
System Support for Workload-aware Content-based Request
Distribution in Web Clusters

Yu-Chen Lin Mei-Ling Chiang Lian-Feng Guo

Department of Information Management

National Chi-Nan University, Puli, Taiwan, R.O.C.
Email: {s2213507, joanna, s3213534}@ncnu.edu.tw

Abstract

We have designed and implemented a

high-performance and scalable content-based web
cluster named LVS-CWARD. The LVS-CWARD
cluster uses a small amount of memory dedicated to
cache a small set of most frequently accessed files and
uses a kernel-level content-based web switch to
distribute the HTTP requests from clients among the
web servers. The proposed CWARD policy which
takes into account the content of requests and
workload characterization in request dispatching, with
the aim to increase cluster performance by increasing
the cache hit rates in web servers. Besides, to
efficiently support for persistent connection, the fast
Multiple TCP Rebuilding is proposed. Moreover, we
propose two request scheduling algorithms to achieve
more performance gain by more fine-grained loading
measurement for more effective load sharing. The
experimental results of practical implementation on
Linux show that our proposed kernel-level web switch
which takes into account the content in requests and
workload information in dispatching requests is
efficient and scales well without being the system
bottleneck of the whole cluster. Moreover, the
trace-driven benchmarking with the real-world
working sets demonstrates that our proposed system
can achieve up to 107% and 164% better performance
respectively than the Linux Virtual Server with a
content-blind web switch in distributing requests.

Keywords: Content-based Web Cluster, Web Cluster,
Content-aware Web Switch, Content-blind Web
Switch, Persistent Connection

1. Introduction

To deal with the explosive growth of the World

Wide Web, locally distributed web-server systems are
the most popular configuration rather than the single
scale-up web-server systems. In the distributed
web-server systems, the cluster-based web systems
have been widely adopted because they are
transparent and well balanced. A state-of-the-art
cluster-based web system (briefly, web cluster)
employs a web-switch called front-end which
distributes requests from clients among the request

handling servers called back-ends to achieve load
sharing and scalability.

The front-end of a web cluster could be
classified as layer-4 or layer-7 web switch according
to the operating layer in the OSI protocol stack.
Basically, the layer-4 web switch dispatches the
requests based on the IP address and TCP port,
whereas, the layer-7 web switch could perform the
content-aware dispatching which dispatches the
requests in accordance with the content (i.e. URI)
examined from the requested packets.

Recently, more and more studies [1,2,4,6,7,8]
focus on the content-aware dispatching and their
results show that using the content of requests and
loading information, a web cluster will be more
efficient in handling all types of requests. For example,
Aron et al. proposed a novel content-aware
dispatching policy named LARD [7] which aims at
optimizing the usage of the overall cluster RAM, thus
achieving the better cache hit ratio in back-ends.
Subsequently, Cherkasova et al. proposed the WARD
strategy [2] which decreases the overhead incurred
from TCP handoff [7] using LARD policy while still
optimizing the overall cluster RAM. Besides, using
content-aware dispatching, partitioning web contents,
building specialized web services among web servers,
or maintaining session integrity can be achieved.

In our previous study, Liu and Chiang proposed
the TCP-Rebuilding technique [6], a light-weight TCP
connection transfer technique that enables a web
cluster to be content-aware. TCP Rebuilding could
rebuild the TCP connection at one request-handling
server using only the HTTP request packet and no
extra packets for connection transfer are required.
Therefore, we adopt the TCP Rebuilding to construct
the content-aware platform in this research.

In this paper, we have designed and
implemented a high-performance and scalable
content-based web cluster named LVS-CWARD. The
LVS-CWARD cluster uses a kernel-level layer-7 web
switch and uses a small amount of memory dedicated
to cache a small set of most frequently accessed files,
with the aim to increase cluster performance by
increasing the cache hit ratios in servers. We also
propose a content-based workload-aware request
distribution policy called CWARD, which takes
content in requests and workload into account in
distributing requests. Besides, to efficiently support

for persistent connection, the fast Multiple TCP
Rebuilding is proposed and presented. Moreover, we
propose two request scheduling algorithms to gain
better performance by achieving more fine-grained
load sharing.

The experimental results of practical
implementation on Linux show that our proposed
kernel-level web switch which takes into account the
content in requests and workload information in
dispatching requests is efficient and scales well
without being the system bottleneck of the whole
cluster. Moreover, the trace-driven benchmarking of
real-world working sets [9] demonstrates that our
proposed system can achieve up to 107% and 164%
better performance than the layer-4 LVS web cluster
[5] respectively.

2. Background

2.1 Linux Virtual Server

The Linux Virtual Server (LVS) [5] is a highly

scalable and available server built on a cluster of real
servers, with a load balancer running the Linux
operating system. The architecture of the server
cluster is fully transparent to end users, and the users
interact as if it was a single high-performance virtual
server.

The architecture of LVS comprises a front-end
server (FE) and several back-end real servers (BEs).
The front-end server is a load balancer responsible for
dispatching and routing requests from clients to the
real servers. The real servers handle requests and
respond to clients. The cluster system is transparent to
clients as a virtual service using a single IP address.
LVS has three routing mechanisms, i.e. NAT (Network
Address Translation), IP tunneling, and direct routing
[5]. The most efficient one is the direct routing
mechanism, in which the FE forwards the packets
from clients to chosen BEs by changing the MAC
addresses of packets.

The front-end server in LVS is a content-blind
load distributor that could not perform the
content-aware distribution. However, because
content-aware distribution can achieve higher cache
hit rates in back-end servers and can apply
sophisticated load-balancing strategy which could
gain higher performance, thus, content-aware
distribution is getting more and more popular in recent
years.

a. Check TCP state
b. Rebuild TCP
 connection

2.2 TCP Rebuilding

TCP Rebuilding [6] is an efficient technique

proposed in our previous study; it does not need the
overheads of spoofing packets and processing of
packet filter for TCP connection state transfer. As
shown in Figure 1 [6], the packet forwarding steps are
described as below:

1~4. The front-end performs the TCP three-way
handshake with the client and then forwards
the HTTP request from the client to the chosen
back-end.

5. When the back-end receives the HTTP request,
it rebuilds the TCP connection with the client
using TCP Rebuilding technique [4].

6~7. After the connection has been rebuilt, the
back-end could respond the requested data to
the client directly.

8~9. When the front-end receives the ACK packet
sent from the same client, it forwards it to the
same back-end.

Front-end
Server

Back-end
ServerClient

Time Time Time

5. PSH=1, ACK=1

6. ACK=1

7. PSH=1, ACK=1

8. ACK=1
9. ACK=1

1. SYN=1

2. SYN=1, ACK=1

3. ACK=1
4. PSH=1, ACK=1

Figure 1: Packet Forwarding Flow of TCP
Rebuilding

TCP Rebuilding belongs to one-way technique

in which response packets from back-end can be sent
directly to clients. Besides, it rebuilds the connection
with client without the need of extra packet [7] or
packet filter [4] for TCP connection state transfer.
Therefore, TCP Rebuilding technique is applied in this
research.

3. System Design and Implementation

3.1 Content-based Workload-aware Request
Distribution – CWARD

Several researches [1,2,6,7,8] show that

content-aware request distribution that takes content in
requests into account in dispatching requests can make
the resource utilization of web cluster more effective.
In fact, being aware of workload information also
helps in request dispatching [2].

In Arlitt and Williams’s study of web server
workload, they identified ten common characteristics
in their collected data sets. One important
characteristic is the high concentration of references in
the web server. In their study, when caching 10% of
the most frequently accessed files with the cost of

only 6-45 MB main memory size, it can achieve
80-96% cache hit ratio. Moreover, he noticed another
interesting trace characteristic: small documents tend
to be accessed much more frequently than larger
documents. The above two studies conclude that
caching a small set of most frequently accessed files
may substantially increase the server cache hit ratio
with the cost of only a small amount of main memory
size.

WARD strategy [2] also takes advantage of
workload characterization that assigns the most
frequent files to be served by each back-end node
locally to minimize the forwarding overhead incurred
from TCP handoff for those most frequent files. Since
the workload characterization of web traffic highly
influences the performance of web service, thus,
workload characterization should be taken into
consideration when we design a web cluster.

In this paper, we have designed and
implemented a web cluster with content-based and
workload-aware request distribution, called
LVS-CWARD, which adopts WARD strategy and uses
a kernel-level layer-7 web switch (front-end) to
dispatch requests. Besides, a small set of most
frequently accessed files is prefetched into server’s
RAM to increase the performance of the whole web
cluster. With a kernel-level layer-7 front-end using
effective content-based request dispatching policies,
the web cluster could achieve more load-sharing than
a layer-4 front-end or RR-DNS could. The web
contents are prefetched into server’s RAM because
web requests tend to request a whole file, whereas, the
buffer cache of traditional file system caches the
individual blocks of a file but not the whole file in the
RAM. With the file prefetching method, we could
make sure the whole file would be cached in the RAM.
Prefetching web contents could avoid data transferring
between RAM and disk for those prefetched files,
which can decrease the disk access overhead.

A AB
B

C
B

C A

A
B

Client
Front-end
Request

RAM

core part

A C

RAM
core part

A B D
D D

D

D

A B

C

D

A B

C

Disk

Disk

Back-end 2

Back-end 1

The proposed Content-based Workload-aware
Request Distribution (CWARD) policy in our system
is shown in Figure 2. Similar to the WARD strategy,
we identify a small set of most frequently accessed
files, named core, and identify a set of less frequently
accessed files to be partitioned among back-end nodes,
called part. Each back-end prefetches identical core
files and the exclusive part files in the RAM. The
content-aware dispatcher examines the content
information (i.e. URI) in each request and then
forwards the requests to the corresponding back-end
node.

Figure 2: Dispatching Policy of CWARD

The CWARD policy shown in Figure 2 works as
follows. First of all, the core files and part files are
prefetched into server’s RAM of back-end nodes and
then the URL table in the front-end is updated with the
corresponding information. When receiving a
sequence of requests, the front-end will examine the
content of each request. If the requested web file
belongs to the core set, for example the target A in
Figure 2, the front-end will choose a back-end node
according to the designated request scheduling
algorithm and modify the URI in the content of
request packet to correspond with the path where the
target core file is stored. If the requested web file
belongs to the part set, the front-end would change the
URI in the content of request packet to correspond
with the path where the target part file is stored, and
then check if this request packet needs to be handed
off. If handoff is needed, then the front-end would
handoff the request to the back-end which has the
requested data. Lastly, if the requested web file neither
belongs to the core set nor the part set, the front-end
forwards the request to the back-end according to the
assigned request scheduling algorithm.

3.2 Multiple TCP Rebuilding

The TCP Rebuilding technique [6] allows the

front-end to transfer its TCP state of an established
connection with a client to a back-end node. After the
TCP state has been transferred, the chosen back-end
could respond the request to the client directly,
bypassing the front-end node.

We extend the TCP Rebuilding technique, called
Multiple TCP Rebuilding, to efficiently support
HTTP/1.1 persistent connection, as shown in Figure 3,
by adding the functionality in the front-end to migrate
a connection between the back-end nodes. Thus, the
different requests in the same connection could be
distributed to different back-end nodes in the presence
of persistent connection.

Figure 3: Multiple TCP Rebuilding

Back-end
Client
Front-end
Request
Response

To allow Multiple TCP Rebuilding, the

back-ends should be installed with the
TCP-Rebuilding technique and the front-end should
be customized to have functionalities as follows. First

of all, the front-end should do the content-aware
distribution at the granularity of individual requests.
Second, if the subsequent requests have been
scheduled and then distributed to a different back-end
node, the front-end should disconnect the previous
connection. In order to increase the performance of
migrating a connection, we implement the Multiple
TCP Rebuilding to generate and send the RST packet
for disconnection after handing off the request to the
different back-end as shown in Figure 4.

1 . SY N =1

2 . SY N =1, A C K =1
3 . A C K = 1

4 . PSH =1 , A C K =1

6 . PSH =1 , A C K =1

9 . PSH =1 , A C K =1

10. PSH =1 , A C K = 1

12. PSH =1 , A C K =1

13. A C K = 1

14. A C K = 1

7 . A C K = 1

11 . R ST =1

C lien t Fron t-end B ack-end 1 B ack-end 2

Tim e Tim e Tim e Tim e

5. PSH =1 , A C K = 1

8 . A C K = 1

Figure 4: Sending RST packet after connection is
migrated

The data flow of Figure 4 is described in the

following:
1~3. The font-end performs the three-way

handshaking with the client.
4. After receiving the request packet, the front-end

will call the dispatcher module to select a
back-end server based on the designated
request scheduling algorithm and then forward
the request to the chosen back-end.

5~6. When the selected back-end receives the request,
it will rebuild the connection with the client
using the TCP Rebuilding technique and then
process the request and respond the data back
to the client directly bypassing the front-end.

7~8. While the front-end receives the ACK packet
from the client, it will forward the packet to the
chosen back-end immediately.

9~11. When the front-end receives the subsequent
request from the same connection, if it decides
to distribute the request to another back-end, it
then hands off the request to the back-end 2
using Multiple TCP Rebuilding technique.
After the connection is rebuilt in the back-end
2, a RST packet is generated and sent to the

back-end 1 to disconnect the no longer needed
connection.In fact, the Multiple TCP
Rebuilding is a high cost function including the
overheads for the front-end to generate a RST
packet to disconnect with the previous
back-end server and modify the proper
connection record, for the back-end 1 to tear
down the connection when it receives the
generated RST packet, for the back-end 2 to
rebuild the connection with the client using the
TCP Rebuilding technique. Because of these
overheads, Multiple TCP Rebuilding should be
used only when it is beneficial, in this paper,
for improving cache hit ratio.

12~14. After the back-end 2 rebuilds the connection
with the client, it would respond to the client
directly and the subsequent packets would be
forwarded to the back-end 2.

3.3 Dispatching Policies

Request scheduling algorithms implemented in

LVS only estimate the loads of back-ends in the
granularity of connection. In this section, we present
two request scheduling algorithms that use more
fine-grained method to measure the loads of
back-ends to achieve better load sharing.

The idea of Weighted Least Request (WLR)
scheduling algorithm comes from the Weighted Least
Connection (WLC) algorithm, which is the most
efficient one in the LVS [5]. We count the numbers of
requests rather than the numbers of connections to
measure the server’s loads of back-ends more
correctly. The WLR scheduling would select the target
real server with the minimum value of the number of
active requests divided by the server’s weight.

The Weighted Least Traffic (WLT) scheduling
algorithm measures the server load more
fine-grainedly than WLR. The content-based
dispatcher could examine the content of each request
and then get the size of requested data from the URL
table in the LVS-CWARD. Therefore, we could
conjecture the server’s load by the transferred data
size of back-ends and select the least loaded server to
service next connection. The WLT scheduling would
select the target real server with the minimum value of
the number of active transferred data size divided by
the server＇s weight.

4. Performance Evaluation

4.1 Experimental Environment

Our testbed consists of one front-end node, eight

back-end nodes, and ten clients, connected to a single
24-port fast-ethernet switch. The environment is a
stand-alone local area network with no disturbs from
external network traffic. The packet forwarding
mechanism is set to be Direct Routing [5]. The
front-end node is with Intel P4 3.4G, which contains

DDR 256. The eight back-end nodes are with Intel P4
3.4G, each of which contains DDR 256/128. Each
node runs Linux 2.4.18.

The benchmarks we used in this research are
WebBench [23] and http_load [3]. WebBench is a
licensed PC Magazine benchmark program developed
by VeriTestthat to measure the performance of web
servers. It has two components: a controller and
clients. The controller controls clients for proposing
requests, recording and summarizing the experimental
data. It calculates two overall server scores: requests
per second and throughput in bytes per second. The
http_load is a freeware developed by ACME lab to
test the throughput of a web server.

In order to perform trace-driven benchmarking,
we modify it to replay the log in trace in order, instead
of random. We use two publicly available traces from
the Internet Traffic Archive [9], and they are traces of
NASA Kennedy Space Center and ClarkNet web
servers. The working sets used in this research are
derived from these two logs.

4.2 Experimental Results NASA (CORE% >= PART%)

0

1000

2000

3000

4000

5000

6000

5%/5% 10%/5% 15%/5% 20%/5% 20%/0%

CORE% - PART% of working set files

T
hr

ou
gh

pu
t

(r
eq

s/
se

c)

LVS

LVS-CWARD (WARD)

LVS-CWARD (CWARD)

NASA (CORE% <= PART%)

0

1000

2000

3000

4000

5000

5%/5% 5%/10% 5%/11.875% 0%/12.5%

CORE% - PART% of working set files

T
hr

ou
gh

pu
t

(r
eq

s/
se

c)

LVS

LVS-CWARD (WARD)

LVS-CWARD (CWARD)

4.2.1 Overhead Evaluation of the Front-end

In this experiment, we setup the WebBench to

repeatedly request the same web page of a given size,
for the purpose to measure the overheads caused from
our proposed system. The requested web pages are
1KB. The 1KB web page is chosen because the entire
HTTP response could be transferred in a single
Ethernet frame. We do not setup the LVS-CWARD to
prefetch the target web page into RAM in this
experiment, since our purpose is to investigate the
additional overheads caused from this content-aware
dispatching web system as compared with a
content-blind web system. The additional overheads
would include examining URL, looking up URL table,
and modifying URL. In this experiment, the
content-blind web cluster system, LVS, was used as
the contrast. The request scheduling algorithm was
WRR. Figure 5 shows the result.

Throughput, 1 KB requests

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7 8

Back-end nodes in cluster

T
hr

ou
gh

t
(r

eq
s/

se
c)

LVS LVS-CWARD

Figure 5: Throughput (reqs/sec), 1KB

As shown in Figure 5, the throughput increases

almost linearly with the size of the cluster. The

overheads caused from our content-aware web cluster
only degrade performance slightly. The throughput of
LVS-CWARD is only 3.2% less than that of the LVS
in the 1KB experiment.

4.2.2 Trace-driven Benchmarking

In this experiment, we evaluate our proposed

system with two realistic workloads, and the
workloads are derived from the logs of NASA and
ClarkNet. The benchmark used in this experiment is
http_load. In order to perform trace-driven
benchmarking, we modify http_load to replay the log
in order, instead of random. Besides, because there are
ten clients in our testbed, so we split the log into ten
parts in the Round-Robin manner, and each part for a
client. The experimental web cluster consists of one
front-end node, eight back-end nodes, and ten clients.
The request dispatching scheduling algorithm used in
this experiment is Weighted Round-Robin. Figures 6
and 7 shows the result.

(a) Trace-driven Benchmarking, NASA
(CORE%>=PART%)

(b) Trace-driven Benchmarking, NASA
(CORE%<=PART%)

Figure 6: Trace-driven Benchmarking – NASA Trace

In Figures 6 and 7, the 5%/5% (core%/part%)

means that the core set (i.e. the most frequently
accessed files) has 5% of working set files, and the
part set (i.e. the less frequently accessed files) in each
node has 5% of working set files. Besides,
LVS-CWARD (WARD) means that the LVS-CWARD
platform adopts the WARD strategy, and
LVS-CWARD (CWARD) means that the
LVS-CWARD platform adopts the CWARD policy.
The difference between LVS-CWARD (CWARD) and

LVS-CWARD (WARD) is that the former has
prefetched web pages into server’s RAM, but the latter
does not.

In this realistic workload, the advantage of our
proposed LVS-CWARD is remarkable. The degree of
locality of reference in NASA trace is quite high since
when caching 10% of most frequently accessed files,
it could achieve 96% cache hit ratio. In this
experiment with 8 back-end nodes, we prefetch
45-100% working set into overall servers RAM. Thus,
exceeding 96% of HTTP requested data would be
accessed directly through server’s RAM, bypassing
disk I/O. Therefore, the performance gain of our
proposed web cluster is obviously large. As shown in
Figure 6, the performance of our proposed
LVS-CWARD (CWARD) is 57-88% and 45-81%
better than the LVS and LVS-CWARD (WARD),
respectively.

Figure 7 shows that LVS-CWARD (CWARD)
outperforms LVS and LVS-CWARD (WARD) by
107-156% and 69-122% respectively in the ClarkNet
trace among different combinations of core and part
sets.

ClarkNet (CORE% >= PART%)

0

2000

4000

6000

8000

5%/5% 10%/5% 15%/5% 20%/5% 20%/0%

CORE% - PART% of working set files

T
hr

ou
gh

pu
t

(r
eq

s/
se

c)

LVS

LVS-CWARD (WARD)

LVS-CWARD (CWARD)

ClarkNet (CORE% <= PART%)

0

1000

2000

3000

4000

5000

6000

7000

5%-5% 5%-10% 5%-11.875% 0%-12.5%

CORE% - PART% of working set files

(r
eq

s/
se

c)

LVS

LVS-CWARD (WARD)

LVS-CWARD (CWARD)

(a) Trace-driven Benchmarking, ClarkNet
(CORE%>=PART%)

(b) Trace-driven Benchmarking, ClarkNet
(CORE%<=PART%)

Figure 7: Trace-driven Benchmarking
– ClarkNet Trace

T
hr

ou
gh

pu
t

5. Conclusion

We have designed and implemented a

high-performance and scalable content-based web
cluster named LVS-CWARD. The goals of the
LVS-CWARD is to improve cache hit ratio and
load-sharing of the web cluster by taking content in

requests and workloads into account in distributing
requests.

Experimental results of practical implementation
on Linux show that our proposed kernel-level
content-based web switch is efficient and scales well
without being the system bottleneck of the cluster.
Moreover, the trace-driven benchmarking with the
working sets derived from the logs of NASA and
ClarkNet demonstrates that our proposed system can
achieve up to 107% and 164% better performance
than the layer-4 LVS web cluster respectively.

Further research is needed for optimizing the
way of prefetching web pages in the server RAM.
Besides, how to efficiently prefetch dynamic web
contents into server RAM is another issue that needs
to be investigated.

References

[1] Mohit Aron, Peter Druschel, and Willy
Zwaenepoel, “Efficient Support for P-HTTP in
Cluster-Based Web Servers,” Annual USENIX
Technical Conference, Monterey, CA, June 1999.
[2] Ludmila Cherkasova and Magnus Karlsson,
“Scalable Web Server Cluster Design with
Workload-Aware Request Distribution Strategy
WARD,” In Proceedings of the 3rd International
Workshop on Advanced Issues of E-Commerce and
Web-Based Information Systems, San Jose, CA, pp.
212-221, June, 2001.
[3] http_load,
http://www.acme.com/software/http_load/.
[4] Ying-Dar Lin, Ping-Tsai Tsai, Po-Ching Lin, and
Ching-Ming Tien, “Direct Web Switch Routing with
State Migration, TCP Masquerade, and Cookie name
Rewriting,” Global Telecommunications Conference,
2003 (GLOBECOM '03) , Vol. 7, pp. 3663-3667, San
Francisco, December 2003.
[5] Linux Virtual Server Website,
http://www.linuxvirtualserver.org/.
[6] H. H. Liu and Mei-Ling Chiang, “TCP
Rebuilding for Content-aware Request Dispatching in
Web Clusters,” Journal of Internet Technology, Vol. 6,
No. 2, pp. 231-240, April 2005.
[7] V. S. Pai, M. Aron, G Banga, M. Svendsen, P.
Druschel, W. Zwaenepoel, and E. Nahum,
“Locality-Aware Request Distribution in
Cluster-based Network Servers,” Eighth International
Conference on Architectural Support for Programming
Languages and Operating Systems, San Jose, CA,
October. 1998.
[8] Seon-Yeong Park, Dohyun Park, Joonwon Lee,
and Jung Wan Cho, “Efficient Inter-backend Prefetch
Algorithms in Cluster-based Web Servers,” HPC Asia,
September. 2001.
[9] The Internet Traffic Archive Website,
http://ita.ee.lbl.gov/.
[10] WebBench Website,
http://www.etestinglabs.com/benchmarks/webbench/w
ebbench.asp.

