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Abstract. The fuzziness parameter m is an extra parameter that facili-
tates the iterative formulas of Fuzzy c-means (FCM). However, the para-
meter m, commonly set to be 2.0, is an important factor that effects the
effectiveness of FCM. In literatures, the statistical study of m is so far
not available. Viewing m as a random variable, we propose a novel idea
to optimize the fuzziness parameter m. For the model selection, a mod-
ified cluster validity index is defined as the optimal function of m and
improve the effectiveness of FCM. Then the simulated annealing algo-
rithm is applied to approximate its estimate.
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1 Introduction

Clustering methods [3] can be roughly divided into two groups: hierarchical
and classification methods. Classification method aims to find the best partition
of data into c clusters in such a way that one criterion is optimized. Here we
consider the fuzzy classification and use the Fuzzy C-Means (FCM) algorithm
[1,2,6,7]. In addition to the specification of the number c of clusters in the data
set, FCM method requires to choose the fuzziness parameter m, an important
factor that influences the effectiveness of FCM. Note that the study of m has
not been completely investigated in literatures. Pal and Bezdek [4] suggested
m ∈ [1.5, 2.5], and Yu et al. [10] proposed a theoretical upper bound for m to
prevent the sample mean from being the unique optimizer of an FCM objective
function. Wu [8] showed that the parameter m influenced the robustness of
FCM and m ∈ [1.5, 4]. For a large theoretical upper bound, they suggested the
implementation of the FCM with a suitable large m value. Also, the value m = 4
is recommended for FCM when the data contains noise and outliers. In practical
use purpose, m is commonly fixed to 2. This choice allows an easy computation
of the membership values.
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2 Methodology

2.1 The FCM Algorithm

For a given number of c clusters and the fuzzifier m > 1, the FCM algorithm is
an iterative procedure that minimizes the objective function

J(c) =
c∑

k=1

N∑

i=1

um
ki d

2(xi, ak), (1)

where d(xi, ak) is the distance (dissimilarity) between the cluster center ak,
k = 1, 2, · · · , c and the data xi, i = 1, 2, · · · , N(number of sample size), and uki

denotes the fuzzy membership value of object xi to the cluster k that satisfies
the following conditions

0 ≤ uki ≤ 1 and
c∑

k=1

uik = 1 (2)

FCM algorithm is then minimized (1) by the following iterative equations.

ak =
∑N

i=1 um
kixi∑N

i=1 um
ki

(3)

uki =
1

∑c
j=1

(
d(xi,ak)
d(xi,aj)

) 1
m−1

(4)

Fuzzy partitioning is carried out through an iterative optimization (minimizing)
of the objective function J(c) by alternatively updating the membership μij and
the cluster center ak.

2.2 The XB Index

Among the existing validity indices to evaluate the goodness of clustering accord-
ing to a given number of clusters, the Xie–Beni (XB) index [9] is a credible
fuzzy-validity criterion based on a validity function which identifies overall com-
pact and separate fuzzy c-partitions. This function depends upon the data set,
geometric distance measure, and distance between cluster centroids and fuzzy
partition, irrespective of any fuzzy algorithm used. For evaluating the good-
ness of the data partition, both cluster compactness and intercluster separation
should be taken into account. For FCM algorithm with m = 2.0, the XB index
can be shown to be

XB(c) =
J(c)

Ndmin
(5)

where dmin is the minimum distance between cluster centroids. The more sepa-
rate the clusters are, the larger dmin and the smaller XB(c).
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2.3 The Parameter m as a Random Variable

The following numerical example shows that different values of m yield to dif-
ferent models according to XB index. To demonstrate the class clustering, we
generate a pseudo dataset from 4 clusters centered at (5, 5), (5,−5), (−5, 5) and
(−5, −5), each has 12 observations and they follow the two dimensional inde-
pendent normal distribution. A realization of simulated data, denoted by D1, is
shown in Fig. 1. Each elements of the same cluster are marked with the same
color points. Visually, the number of clusters are likely to be 4 and possibly 3.
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Fig. 1. The scatter plot of data set D1

Table 1 lists the summary of the model suggested by XB indices.
We see, when m = 6.0, the suggested cluster number by XB index is c = 3.

But it is incorrect. This implies that XB index is somehow not perfect since it
depends on m.

Different from the classical analysis, our novel idea is to view the fuzziness
parameter m as a random variable in the XB index. That is, given the data, XB
index consists of two parameter m and c.

XB(c,m) =
J(c)

Ndmin
(6)

Next, we apply the simulated annealing algorithm to find the maximum
likelihood estimator of m.



The Optimal Estimation of Fuzziness Parameter in FCM Algorithm 569

Table 1. Different values of m yield to different models.

m c (suggested by XB) Correct or not

2.0 4 Yes

3.0 4 Yes

4.0 4 Yes

5.0 4 Yes

6.0 3 No

7.0 3 No

2.4 Simulated Annealing Algorithm

The simulated annealing algorithm (SA) [5] which employs a probabilistic pro-
cedure can approximate the minimizer m of an optimal function. It originally
simulates the process of slow cooling of molten metal to achieve the minimum
function value in a minimization problem. The cooling phenomenon of the molten
metal is simulated by introducing a temperature like parameter and cooling
it down using the concept of Boltzmann’s probability distribution. The Boltz-
mann’s probability distribution implies that the energy E of a system in thermal
equilibrium at temperature T is distributed probabilistically according to the
relation P (E) = e−E/kT , where P (E) denotes the probability of achieving the
energy level E, and k is called the Boltzmann’s constant [5]. SA’s major advan-
tage over other methods is an ability to avoid becoming trapped at local minima.
The algorithm employs a random search for which not only accepts changes that
decrease objective function but also some changes that increase it. The latter are
accepted with probability p = e−�F/tn , where �F = Fn − Fn−1 is the increase
or the decrease in objective function value and Fn is a control parameter, which
by analogy with the original application is known as the system “temperature”
irrespective of the objective function involved.

3 The Estimation of m

The theoretical distribution of m is so far not available since m depends on
the data and the corresponding objective functions. For example, if the optimal
function is to minimize J(c,m) = J(c) in (1), we consider m as a random variable
that has the probability density function f(m|c) of the form

m ∼ f(m|c) ∝ e−J(c,m)

We see that the estimate, so called maximum likelihood estimate in statistics,
of maximizing a probability density function with kernel e−J(c,m) is equivalent
the optimal estimate of minimizing J(c,m).

We define the cluster validity function as the objective function of m in our
analysis.

G(k) =
XB(k,m)

mini�=k{XB(k,m)} (7)
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In determining the number of clusters c, the model with minimum XB(c,m) is
preferred. However, It’s difficult to optimize both the number of cluster c and
the fuzziness parameter m together in the same procedure since the problem of
choosing best c has been a hard problem in classification. Given a likely c, the
new validity function G(k) in (7) can differentiates the best model between other
clusters.

With vague information when m = 2.0 in dataset D1, the preferred model
can be identified to be 4. We emphasize the difference between the best and
the second best models in terms of XB index by taking the ratio of them. Since
small XB(c,m) indicates a better number of cluster c, the minimum of G(c,m)
is desired. And SA, the general procedure in optimizing an objective function
with different initial values of cluster center ak and μij , can approximate the
fuzziness parameter m as a sequence of Markov chain that ultimately converges
to its minimizer.

3.1 Simulation Study

Using the data used in the numerical example, we see the correct model c =
4, and we wish to estimate m given the data and possible clusters (2, 3, 4, 5).
According to XB index, the best model c∗ = 4. Then the minimizer m∗ of
objective function G4(m) is the estimate.

G4(m) =
XB(4,m)

min{XB(2,m),XB(3,m),XB(5,m)} (8)

We propose the following algorithm: start from m = 2.0. The number of
clusters is firstly determined by the one, say c∗, with minimum XB index among
possible clusters. Note that ĉ is a ball park figure. Next, SA is applied to locate
the estimate of m̂ of the cluster validity function G4(m). That is,

G4(m̂) = min
m>1

G4(m, c∗).

Finally, set m = m̂, proceed FCM and double check XB indices for possible
models to ensure c∗ is the cluster with smallest XB index. If not, run the above
procedure again until the estimate m̂ agrees with the indicator XB.

FCM algorithm

(a) Pre-set the cluster number c and the fuzziness parameter m.
(b) Set initial values of cluster center ak and fuzziness membership uki, i =

1, 2, · · · , N(number of sample size), k = 1, 2, · · · , c.
(c) uki = 1

∑c
j=1

(
d(xi,ak)
d(xi,aj)

) 1
m−1

(d) ak =
∑N

i=1 um
kixi∑N

i=1 um
ki

(e) J(c) =
∑c

k=1

∑N
i=1 um

ki d
2(xi, ak) < ε = 10−4, stop;

else, go to Step (b).
SA algorithm
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1 Set the starting values of m(0) = 2.0.
2 Calculate XB(k, m(0)), k = 1, 2, · · · , c, by FCM algorithm and XB(c,m) in

(6) and determine the one with smallest XB index as the preferred number
of clusters, say c∗.

3 At state j, propose a candidate m∗ ∼ N(m(j), 0.052).
4 Let u follow uniform distribution(0, 1).
5 Accept the candidate m∗ as the next state value of Markov chain

{m(j)}j=1,2,··· with probability

α1 = e
(−1)
Tj

(G(m∗)−G(m(j−1))
.

That is

m(j+1) =

{
m∗ if u < α

m(j) otherwise.

where Tj =
100

j log(j)
, G(m) = G(m, c∗) is defined in (7).

6 If j < n2, say n2 = 20, 000, then go to Step 3.
7 Calculate XB(2,m̂), XB(3, m̂), XB(4, m̂) and XB(5,m̂). If c∗ is the one

with smallest XB index, then STOP; otherwise set j = 0 and m(0) and go
to Step 2.

m̂ = m(n2)is the minimier of G(m)

ĉ = c∗is the number of clusters.

8 The cluster center ak, k = 1, 2, · · · , ĉ can be obtained by FCM with m =
m̂, c = ĉ.

4 The Numerical Experiment

We apply our proposed method to the data with obvious clusters and see how
well it performs. To make comparisons, we simulate data based on the statistical
distribution of data set D1 in Sect. 2.3.

The Data Scheme (I): Standard Derivation σ = 1.5

Three data sets, D2,D3,D4, are simulated from the same target distribution
as D1 in Fig. 1, each has 12 observations and they follow the 2 dimensional
independent normal distribution with same standard deviation σ = 1.5, N2(μi =
(5, 5), (−5,−5), (5,−5), (−5, 5),σ). Together with the time series plots of m in
applying SA algorithm, the scatter plots of the three data sets are shown in
Fig. 2.
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Fig. 2. .

The Data Scheme (II): σ = 1.0, 1.0, 1.2, 1.8

Four data sets, D5,D6,D7,D8, are simulated from 4 clusters, the same mean
points as D1, each has 12 observations and they follow the 2 dimensional
independent normal distribution with standard deviations σ = 1.0, 1.0, 1.2, 1.8
N2(μi = (5, 5), (−5,−5), (5,−5), (−5, 5), σ ). The scatter plots and the time
series plots of m given by SA algorithm using the data sets are shown in Fig. 3.

The Data Scheme (III): c = 2, 3

Two data sets, D9,D10, are simulated from 2 and 3 clusters, each has 12 obser-
vations and they follows the 2 dimensional independent normal distributions
with same standard deviation σ = 1.5, N2(μi = (5, 5), (−5,5), σ = 1.5) and
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N2(μi = (5, 5),(−5, −5), (−5,5), σ = 1.5), respectively. The scatter plots of the
data sets and the time series plots of m are shown in Fig. 4.

4.1 Concluding Remarks

As seen the the time series plots of m given by SA algorithm, their Markov chains
converge. For example in D1, starting from m = 2.0, the last 10 realizations of
m

(j)
j=1,2,··· ,1500 are

2.7847 2.7912 2.7912 2.7644 2.7832
2.8023 2.7930 2.7930 2.8007 2.7822

The sequence of Markov chains of m given by SA algorithm using the data set
D1 are getting close to a fixed point =̂2.7822. And the suggested number of
clusters indicates the correct model is c = 4 with cluster centers (5.91, 5.09),
(4.92,−6.12), (−4.69, 5.17), (−5.04,−5.41).

Repeated numerical experiments using data sets Di, i = 1, 2, · · · , 10, show
that our proposed work well. The suggested clusters ĉ by XB indices are as good
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Data c ĉ m̂

D1 4 4 2.7822

D2 4 4 3.0219

D3 4 4 2.5896

D4 4 4 2.6703

D5 4 4 2.6221

D6 4 4 2.5525

D7 4 4 2.4842

D8 4 4 2.4221

D9 2 2 2.2946

D10 3 3 2.5525
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as expected. The SA estimates of m are eventually convergent. The estimates m̂
range from 2.1 to 3.0. See the following table for the summary.

Since the optimal estimates of m are not far from the commonly used value,
2.0, the cluster centers computed by FCM are about the same.

5 Conclusion

Fuzzy c-means is a common, fast and useful method of clustering classification.
In applying FCM algorithm, the fuzziness parameter m, originally designed to
facilitate the iterative formulas of FCM, is usually set to be 2.

In this paper, we first show that m indeed an important factor in determin-
ing the cluster validity. We then view m as a random variable and apply SA
algorithm to approximate the optimal estimate of m based on the modified XB
index.

Even though the results of our numerical experiments are not surprising, our
approach is novel. We successfully delete the effect due to the extra parameter m
by finding its minimizer and thus guarantee the effectiveness of FCM. Further-
more, the statistical distribution of m can be possibly available by the Markov
chain Monte Carlo in the future.
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