwards the packets 
from clients to chosen BEs by changing the MAC 
addresses of packets.  

The front-end server in LVS is a content-blind 
load distributor that could not perform the 
content-aware distribution. However, because 
content-aware distribution can achieve higher cache 
hit rates in back-end servers and can apply 
sophisticated load-balancing strategy which could 
gain higher performance, thus, content-aware 
distribution is getting more and more popular in recent 
years.  

a. Check TCP state
b. Rebuild TCP
    connection

 
2.2 TCP Rebuilding 

 
TCP Rebuilding [6] is an efficient technique 

proposed in our previous study; it does not need the 
overheads of spoofing packets and processing of 
packet filter for TCP connection state transfer. As 
shown in Figure 1 [6], the packet forwarding steps are 
described as below: 

 

1~4. The front-end performs the TCP three-way 
handshake with the client and then forwards 
the HTTP request from the client to the chosen 
back-end. 

5. When the back-end receives the HTTP request, 
it rebuilds the TCP connection with the client 
using TCP Rebuilding technique [4].  

6~7. After the connection has been rebuilt, the 
back-end could respond the requested data to 
the client directly. 

8~9. When the front-end receives the ACK packet 
sent from the same client, it forwards it to the 
same back-end. 
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Figure 1: Packet Forwarding Flow of TCP 
Rebuilding 

 
TCP Rebuilding belongs to one-way technique 

in which response packets from back-end can be sent 
directly to clients. Besides, it rebuilds the connection 
with client without the need of extra packet [7] or 
packet filter [4] for TCP connection state transfer. 
Therefore, TCP Rebuilding technique is applied in this 
research.  
 
3. System Design and Implementation 
 
3.1 Content-based Workload-aware Request 
Distribution – CWARD 

 
Several researches [1,2,6,7,8] show that 

content-aware request distribution that takes content in 
requests into account in dispatching requests can make 
the resource utilization of web cluster more effective. 
In fact, being aware of workload information also 
helps in request dispatching [2]. 

In Arlitt and Williams’s study of web server 
workload, they identified ten common characteristics 
in their collected data sets. One important 
characteristic is the high concentration of references in 
the web server. In their study, when caching 10% of 
the most frequently accessed files with the cost of 



only 6-45 MB main memory size, it can achieve 
80-96% cache hit ratio. Moreover, he noticed another 
interesting trace characteristic: small documents tend 
to be accessed much more frequently than larger 
documents. The above two studies conclude that 
caching a small set of most frequently accessed files 
may substantially increase the server cache hit ratio 
with the cost of only a small amount of main memory 
size. 

WARD strategy [2] also takes advantage of 
workload characterization that assigns the most 
frequent files to be served by each back-end node 
locally to minimize the forwarding overhead incurred 
from TCP handoff for those most frequent files. Since 
the workload characterization of web traffic highly 
influences the performance of web service, thus, 
workload characterization should be taken into 
consideration when we design a web cluster. 

In this paper, we have designed and 
implemented a web cluster with content-based and 
workload-aware request distribution, called 
LVS-CWARD, which adopts WARD strategy and uses 
a kernel-level layer-7 web switch (front-end) to 
dispatch requests. Besides, a small set of most 
frequently accessed files is prefetched into server’s 
RAM to increase the performance of the whole web 
cluster. With a kernel-level layer-7 front-end using 
effective content-based request dispatching policies, 
the web cluster could achieve more load-sharing than 
a layer-4 front-end or RR-DNS could. The web 
contents are prefetched into server’s RAM because 
web requests tend to request a whole file, whereas, the 
buffer cache of traditional file system caches the 
individual blocks of a file but not the whole file in the 
RAM. With the file prefetching method, we could 
make sure the whole file would be cached in the RAM. 
Prefetching web contents could avoid data transferring 
between RAM and disk for those prefetched files, 
which can decrease the disk access overhead. 
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The proposed Content-based Workload-aware 
Request Distribution (CWARD) policy in our system 
is shown in Figure 2. Similar to the WARD strategy, 
we identify a small set of most frequently accessed 
files, named core, and identify a set of less frequently 
accessed files to be partitioned among back-end nodes, 
called part. Each back-end prefetches identical core 
files and the exclusive part files in the RAM. The 
content-aware dispatcher examines the content 
information (i.e. URI) in each request and then 
forwards the requests to the corresponding back-end 
node. 
 

 

Figure 2: Dispatching Policy of CWARD 

The CWARD policy shown in Figure 2 works as 
follows. First of all, the core files and part files are 
prefetched into server’s RAM of back-end nodes and 
then the URL table in the front-end is updated with the 
corresponding information. When receiving a 
sequence of requests, the front-end will examine the 
content of each request. If the requested web file 
belongs to the core set, for example the target A in 
Figure 2, the front-end will choose a back-end node 
according to the designated request scheduling 
algorithm and modify the URI in the content of 
request packet to correspond with the path where the 
target core file is stored. If the requested web file 
belongs to the part set, the front-end would change the 
URI in the content of request packet to correspond 
with the path where the target part file is stored, and 
then check if this request packet needs to be handed 
off. If handoff is needed, then the front-end would 
handoff the request to the back-end which has the 
requested data. Lastly, if the requested web file neither 
belongs to the core set nor the part set, the front-end 
forwards the request to the back-end according to the  
assigned request scheduling algorithm. 
 
3.2 Multiple TCP Rebuilding 

 
The TCP Rebuilding technique [6] allows the 

front-end to transfer its TCP state of an established 
connection with a client to a back-end node. After the 
TCP state has been transferred, the chosen back-end 
could respond the request to the client directly, 
bypassing the front-end node. 

We extend the TCP Rebuilding technique, called 
Multiple TCP Rebuilding, to efficiently support 
HTTP/1.1 persistent connection, as shown in Figure 3, 
by adding the functionality in the front-end to migrate 
a connection between the back-end nodes. Thus, the 
different requests in the same connection could be 
distributed to different back-end nodes in the presence 
of persistent connection. 

 
 

Figure 3: Multiple TCP Rebuilding 
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To allow Multiple TCP Rebuilding, the 

back-ends should be installed with the 
TCP-Rebuilding technique and the front-end should 
be customized to have functionalities as follows. First 



of all, the front-end should do the content-aware 
distribution at the granularity of individual requests. 
Second, if the subsequent requests have been 
scheduled and then distributed to a different back-end 
node, the front-end should disconnect the previous 
connection. In order to increase the performance of 
migrating a connection, we implement the Multiple 
TCP Rebuilding to generate and send the RST packet 
for disconnection after handing off the request to the 
different back-end as shown in Figure 4. 
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Figure 4: Sending RST packet after connection is 
migrated 

 
The data flow of Figure 4 is described in the 

following: 
1~3. The font-end performs the three-way 

handshaking with the client. 
4. After receiving the request packet, the front-end 

will call the dispatcher module to select a 
back-end server based on the designated 
request scheduling algorithm and then forward 
the request to the chosen back-end. 

5~6. When the selected back-end receives the request, 
it will rebuild the connection with the client 
using the TCP Rebuilding technique and then 
process the request and respond the data back 
to the client directly bypassing the front-end. 

7~8. While the front-end receives the ACK packet 
from the client, it will forward the packet to the 
chosen back-end immediately. 

9~11. When the front-end receives the subsequent 
request from the same connection, if it decides 
to distribute the request to another back-end, it 
then hands off the request to the back-end 2 
using Multiple TCP Rebuilding technique. 
After the connection is rebuilt in the back-end 
2, a RST packet is generated and sent to the 

back-end 1 to disconnect the no longer needed 
connection.In fact, the Multiple TCP 
Rebuilding is a high cost function including the 
overheads for the front-end to generate a RST 
packet to disconnect with the previous 
back-end server and modify the proper 
connection record, for the back-end 1 to tear 
down the connection when it receives the 
generated RST packet, for the back-end 2 to 
rebuild the connection with the client using the 
TCP Rebuilding technique. Because of these 
overheads, Multiple TCP Rebuilding should be 
used only when it is beneficial, in this paper, 
for improving cache hit ratio. 

12~14. After the back-end 2 rebuilds the connection 
with the client, it would respond to the client 
directly and the subsequent packets would be 
forwarded to the back-end 2. 

 
3.3 Dispatching Policies 

 
Request scheduling algorithms implemented in 

LVS only estimate the loads of back-ends in the 
granularity of connection. In this section, we present 
two request scheduling algorithms that use more 
fine-grained method to measure the loads of 
back-ends to achieve better load sharing. 

The idea of Weighted Least Request (WLR) 
scheduling algorithm comes from the Weighted Least 
Connection (WLC) algorithm, which is the most 
efficient one in the LVS [5]. We count the numbers of 
requests rather than the numbers of connections to 
measure the server’s loads of back-ends more 
correctly. The WLR scheduling would select the target 
real server with the minimum value of the number of 
active requests divided by the server’s weight.  

The Weighted Least Traffic (WLT) scheduling 
algorithm measures the server load more 
fine-grainedly than WLR. The content-based 
dispatcher could examine the content of each request 
and then get the size of requested data from the URL 
table in the LVS-CWARD. Therefore, we could 
conjecture the server’s load by the transferred data 
size of back-ends and select the least loaded server to 
service next connection. The WLT scheduling would 
select the target real server with the minimum value of 
the number of active transferred data size divided by 
the server＇s weight.  
 
4. Performance Evaluation 
 
4.1 Experimental Environment 

 
Our testbed consists of one front-end node, eight 

back-end nodes, and ten clients, connected to a single 
24-port fast-ethernet switch. The environment is a 
stand-alone local area network with no disturbs from 
external network traffic. The packet forwarding 
mechanism is set to be Direct Routing [5]. The 
front-end node is with Intel P4 3.4G, which contains 



DDR 256. The eight back-end nodes are with Intel P4 
3.4G, each of which contains DDR 256/128. Each 
node runs Linux 2.4.18.  

The benchmarks we used in this research are 
WebBench [23] and http_load [3]. WebBench is a 
licensed PC Magazine benchmark program developed 
by VeriTestthat to measure the performance of web 
servers. It has two components: a controller and 
clients. The controller controls clients for proposing 
requests, recording and summarizing the experimental 
data. It calculates two overall server scores: requests 
per second and throughput in bytes per second. The 
http_load is a freeware developed by ACME lab to 
test the throughput of a web server.  

In order to perform trace-driven benchmarking, 
we modify it to replay the log in trace in order, instead 
of random. We use two publicly available traces from 
the Internet Traffic Archive [9], and they are traces of 
NASA Kennedy Space Center and ClarkNet web 
servers. The working sets used in this research are 
derived from these two logs. 
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4.2.1 Overhead Evaluation of the Front-end 

 
In this experiment, we setup the WebBench to 

repeatedly request the same web page of a given size, 
for the purpose to measure the overheads caused from 
our proposed system. The requested web pages are 
1KB. The 1KB web page is chosen because the entire 
HTTP response could be transferred in a single 
Ethernet frame. We do not setup the LVS-CWARD to 
prefetch the target web page into RAM in this 
experiment, since our purpose is to investigate the 
additional overheads caused from this content-aware 
dispatching web system as compared with a 
content-blind web system. The additional overheads 
would include examining URL, looking up URL table, 
and modifying URL. In this experiment, the 
content-blind web cluster system, LVS, was used as 
the contrast. The request scheduling algorithm was 
WRR. Figure 5 shows the result. 
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Figure 5: Throughput (reqs/sec), 1KB 
 
As shown in Figure 5, the throughput increases 

almost linearly with the size of the cluster. The 

overheads caused from our content-aware web cluster 
only degrade performance slightly. The throughput of 
LVS-CWARD is only 3.2% less than that of the LVS 
in the 1KB experiment. 

 
4.2.2 Trace-driven Benchmarking 

 
In this experiment, we evaluate our proposed 

system with two realistic workloads, and the 
workloads are derived from the logs of NASA and 
ClarkNet. The benchmark used in this experiment is 
http_load. In order to perform trace-driven 
benchmarking, we modify http_load to replay the log 
in order, instead of random. Besides, because there are 
ten clients in our testbed, so we split the log into ten 
parts in the Round-Robin manner, and each part for a 
client. The experimental web cluster consists of one 
front-end node, eight back-end nodes, and ten clients. 
The request dispatching scheduling algorithm used in 
this experiment is Weighted Round-Robin. Figures 6 
and 7 shows the result. 

 
 

(a) Trace-driven Benchmarking, NASA 
(CORE%>=PART%) 

 

(b) Trace-driven Benchmarking, NASA 
(CORE%<=PART%) 

Figure 6: Trace-driven Benchmarking – NASA Trace 
 
In Figures 6 and 7, the 5%/5% (core%/part%) 

means that the core set (i.e. the most frequently 
accessed files) has 5% of working set files, and the 
part set (i.e. the less frequently accessed files) in each 
node has 5% of working set files. Besides, 
LVS-CWARD (WARD) means that the LVS-CWARD 
platform adopts the WARD strategy, and 
LVS-CWARD (CWARD) means that the 
LVS-CWARD platform adopts the CWARD policy. 
The difference between LVS-CWARD (CWARD) and 



LVS-CWARD (WARD) is that the former has 
prefetched web pages into server’s RAM, but the latter 
does not. 

In this realistic workload, the advantage of our 
proposed LVS-CWARD is remarkable. The degree of 
locality of reference in NASA trace is quite high since 
when caching 10% of most frequently accessed files, 
it could achieve 96% cache hit ratio. In this 
experiment with 8 back-end nodes, we prefetch 
45-100% working set into overall servers RAM. Thus, 
exceeding 96% of HTTP requested data would be 
accessed directly through server’s RAM, bypassing 
disk I/O. Therefore, the performance gain of our 
proposed web cluster is obviously large. As shown in  
Figure 6, the performance of our proposed 
LVS-CWARD (CWARD) is 57-88% and 45-81% 
better than the LVS and LVS-CWARD (WARD), 
respectively. 

Figure 7 shows that LVS-CWARD (CWARD) 
outperforms LVS and LVS-CWARD (WARD) by 
107-156% and 69-122% respectively in the ClarkNet 
trace among different combinations of core and part 
sets. 
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5. Conclusion 

 
We have designed and implemented a 

high-performance and scalable content-based web 
cluster named LVS-CWARD. The goals of the 
LVS-CWARD is to improve cache hit ratio and 
load-sharing of the web cluster by taking content in 

requests and workloads into account in distributing 
requests.  

Experimental results of practical implementation 
on Linux show that our proposed kernel-level 
content-based web switch is efficient and scales well 
without being the system bottleneck of the cluster. 
Moreover, the trace-driven benchmarking with the 
working sets derived from the logs of NASA and 
ClarkNet demonstrates that our proposed system can 
achieve up to 107% and 164% better performance 
than the layer-4 LVS web cluster respectively. 

Further research is needed for optimizing the 
way of prefetching web pages in the server RAM. 
Besides, how to efficiently prefetch dynamic web 
contents into server RAM is another issue that needs 
to be investigated.  
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