
System and Performance Monitoring on Diskless PC
Clusters

Chao-Tung Yang and Ping-I Chen

High-Performance Computing Laboratory
Department of Computer Science and Information Engineering

Tunghai University, Taichung City, 40704 Taiwan, R.O.C.
ctyang@mail.thu.edu.tw

g932834@student.thu.edu.tw

Abstract. In this paper, we introduce the experiments of monitoring on SLIM
and DRBL diskless PC clusters. We constructed the performance
experimentations by using 16 computing nodes and only one hard disk. We
used LAM/MPI and PVM to run the matrix multiplication program in order to
evaluate their performance. We also used spm2 and ntop to monitoring the
system status during performance evaluation. As the result, we can find that the
network loading of SLIM is less than DRBL even though the performance
result of DRBL is better than SLIM. Maybe this is because the DRBL use NFS
to mount everything which the nodes needed. We can realize that if we want to
construct a high-performance diskless Linux cluster. We should take care of the
free space of main memory and the mounting method of file systems.

Keywords: Diskless, System monitoring, Performance monitoring, PC clusters,
DBRL, SLIM.

1 Introduction

The use of loosely coupled, powerful and low-cost commodity components (PCs or
workstations, typically), especially without any hard disk drive, connected by high-
speed networks has resulted in the widespread usage of a technology popularly called
diskless cluster. Strictly speaking, it consists of one or more servers which provide not
only bootstrap service but also related network services (such as DHCP, NIS, NFS
servers, and etc) and many clients with no hard disk drive requesting for booting from
the network. The availability of such clusters made maintain as easy as possible, and
also reduced the waste in storage space. The diskless cluster differs from the
traditional one in that a network is used to provide not only inter-processor
communications but also a medium for booting and transmission for a live file
system. Thus, each diskless node before booting can boot through a floppy disk or a
NIC’s boot ROM with a small bootstrap program and even with a NIC’s PXE, which
sends a broadcast packet to a DHCP server and is then assigned an IP address. After
each node has been assigned a valid IP address, it sends a request to the TFTP server

mailto:ctyang@mail.thu.edu.tw
mailto:g932834@student.thu.edu.tw

2 Chao-Tung Yang and Ping-I Chen

for getting the boot image, referred to the Linux Kernel, through TCP/IP protocol and
starts the booting process. During the booting process, all the necessary system files
are transmitted through the network. After the remote file system is mounted as root
file system (NFS_ROOT), and the system initialization is done, the node is ready to
work.

In this paper, we introduce the experiments of monitoring on SLIM and DRBL
diskless PC clusters. We constructed the performance experimentations by using 16
computing nodes and only one hard disk. We used LAM/MPI and PVM to run the
matrix multiplication program in order to evaluate their performance. We also used
spm2 and ntop to monitoring the system status during performance evaluation. As the
result, we can find that the network loading of SLIM is less than DRBL even though
the performance result of DRBL is better than SLIM. Maybe this is because the
DRBL use NFS to mount everything which the nodes needed. We can realize that if
we want to construct a high-performance diskless Linux cluster. We should take care
of the main memory’s free space and the mounting method of file systems.

We can realize that if we want to construct a high-performance Linux diskless PC
cluster. We should take care of the free space of main memory and the mounting
methods of file systems. Using NFS to mount everything can ease the nodes’ main
memory loading. But it will cause the network loading very high. Using TFTP to
download the whole server’s Linux image file will waste a lot of main memory space.
Maybe we can combine the advantage of them to construct the brand-new high
performance diskless Linux cluster.

2 Background Review

2.1 PXE

PXE (Preboot eXecution Environment) is Intel’s loosely defined standard for booting
PCs over the network. A PXE-capable BIOS or boot ROM can download
bootstrapping code and load an operating system over the network. Booting Linux
with PXE is a straightforward way of starting a diskless workstation or appliance in a
closed network. PXE defines a method for the BIOS or NIC ROM to fetch a booting
code over the network. It does this via standard Internet protocols. When the
appliance is powered on, the BIOS or ROM makes a DHCP request.

The DHCP server, recognizing the appliance as a network-booting client, returns
instructions on the location of a TFTP server and the name of the name of the file that
it should download from the server. First, it checks it's configuration files (located on
the TFTP server) and then downloads the Linux kernel, passing it the necessary
kernel arguments, including the IP information received from DHCP. When the
kernel loads, it uses the IP information provided for it. The kernel can either be
download an initial ramdisk (initrd) and use that as a root filesystem, or it may just
connect to an NFS server. Once the kernel has gotten the root file system setup, the
operating system can complete the boot process, and the system is ready for use.[1]

System and Performance Monitoring on Diskless PC Clusters 3

2.2 TFTP

TFTP is a simple protocol to transfer files, and therefore was named the Trivial File
Transfer Protocol or TFTP. It has been implemented on top of the Internet User
Datagram protocol (UDP or Datagram), so it may be used to move files between
machines on different networks implementing UDP. It is designed to be small and
easy to implement. Therefore, it lacks most of the features of a regular FTP. The only
thing it can do is read and write files (or mail) from/to a remote server. It cannot list
directories, and currently has no provisions for user authentication. In common with
other Internet protocols, it passes 8-bit bytes of data. Three modes of transfer are
currently supported: netascii (This is ASCII as defined in “USA Standard Code for
Information Interchange” with the modifications specified in “Telnet Protocol
Specification”.) Note that it is 8 bit ASCII. The term “netascii” will be used
throughout this document to mean this particular version of ASCII.); octet (This
replaces the “binary” mode of previous versions of this document.) raw 8 bit bytes;
mail, netascii characters sent to a user rather than a file. (The mail mode is obsolete
and should not be implemented or used.) Additional modes can be defined by pairs of
cooperating hosts. [2]

2.3 NFS

The Network File System (NFS) was developed to allow machines to mount a disk
partition on a remote machine as if it were on a local hard drive. This allows for fast,
seamless sharing of files across a network. It also gives the potential for unwanted
people to access your hard drive over the network (and thereby possibly read your
email and delete all your files as well as break into your system) if you set it up
incorrectly. So please read the Security section of this document carefully if you
intend to implement an NFS setup. [3]

3 Two Types of Diskless PC Cluster

There are many ways to construct a Linux cluster. But dealing with differences with
node file systems is time consuming and can be problematic. So, some research
groups created this kind of cluster in order to construct the cluster in an efficient way.

It also costs less money and we can manage the nodes easily. In our experiment,
we only use two kinds of diskless cluster. One is SLIM, which is designed by
University of Hong Kong. Another is DRBL, which is designed by National Center of
High-performance Computing.

3.1 The SLIM Cluster

SLIM stands for Single Linux Image Management. It holds the Linux OS image to be
shared by all PCs via network booting. This solution is solely designed and

4 Chao-Tung Yang and Ping-I Chen

implemented by people in Department of Computer Science, The University of Hong
Kong.

The SLIM server holds pre-installed Linux system image for sharing across the
network. The system image is exported as read only by the NFS to all client PC to
build their local root file system during booting up. One SLIM server may serve as
many as OS images made by different Linux distributions. It also provides TFTP
service to allow client PC to download network boot loader. It also holds OS boot
images which are Linux kernel and initrd for network boot loader to download. [4]

3.2 The DRBL Cluster

DRBL stands for Diskless Remote Boot in Linux. This solution is solely designed and
implemented by people in National Center of High-performance Computing, Taiwan.

DRBL uses PXE/etherboot, NFS, and NIS to provide services to client machines.
Once the server is ready to be a DRBL server, then the client machines can boot via
PXE/etherboot (diskless). “DRBL” does NOT touch the hard drive of the clients, so
other Operating Systems (for example, M$ Windows) installed on your client
machines will not be affected. This may be important in a phased deployment of
GNU/Linux, where users still want to have the option of booting to Windows and
running Office. DRBL allows you to be flexible in your deployment of GNU/Linux
[5].

4 Our System Architecture

Our SMP cluster is a low cost Beowulf-type class supercomputer that utilizes multi-
computer architecture for parallel computations. The clusters consists of sixteen PC-
based symmetric multiprocessors (SMP) connected by one 24-port 100Mbps Ethernet
switches with Fast Ethernet interface. Its system architecture is shown in Figure 1.
There are one server node and fifteen computing nodes. The server node has one Intel
Pentium 4 2.8GHz (with hyper-threading) processor and 512MBytes of shared local
memory. The other fifteen nodes are AMD MP 2000+ SMP machines with 1GBytes
of shared local memory. Each individual processor is rated at 1.6GHz.

System and Performance Monitoring on Diskless PC Clusters 5

Fig. 1. Diskless system architecture.

At first, we used 16-port switch to handle all of the machines. It had no trouble on
SLIM diskless system. But when we changed the system to DRBL, there was
something wrong. The whole network loading was very high, so that we could not
SSH to another machine and could not startup PVM and LAM/MPI services which
were in our private network. So, we used another 24-port switch on DRBL diskless
system, and the network returned to normal.

We thought that it might be caused by NFS service. We also had some trouble with
SLIM. At the start, we used a PC which has only 256MB memory. Sometimes, the
boot-up process would fail or could not start some daemon. So, we added more
memory and then the whole process returned to normal. We thought it might be that
we fully installed the Linux system, so that the image is too large for a PC which has
only 256MB memory to handle the boot-up process and start the daemon. Table 1
shows the equipments and software about our diskless cluster.

Table 1. Equipments ans software on each machine.

 Machines
Equipments

Diskless server Nodes

CPU Intel P4-2.8G with HT AMD Dual MP2000+
OS SLIM: Fedora Core 2; DRBL: Fedora Core 1
Kernel SLIM: 2.6.5; DRBL: 2.4.22
Disk 1 none
RAM 512MB 1G
SWITCH PCI FX-32n 10/100
Network Interface Card 2 1

6 Chao-Tung Yang and Ping-I Chen

5 Performance Monitoring

5.1 Experimental Environments

5.1.1 PVM
PVM (Parallel Virtual Machine) is a portable message-passing programming system,
designed to link separate host machines to form a “virtual machine’’ which is a single,
manageable computing resource.

The virtual machine can be composed of hosts of varying types, in physically
remote locations. PVM applications can be composed of any number of separate
processes, or components, written in a mixture of C, C++ and FORTRAN. The
system is portable to a wide variety of architectures, including workstations,
multiprocessors, supercomputers and PCs. [6]

5.1.2 LAM/MPI
LAM/MPI is an implementation of the Message Passing Interface (MPI) parallel
standard that is especially friendly to clusters. It includes a persistent runtime
environment for parallel programs, support for all of MPI-1, and a good chunk of
MPI-2, such as all of the dynamic functions, one-way communication, C++ bindings,
and MPI-IO. [7]

5.1.3 SPM2
Compaq Storage Performance Monitor for Linux (CSPM) has evolved into System
Performance Monitor 2 by hp. Spm2 now provides monitoring of cpu, mem, storage,
network, and irq utilization This monitor is being released as open source to get
community involvement. [8]

5.1.4 ntop
ntop is a network traffic probe that shows the network usage, similar to what the
popular top Unix command does. ntop is based on libpcap and it has been written in a
portable way in order to virtually run on every Unix platform and on Win32 as well.
ntop users can use a a web browser (e.g. netscape) to navigate through ntop (that acts
as a web server) traffic information and get a dump of the network status. In the latter
case, ntop can be seen as a simple RMON-like agent with an embedded web interface.
The use of:
• a web interface
• limited configuration and administration via the web interface
• reduced CPU and memory usage (they vary according to network size and traffic)
make ntop easy to use and suitable for monitoring various kind of networks. [9]

System and Performance Monitoring on Diskless PC Clusters 7

5.2 Startup time of SLIM and DRBL

First, we use SPM2 to monitor the status of CPU, Memory, Network, and Storage
when the system starup. Figure 2 shows the SPM2 monitoring result.

Fig. 2. SPM2 monitoring results on DRBL (upper-side) and SLIM (lower-side) during the
system startup.

8 Chao-Tung Yang and Ping-I Chen

We can find that among CPU, Memory, Network, and Storage on SLIM are busier
than on DRBL. SLIM also has a larger I/O wait so that the startup time is more than
DRBL. We also want to know what makes the result so different. We think that it
might because SLIM and DRBL use different kind of method to boot-up the node site.
So, we use another monitoring tool which called ntop to get more detail information
about the network status. Figure 3 shows the monitoring result of DRBL using ntop.

Fig. 3. DRBL monitoring result using ntop.

As the result, we can find that the network loading is mainly result in NFS which is
about 83% of total network flow. Figure 4 shows the monitoring result of SLIM using
ntop.

Fig. 4. SLIM monitoring result using ntop

System and Performance Monitoring on Diskless PC Clusters 9

We can find that the main network flow is caused by NFS. But the data transmitted
by NFS on SLIM is almost four times than DRBL.

5.3 Performance Evaluation Monitoring

After the system startup, we used LAM/MPI and PVM to run matrix multiplication
program and bioinformatics software in order to evaluate the system performance.
The matrix multiplication problem sizes were 256×256, 512×512, 1024×1024, and
2048×2048 in our experiments and were running by different CPU numbers [7].

The biggest price we had to pay for the use of a PC cluster was the conversion of
an existing serial code to a parallel code based on the message-passing philosophy.
The main difficulty with the message-passing philosophy is that one needs to ensure
that a control node (or master node) is distributing the workload evenly between all
the other nodes (the compute nodes). Because all the nodes have to synchronize at
each time step, each PC should finish its calculations in about the same amount of
time. If the load is uneven (or if the load balancing is poor), the PCs are going to
synchronize on the slowest node, leading to a worst-case scenario. Another obstacle is
the possibility of communication patterns that can deadlock. A typical example is if
PC A is waiting to receive information from PC B, while B is also waiting to receive
information from A.

The matrix operation derives a resultant matrix by multiplying two input matrices,
a and b, where matrix a is a matrix of N rows by P columns and matrix b is of P
rows by M columns. The resultant matrix c is of N rows by M columns. The serial
realization of this operation is quite straightforward as listed in the following:
for(k=0; k<M; k++)
 for(i=0; i<N; i++){
 c[i][k]=0.0;
 for(j=0; j<P; j++)
 c[i][k]+=a[i][j]*b[j][k];
 }
Its algorithm requires n3 multiplications and n3 additions, leading to a sequential

time complexity of O(n3). Let's consider what we need to change in order to use
PVM. The first activity is to partition the problem so each slave node can perform on
its own assignment in parallel. For matrix multiplication, the smallest sensible unit of
work is the computation of one element in the result matrix. It is possible to divide the
work into even smaller chunks, but any finer division would not be beneficial because
of the number of processor is not enough to process, i.e., n2 processors are needed.

The matrix multiplication algorithm is implemented in PVM using the master-slave
paradigm. The master task is named master_mm_pvm, and the slave task is named
slave_mm_pvm. The master reads in the input data, which includes the number of
slaves to be spawned, nTasks. After registering with PVM and receiving a taskid or
tid, it spawns nTasks instances of the slave program slave_mm_pvm and then
distributes the input graph information to each of them. As a result of the spawn
function, the master obtains the tids from each of the slaves. Since each slave needs to
work on a distinct subset of the set of matrix elements, they need to be assigned
instance IDs in the range (0... nTask-1). The tids assigned to them by the PVM library

10 Chao-Tung Yang and Ping-I Chen

do not lie in this range, so the master needs to assign the instance IDs to the slave
nodes and send that information along with the input matrix. Each slave also need to
know the total number of slaves in the program, and this information is passed on to
them by the master process as an argument to the spawn function since, unlike the
instance IDs, this number is the same for all nTasks slaves.

We also use ntop to get the information about the system’s network status. Figure 5
shows the result of DRBL performance evaluation monitoring.

Fig. 5. DRBL monitoring result using ntop (after performance evaluation).

We can find that almost 93% of the network flow is TCP/UDP-based
communication. Only 5% is caused by NFS. Then, we use the same way to proceed
the performance evaluation on SLIM. Figure 6 shows the result of SLIM performance
evaluation monitoring.

We can see that the network flow of TCP/UDP communication is about 45%, and
the other 51% is caused by NFS. The total network flow is about 2GByte. But the
total network flow of DRBL is about 4.3G. It is almost twice of SLIM. Although the
network flow of NFS on DRBL is less than SLIM. But the network flow of TCP/UDP
transmission is four times the result of SLIM. The network loading is too high for
DRBL. It might because of DRBL’s node boot-up method is different from SLIM.

System and Performance Monitoring on Diskless PC Clusters 11

Fig. 6. SLIM monitoring result using ntop (after performance evaluation).

6 Discussions

Diskless PC clusters offer several advantages over traditional workstations in the area
of manageability and security, such as:
• No moving parts, so they are less susceptible to dust, noise and vibration,
• Hard disk or floppy failure is no longer an issue,
• Less security risk since no data is stored locally,
• Easier to replace than traditional workstation - no OS and/or software re-

installation is required.
After the experimentation, we can find out that the network loading of DRBL is

very high although the performance result is better than SLIM. We also realize that if
we choose SLIM as our diskless system, we may have to add more main memory. If
we choose DRBL as our diskless system, we really need a good network environment,
or it will not be worked.

7 Conclusions and Future Work

In this paper, we introduce our experiments on SLIM and DRBL diskless clusters. We
constructed them by using 16 machines and only one disk. We also used LAM/MPI
and PVM to run the matrix multiplication program in order to evaluate their
performance. Then, we use spm2 and ntop to monitor the system’s status. Finally, we
got the result that the system loading of DRBL may be less than SLIM. We think it is
because the DRBL use NFS to mount everything which the nodes needed. We can
realize that if we want to construct a high-performance diskless Linux cluster. We
should take care of the main memory’s free space and the mounting method.

12 Chao-Tung Yang and Ping-I Chen

Referencs

[1] PXE, http://www.linuxdevices.com/articles/AT5834950453.html,
[2] TFTP, http://www.faqs.org/rfcs/rfc1350.html,
[3] Network file system, http://nfs.sourceforge.net/nfs-howto/intro.html#WHAT
[4] SLIM, http://slim.csis.hku.hk/
[5] DRBL, http://drbl.sourceforge.net/
[6] PVM – Parallel Virtual Machine, http://www.epm.ornl.gov/pvm/
[7] LAM/MPI Parallel Computing, http://www.lam-mpi.org
[8] SPM2, http://cspm.sourceforge.net/
[9] ntop, http://www.ntop.org/ntop.html
[10] R. Buyya, High Performance Cluster Computing: System and Architectures, Vol. 1,

Prentice Hall PTR, NJ, 1999.
[11] R. Buyya, High Performance Cluster Computing: Programming and Applications, Vol.

2, Prentice Hall PTR, NJ, 1999.
[12] T. L. Sterling, J. Salmon, D. J. Backer, and D. F. Savarese, How to Build a Beowulf: A

Guide to the Implementation and Application of PC Clusters, 2nd Printing, MIT Press,
Cambridge, Massachusetts, USA, 1999.

[13] Gregory R. Watson, Matthew J. Sottile, Ronald G. Minnich, Sung-Eun Choi, Erik A.
Hendriks, “Pink: A 1024-node Single-System Image Linux Cluster,” Proceedings of the
Seventh International Conference on High Performance Computing and Grid in Asia
Pacific Region (HPCAsia’04)

[14] B. Wilkinson and M. Allen, Parallel Programming: Techniques and Applications Using
Networked Workstations and Parallel Computers, Prentice Hall PTR, NJ, 1999.

[15] M. Wolfe, High-Performance Compilers for Parallel Computing, Addison-Wesley
Publishing, NY, 1996.

[16] C. T. Yang, S. S. Tseng, M. C. Hsiao, and S. H. Kao, “A Portable parallelizing compiler
with loop partitioning,” Proc. of the NSC ROC(A), Vol. 23, No. 6, pp. 751-765, 1999.

http://www.linuxdevices.com/articles/AT5834950453.html
http://www.faqs.org/rfcs/rfc1350.html
http://nfs.sourceforge.net/nfs-howto/intro.html#WHAT
http://slim.csis.hku.hk/
http://drbl.sourceforge.net/
http://www.epm.ornl.gov/pvm/
http://www.lam-mpi.org
http://cspm.sourceforge.net/
http://www.ntop.org/ntop.html

