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A Note on Modularity Lifting Theorems in Higher Weights

Yih-Jeng Yu

Abstract. We follow the ideas of Khare and Ramakrishna-Khare and prove the mod-

ularity lifting theorem in higher weights. This approach somehow differs from that

using Taylor-Wiles systems.

1. Introduction

The conjectural relation between Galois representations and automorphic forms is among

the most important in number theory. The primary method used to establish such a

relationship rests on the work of Wiles [21] and Taylor-Wiles [20].

Theorem 1.1 (Modularity Lifting Theorem [20, 21]). Let ρ : GQ → GL2(O) be an odd,

continuous, absolutely irreducible, p-adic Galois representation which is ramified at finitely

many primes, and de Rham at p with Hodge-Tate weights (k − 1, 0) with k ≥ 2. If the

reduction modulo p of ρ is modular, then ρ is isomorphic to an integral model of a p-adic

representation ρf arising from a newform f .

This is sometimes described as “R = T̂”-theorems, where R is the universal deforma-

tion ring of the reduction ρ of ρ and T̂ is a certain localized Hecke algebra. The method of

Taylor-Wiles for establishing this isomorphism has been further refined by many people;

see for example [9].

The focus of this article is to give a different approach to proving modularity lifting

theorems of Galois representations. Specifically, we generalize the approach introduced

by Khare and Ramakrishna [13,14] from weight 2 to higher weights k < p. The following

theorem is the main result of this paper (see Theorem 4.3).

Theorem 1.2. Let N be a square-free positive integer, p > 5 be a prime not dividing

N , and k be an integer with 2 ≤ k < p. Let f ∈ Sk(Γ0(N)) be a cusp newform. Let

ρ : GQ → GL2(F) be the modp Galois representation attached to f . If ρ is irreducible,

minimally ramified at primes dividing Np, and ρ|Ip =
(
χk−1
p ∗
0 1

)
with ∗ 6= 0, where χp is

the modp cyclotomic character, then the universal deformation ring R associated to ρ is

canonically isomorphic to T̂∅ (' T̂).
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The paper is organized as follows. We first review the basic properties of deformation

ring RQ for an odd continuous absolutely irreducible Galois representation ρ with values

in GL2(F) where F is a finite field of characteristic p. The ring RQ is universal for the

deformations of ρ unramified outside S ∪Q and minimally ramified on S, where S is the

set of primes at which ρ is ramified and Q is a set of auxiliary primes. According to Khare

and Ramakrishna [14], we define for any subset α ⊆ Q a quotient RαQ of RQ which is

universal for the deformations ρ of ρ such that, for q ∈ α, the local representation ρ|Gq

is special, i.e., it is of the form
( χp ∗

0 1

)
where χp is the p-adic cyclotomic character. With

the result at hand, we can identify the tangent space of RαQ with a suitable Selmer group

(cf. Proposition 2.4, Remark 5.3, and also [14, Lemma 16]).

Taking up the study of the bad reduction of the Shimura curves at a prime r dividing

the level in question by the Tate-Oort theory, we obtain an explicit description of the

special fiber as the union of exactly two irreducible components of multiplicity 1 and r−1

respectively. These two components cross transversally at the supersingular points and

nowhere else. This description enables us calculate the vanishing cycles (Proposition 3.5)

and the cohomology of Shimura curves (Proposition 3.7).

Suppose ρ is modular with weight k < p. The first step (Proposition 4.2) is to show

that there exists a set Q of auxiliary primes such that RDQ is isomorphic to W (F) and that

the corresponding deformation ρDQ is modular. The existence of Q is due to Khare and

Ramakrishna [14]. The proof of this isomorphism and the modularity of ρDQ use the fact

that the tangent space of RDQ is trivial and the work of Diamond-Taylor [10].

The second step (Theorem 4.3) is to show that the deformation ρQ parametrized by

RQ is modular. As in the founder article of Wiles, we introduce a localized Hecke algebra

T̂Q parametrizing a modular deformation of geometric origin and show that the canon-

ical homomorphism RQ → T̂Q is actual an isomorphism. In the proof of Theorem 4.3,

we use a variant of Wiles’ numerical criterion refined by Lenstra (Theorem 5.1). Thus,

we are quickly reduced to study how a certain congruence module grows as one relaxes

conditions of newness at primes in Q. Let π : T̂Q → T̂QQ ' RQQ ' W (F) be the canonical

homomorphism resulting from the first step, φ : RQ → T̂Q, Φ = ker(πφ)/ ker(πφ)2 and

η = π(AnnT(ker(π))). The criterion consists with verifying the equality |W (F)/η| = |Φ|.

The verification of this equality is the main part of this paper. First, we need to

calculate the Galois cohomology and identify Φ with certain Selmer groups; we thus obtain

an upper bound for |Φ| (Proposition 5.2). Then in the proof of theorem in weight 2, Khare

used a result of Ribet-Takahashi [19] which generalized a calculation of Ribet [18] in his

work on Serre’s conjecture. The idea of Ribet is to compare two Shimura curves such that

two prime numbers q and q′ dividing the discriminant for one and dividing the level for

the other. Hence in weight 2 we could compare the Jacobians of corresponding Shimura
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curves. For most of our work, we extend the level-lowering part by replacing Ribet’s

method via Jacobians of certain Shimura curves with arguments using vanishing cycles

on those curves (Proposition 5.7). This requires a study of Boutot-Carayol’s version of

Čerednik-Drinfel’d uniformization of Shimura curves [3]. With these results, the lifting

of isomorphism RDQ = T̂DQ to RQ = T̂Q is carried out by applying the level-lowering

(Proposition 5.9), and the numerical isomorphism criterion alluded to above.

Finally, using the local-to-global principle of Böckle [1], one can get rid of the set

of auxiliary primes Q and yields that the ramified minimal universal deformation ρ∅ is

modular. That is, the canonical morphism R∅ → T̂∅ is an actual isomorphism.

2. Deformation rings

Let F be a finite field of characteristic p > 5, W = W (F) be the ring of Witt vectors

with coefficients in F, and O be a totally ramified extension of W (hence its residue

field is F). Consider the continuous absolutely irreducible modp Galois representation

ρ : GQ → GL2(F). We write S to be the set of primes containing p, ∞ and the primes

at which ρ is ramified, and S′ = S \ {p}. Let Ad0 be the set of all trace zero two-by-two

matrices over F with Galois action through ρ by conjugation.

Suppose that ρ is modular and satisfies the following conditions:

• The Serre weight k := k(ρ) of ρ is greater than 2 and strictly less than p.

• det(ρ) = χp is the modp cyclotomic character.

• Ad0 is absolutely irreducible.

• ρ is semistable at every primes in S.

• Moreover, ρ is crystalline and ordinary at p.

We refer to [14] for the existence of certain deformation rings parametrizing liftings of ρ

with given local conditions.

Let Q be a finite set of primes disjoint from S such that for all q ∈ Q, q 6≡ ±1 (mod p)

and ρ(Frobq) has eigenvalues with ratio q. Consider the following covariant deformation

functor DQ from the category of complete noetherian local W -algebras to the category of

sets:

DQ : CNLW  Sets

(A,ϕ)  {ρ : GQ → GL2(A) | ρ mod mA = ρ}/∼,

such that

(DC1) det ρ = γ̃χk−1
p , where γ̃ is the Teichmüller lifting of S′-ramified character γ and

χp is the p-adic cyclotomic character;
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(DC2) ρ is unramified outside S ∪Q;

(DC3) ρ|I` = 〈( 1 1
0 1 )〉 for all ` ∈ S′;

(DC4) for ` = p, ρ is ordinary and cristalline at p,

where ρ1 ∼ ρ2 if and only if there exists M ∈ ker(GL2(A) → GL2(F)) such that ρ1 =

M−1ρ2M .

Definition 2.1. For any representation satisfying conditions (DC1)–(DC4), we will call

it minimally S-ramified.

Since Ad0 is absolutely irreducible, then by the Schlessinger’s criterion it is easy to see

that the functor DQ is pro-representable. We denote its universal couple by (RQ, ρQ).

Remark 2.2. There is no condition at any primes q ∈ Q.

More generally, for any subset α ⊆ Q, we consider the closed subfunctor of DQ:

Dα
Q(A) = {ρ : GQ → GL2(A) | ρ mod mA = ρ}/∼

such that the conditions (DC1)–(DC4) hold and moreover

(DC5) ρ|Gq ∼
( χp ∗

0 1

)
for any q ∈ α.

Since the functor Dα
Q is relatively representable, hence the functor Dα

Q is pro-representable.

We denote the corresponding universal couple by (RαQ, ρ
α
Q).

Remark 2.3. For α = Q and D =
∏
q∈Q q, we will write RDQ instead of RQQ. There is a

sequence of natural surjections of local W -algebras RQ � RαQ � RDQ . If Q = ∅, we denote

the corresponding universal couple by (R∅, ρ∅), and call R∅ the minimal deformation ring.

2.1. The local conditions

Let GS∪Q be the Galois group of the maximal extension of Q in Q which is unramified

outside S ∪Q. We introduce local conditions in order to define the Selmer group.

• For v ∈ S′, we let

Lv = H1
nr(Gv,Ad0) := ker

(
H1(Gv,Ad0)→ H1(Iv,Ad0)

)
.

• For v = p, we define

Lp = ker
(
H1(Gp,Ad0)→ H1(Ip,Ad0 /Z)

)
,

where Z consists of ( 0 ∗
0 0 ).
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• For v ∈ Q, Lv is spanned by the 1-cocycles class given by

g(σv) =

0 0

0 0

 , g(τv) =

0 1

0 0


modulo 1-coboundaries, where σv and τv generate the same quotient of Gv and

satisfy σvτvσ
−1
v = τpvv .

Let L be the collection of these local conditions, and define the Selmer group to be

H1
L(GS∪Q,Ad0) := ker

H1(GS∪Q,Ad0)→
⊕

v∈S∪Q
H1(Gv,Ad0)/Lv

 .

The proof of the following proposition is routine.

Proposition 2.4. [15, §26] Let mQ be the maximal ideal of RDQ . We have an isomorphism

of F-vector space:

H1
L(GS∪Q,Ad0) ' Hom(mQ/(p,m

2
Q),F).

By [14, Proposition 21], there exists a finite set of primes Q = {q2, . . . , q2m} of odd

cardinality such that for each q ∈ Q, q 6≡ ±1 mod p, Tr ρ(Frobq) = ±(q + 1), and such

that

H1
L(GS∪Q,Ad0) = 0.

Thus we have mQ = pRDQ by Proposition 2.4; therefore, RDQ/pR
D
Q = F = W/pW and by

Nakayama’s lemma the structure morphism W → RDQ is surjective. Since k ≤ p − 1, the

result of Diamond-Taylor [10] shows that there is a p-adic modular lifting of ρ which arises

from a specialization of the universal representation ρQQ : GQ → GL2(RDQ) which gives a

surjection from RDQ to W . Hence the structure morphism is also injective, and we prove:

Corollary 2.5. Let 2 ≤ k < p. Then we have isomorphisms of local W -algebras

W ' RDQ .

3. Some preliminaries

3.1. Theory of vanishing cycles

In this section we follow the presentation of Illusie [12]. Let X be the proper semi-stable

curve over S = SpecZq. For any constructible Zp-sheaves F on X/S, we have the exact

sequence of specialization [12, §1.6]

· · · −→ H0(Xs,R
1 Φ(F ))(1) −→ H2(Xs,R

0 Ψ(F ))(1)
sp(1)−→ H2(Xη,F )(1) −→ 0,
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where R•Ψ(F ) (resp. R•Φ(F )) are the sheaves of vanishing cycles (resp. nearby cycles).

We define X(F ) to be:

X(F ) := ker

⊕
x∈Σ1

(R1 ΦF )x(1)→ ker(sp)(1)

 ,

where Σ1 is the set of singular points of Xs. Let Y = Xs. The cospecialization exact

sequence [12, §1.6] is

· · · −→
⊕
x∈Σ1

H1
x(Y,R1 Ψ(F ))

β′−→ H1(Y,R1 Ψ(F )) −→ · · · .

We let X̌(F ) := im(β′) ⊂ H1(Xs,F ).

If µ is the normalization map of µ : Ỹ → Y over Fq, we define the sheaf G on Y by the

exact sequence of sheaves:

0→ F → µ∗µ
∗F → G → 0.

Hence we obtain the following exact sequence

0 −→ H0(Y,F ) −→ H0(Y, µ∗µ
∗F )

θ−→ H0(Y,G ) −→ · · · ,

and we define

Y̌q(F ) := H0(Y,G )/ im(θ),

and

Yq(F ) := ker

⊕
x∈Σ1

(R1 ΦF )x(1)→ ker(sp)(1)

 .

The monodromy pairing yields an injective map λq : Yq(F )→ Y̌q(F ).

Proposition 3.1. X̌(F ) ' H0(Y,G )/θ(H0(Y, µ∗µ
∗F )).

Proof. Since the normalization map µ is finite, we can identify
⊕

x∈Σ1
H1
x(Y,R Ψ(F )) with

H0(Y,G ). By Illusie [12, §1.5], we have the following “diagramme des 9” over Y(x) for the

inclusions ix : {x} ↪→ Y(x) and jx : Ux = Y(x) \ {x} ↪→ Y(x)

ix,∗R i!xF //

��

F //

��

R jx,∗j
∗
xF

µ∗µ
∗ix,∗R i!xF //

��

µ∗µ
∗F //

��

R jx,∗j
∗
xF

��
G G // 0
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The composite

γx : H0(Y(x), µ∗µ
∗F )→ H0(Y(x),R j∗j

∗F )→ H1(Y(x), ix,∗R i!xF ) ' H1
x(Y,F )

is negative of the composite map

γ′x : H0(Y(x), µ∗µ
∗F )→ H0(Y(x),G )→ H1(Y(x), ix,∗R i!xF ) ' H1

x(Y,F ),

by [12, Lemma 5.4]. In particular, the image of ∂x : H0(Ux,F ) ' H0(Y(x),R jx,∗j
∗
xF ) →

H1
x(Y,F ) is the same as that of τx : H0(Y(x),G ) → H1(Y(x), ix,∗R i!F ) ' H1

x(Y,F ). The

following commutative diagram

H0(Ux,R Ψ(F ))
∂′x // H1

x(Y,R Ψ(F ))

β−1
x

��
H0(Ux,F )

'

OO

∂x
// H1

x(Y,F )

implies that the image of β−1
x is also the same as that of ∂x. Thus, β−1

x and τx have the

same image.

Consider the following commutative diagram

H0
Σ1

(Y,G ) //

τ

��

⊕
x∈Σ1

H0
x(Y,G )

'
(1)
//

⊕
τx

��

⊕
x∈Σ1

H1
x(Y,R Ψ(F )) //

⊕
β−1
x

��

H1
Σ1

(Y,R Ψ(F ))

β′

��
H1(Y,F )

⊕
x∈Σ1

H1
x(Y,F )σ

oo
⊕

x∈Σ1
H1
x(Y,F ) σ

// H1(Y,F )

where (1) is given by the identification
⊕

x∈Σ1
H1
x(Y,R Ψ(F )) ' H0(Y,G ). Thus we have

im(β′) = im(τ) and this is the same as coker(θ).

Remark 3.2. Note that X(F ) ⊂
⊕

x∈Σ1
(R1 ΦFx)(1), so it is torsion-free. Thus we have

the following exact sequence

0→ H1(Xs,F )⊗ Z/piZ→ H1(Xη,F )⊗ Z/piZ→ X(F )(−1)⊗ Z/piZ→ 0.

Similarly applying the snake lemma to the multiplication by pi, we obtain

0→ X̌(F )[pi]→ Φq[p
i]→ X(F )⊗ Z/piZ→ X̌(F )⊗ Z/piZ→ Φq ⊗ Z/piZ→ 0.

Let A be a Zp-algebra, and let Λk(A) = Symk−2 Z2
p ⊗Zp A. If we take k − 2 < p and

F = Λk(Zp), we see that X̌(Λk(Zp)) has no p-torsion since Λk(Zp) is irreducible.
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3.2. Shimura curves and Hecke correspondences

We review some properties of Shimura curves, following Buzzard [4]. We then take up the

study of the reduction modulo a prime of the Shimura curves. As a preparation for our

later work, we shall also present the Hecke correspondences.

Let B be an indefinite quaternion algebra over Q, and S be the set of places where

it ramifies. Let D =
∏
`∈S `, and let M be a square-free integer prime to D. Let OB

be a maximal order of B. Consider an open compact subgroup Γ of Ô×B of level M with

determinant 1. Fix a prime r not dividing MD. Let Γ0 = Γ∩ Γ̂D0 (r) and Γ1 = Γ∩ Γ̂D1 (r).

We study here the reduction modulo r of the Shimura curves XD(Γi) for i = 0, 1.

We fix an isomorphism φr : OB ⊗ Zr ' M2(Zr), and let e be the idempotent in

OB/rOB corresponding to ( 1 0
0 0 ) by φr. Following Buzzard [4], we define a Γ0(r)-structure

(resp. Γ1(r)-structure) on a false elliptic curve A as a finite flat group scheme K1 of rank

r inside (1 − e)A[r] (resp. a Drinfel’d generator of this subgroup). For rigidification, we

also introduce a Γ-level ν structure on A, that is, a full level structure ν of level N taken

modulo Γ.

By [4, Corollary 4.2], the moduli problem on Zr-schemes S 7→ {isomorphism classes of

(A, ι, ν,K1)/S} is representable by a proper Zr-scheme which we denote by XD(Γ0). This

moduli problem is isomorphic to the problem (A, ι, ν, C) where C is an isotropic subgroup

of A[r] of order r2. (See the paragraph after Definition 3.1 of [4].) There is a universal

triple (Au, ιu,Ku
1 ) defined over XD(Γ0). Recall the following result in [4, Theorem 4.7]:

Proposition 3.3. (i) The scheme XD(Γ0) is proper over Zr.
(ii) It is semistable over Zr, i.e., regular, and smooth away from the supersingular

points in characteristic r, with strictly henselian local ring at such a geometric point

Zur
r [[X,Y ]]/(XY − r); moreover, there are exactly two smooth irreducible components, Xm

and Xe, in the special fiber; they can be described as the Zariski closure of the locus Xm,0

where K1 is of multiplicative type, resp. of Xe,0 where K1 is étale.

(iii) The map π : XD(Γ0)→ XD(Γ) forgetting the Γ0-structure is finite and flat.

Following [11, Proposition 3.3.6] and using Tate-Oort theory, it is easy to prove:

Proposition 3.4. (i) The model XD(Γ1) of XD(Γ1)Qr is regular and flat over Zr.
(ii) The map π10 : XD(Γ1) → XD(Γ0) is finite flat; the special fiber of XD(Γ1) is

a divisor with normal crossings, with exactly two irreducible components Y e = π−1
10 (Xe)

and Y m = π−1
10 (Xm) with multiplicity 1 and r − 1 respectively, whose underlying reduced

subschemes are smooth.

(iii) The two components cross (transversally) at the supersingular points and nowhere

else.
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The curve XD(Γ1) is a fine moduli space for triples x = (A, ν, P ), where, if D > 1, A is

a false elliptic curve with a level Γ1 structure ν and an OB-stable group scheme K1 of rank

r inside (1 − e)A[r] and a Drinfel’d generator P of K1, and, if D = 1, A is a generalized

elliptic curve and a generator P of a cyclic subgroup K1 of order r. There is a universal

triple (Au, ιu,Ku
1 ) defined over XD(Γ1); let f : Au → XD(Γ1). Similarly, XD(Γ1 ∩ Γ̂D0 (`))

classifies (x,C) where x is a triple as above and C is an isotropic subgroup of order `2 in

A[`].

For ` - DMpr, we have two degeneracy maps α` and β` from XD(Γ1 ∩ Γ̂D0 (`)) to

XD(Γ1).

XD(Γ1 ∩ Γ̂D0 (`))

α`

ww

β`

''
XD(Γ1) XD(Γ1)

They are defined by α`((x,C)) = x and β`((x,C)) = (φ∗x) where φ : A → A/C denotes

the quotient map and φ∗x = (A/C, φ∗ν, φ∗P ).

If we are given a lisse sheaf F on XD(Γ1) with a morphism A` : β
∗
`F → α∗`F over

XD(Γ1 ∩ Γ̂D0 (`)), we can define Hecke correspondence acting on the pair (XD(Γ1),F ).

By contravariant functoriality, it induces an endomorphism of H•(XD(Γ1),F ) given by

T` := α`,∗ ◦A`,∗ ◦ β∗` .

In our situation, we take F = Symk−2 R f∗Zp. The group Γ1 acts on Symk−2 Z2
p from

the left by its p-component. We recall that the lisse sheaf associated to the corresponding

representation of the fundamental group of XD(Γ1) is Symk−2 R f∗Zp. Let us consider

the morphism A` : β
∗
`F → α∗`F induced by the left action of

(
1, . . . , 1,

(
1 0
0 `

)
, 1, . . . , 1

)
on

Symk−2 Z2
p. Note that this action being through the p-component is trivial if ` 6= p. We

define the `th Hecke correspondence T` as t`(A`).

For a false elliptic curve A, (Z/`Z)× acts on A[`] by multiplication. We thus have an

action of (Z/`Z)× on Γ1-level structures on A. We let 〈a〉(A,K1, P ) = (A,K1, aP ) as an

endomorphism of XD(Γ1).

These operators all commute with each other. We let T(Γ1) denote the Z-algebra

generated by T` for all ` -MDp and the diamond operators.

3.3. Nearby Cycles and monodromy

For our application to descent from an auxiliary level group Γ̂D1 (r) to a level prime to

r, we shall need Langlands-Deligne-Carayol theorem on the compatibility between local

and global Langlands correspondence for B×. For this purpose, we will consider a regular

scheme X = XD(Γ1) flat of finite type over Zr with smooth generic fiber Xη and special

fiber Xs in this section.
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Let F be a Z/pm-module or a lisse sheaf of Qp-vector space over X. The special fiber

is assumed to be étale locally one of the following types:

(1) Xs is smooth. This corresponds to a neighbourhood of a point in Y m not in Y e.

Then the regularity of X implies X is smooth. In this case, Rq ΨF = 0 for q > 0,

and Rq ΨF = F .

(2) X is of the form SpecZr[A,B±1]/(Ar−1B−r). This corresponds to a neighbourhood

of a point in Y e not in Y m. Let X ′ = SpecZr[a, b±1]/(ar−1 − r), and define a map

π : X ′ → X via the embedding

Zr[A,B±1]/(Ar−1B − r) → Zr[a, b±1]/(ar−1 − r)

(A,B) 7→ (ab−1, br−1)

The morphism π is étale with Galois group (Z/rZ)× ' µr−1 where ζ ∈ µr−1 acts by

multiplying both a and b by ζ. The special fiber Xs is a non-reduced divisor with

multiplicity r − 1; the associated reduced divisor Xs,red is defined by A = 0 and is

smooth; it is isomorphic to SpecFr[B±1] which we view as (Gm)Fr .

We first compute the vanishing cycle Rq ΨF in the étale neighbourhood of X ′ of X.

Let O = Zr[ r−1
√
r] = Zr[a]/(ar−1 − r). Then we write

(3.1) X ′ = SpecO ×SpecZr Y

where Y = SpecZr[b±1]. The second factor is smooth over Zr, hence (Rq ΨF )X′

is the pullback from Rq ΨF for the finite flat morphism SpecO → SpecZr. The

morphism is of relative dimension zero, hence Rq ΨF = 0 for q > 0. Similarly,

(R0 ΨF )SpecO is the pull-back of SpecO → SpecZr and (R0 ΨF )SpecZr = F ; hence

(R0 ΨF )SpecO ' F r−1 as Z/pm-modules or Qp-vector space. Since the inertia

group of O over Zr acting on (R0 ΨF )SpecO by µr−1 transitively, we thus have

(R0 ΨF )SpecO is the group algebra F [µr−1].

It follows that Rq ΨF = 0 for q > 0, and that R0 ΨF is a lisse p-adic sheaf of

rank r− 1 on Xs,red that becomes constant over X ′s,red. Moreover, since Gal(X ′/X)

acts as inertia group on the first factor of (3.1), one sees that the canonical ac-

tion of Gal(X ′/X) on (R0 ΨF )X′s,red identifies the latter with the group algebra

F [Gal(X ′/X)]. It follows that

R0 ΨF
'−→ π∗F .

The inertia group µr−1 acts on R0 ΨF , and we have seen that the lift of this action

to X ′s,red coincides with the action of Gal(X ′/X). We write

R0 ΨF =
⊕
χ

R0 ΨF [χ],
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the decomposition with respect to characters of the inertia group. We write L =

R0 ΨF , and L[χ] for the rank one local system R0 ΨF [χ]. Let χ0 denote the trivial

character. Consider the embedding

i : Xs,red = (Gm)Fr ↪→ A1 = SpecFr[B]

as the complement of the origin B = 0. The morphism π is totally ramified along

B = 0. It follows that

(3.2)
R0 i∗L[χ] = i!L[χ]; Rq i∗L[χ] = 0, q > 0 (χ 6= χ0);

R0 i∗L[χ0] = F ; Rq i∗L[χ0] = 0, q > 0.

More generally, suppose X = SpecR[A,B±1]/(Ar−1B − r), where R is a smooth

Zr-algebra of finite type. Then X is the fiber product

X = SpecR×SpecZr SpecZr[A,B±1]/(Ar−1B − r),

where the first factor is smooth. We define

iX = 1× i : Xs,red = SpecR×SpecZr Spec(Gm)Fr → SpecR×SpecZr SpecFr[B].

Let X2 denote the second factor above and let pr2 denote the projection X → X2.

We see that

Rq ΨF = pr∗2 Rq ΨX2F ,

where R ΨX2 denotes the vanishing cycle sheaves for the map from X2 to SpecZr.
In particular, Rq ΨF = 0 for q > 0, while Rq ΨF breaks up under the action

of the inertia subgroup of Gal(Qr/Qr) as the sum of rank one local system L[χ]:

L[χ0] = F , whereas L[χ] for nontrivial χ satisfies the analogue of (3.2):

R0 iX,∗L[χ] = iX,!L[χ]; Rq iX,∗L[χ] = 0, q > 0 (χ 6= χ0).

(3) X is of the form SpecR[A,B]/(Ar−1B−r), where R is a smooth Zr-algebra of finite

type. This corresponds to a neighbourhood of a point in Y e ∩Y m. We will calculate

the stalks of Rq ΨF at a geometric point x of the singular locus Xsing of the special

fiber defined by A = B = 0. In this case, we simply have Rq ΨF = 0, q > 1;

(R0 ΨF )x = F , (R1 ΨF )x = F (−1), with trivial action of the inertia group on F ,

(−1) denoting Tate twist.

We write Y a = Y m ∩ Y e. Let im : Y m → XD(Γ1), ie : Y e → XD(Γ1), and ia : Y a →
XD(Γ1) be the natural maps. Let Y e

0 denote the complement of Y a in Y e, and let

je : (Y e
0 )red → (Y e)red be the open immersion. Then the vanishing cycle sheaves Rq ΨF

are calculated as follows:
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Proposition 3.5. Let I denote the inertia subgroup of Gal(Qr/Qr). Then the action of

I on R ΨqF factors through the map to (Z/rZ)× (which we identify with µr−1(Zr) by

Teichmüller lifting) given by the action on Q[ζr]. For a character χ of µr−1, let [χ] denote

the χ-isotypic component, and let χ0 denote the trivial character. Then

(i) R0 ΨF [χ0] = F .

(ii) R1 ΨF = F [χ0] is a rank one local system supported on Y a, locally isomorphic at

any point of Y a to F (−1).

(iii) For χ 6= χ0, R0 ΨF is the extension by zero of a rank one lisse sheaf L[χ] supported

on Y m
0 . Moreover, the natural map im,! R0 ΨF [χ] → R im,∗Ψ

0F [χ] is a quasi-

isomorphism.

(iv) Rq ΨF = 0 for q > 1.

Proof. Everything follows from the cases (1)–(3) discussed above except the global trivi-

ality of R0 ΨF [χ0]. But there is always an injection F → R0 ΨF [χ0], so (i) follows from

the fact that all stalks of R0 ΨF [χ0] are one-dimensional.

Since the same vanishing cycle sheaves are concentrated in two degrees, the vanishing

cycle spectral sequence degenerates into a long exact sequence

· · · → Hi(XD(Γ1)s,R
0 ΨF )→ Hi(XD(Γ1)η,F )

→ Hi−1(XD(Γ1)s,R
1 ΨF )→ Hi+1(XD(Γ1)s,R

0 ΨF )→ · · · .

Using Proposition 3.5(ii), we rewrite this

· · · → Hi(XD(Γ1)s,R
0 ΨF )→ Hi(XD(Γ1)η,F )

→ Hi−1((Y a)red,R
1 ΨF [χ0])→ · · · .

(3.3)

We deduce from (i) and (iii) of Proposition 3.5 that the first term in turn is calculated

by a long exact sequence

· · · → Hi−1((Y a)red,F )→ Hi(XD(Γ1)η,R
0 ΨF )

→ Hi(Y m,F )⊕Hi((Y e)red,F )⊕
⊕
χ 6=χ0

Hi
c(Y

e
0 , L[χ])→ · · · .(3.4)

Here and in (3.3), we have replaced Y e and Y a by the associated reduced schemes, since

the étale cohomology is insensitive to nilpotents.

The diamond operators act XD(Γ1)η as well as on Y e and Y m, and thus induce com-

patible actions on the spaces in the exact sequence (3.3) and (3.4). These are determined

as follows:
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Lemma 3.6. The diamond operators 〈a〉 act on the outer terms of the exact sequence

(3.4) as follows: The action acts via χ on L[χ], and acts trivially on H•((Y e)red,F ), on

H•(Y a,F ), and on Hi−1((Y a)red,R
1 ΨF [χ0]).

Proof. The diamond operators act trivially on (Y e)red and (Y a)red, so it suffices to deter-

mine their action on R0 ΨF and R1 ΨF .

For R0 ΨF , by the discussion in (2), we see it suffices to determine the action of the

diamond operators on H0(Spec(Qr ⊗Qr Qr[ζr]),F ), via the identification of Qr[ζr] with

the generic fiber of µr−1 and the latter with CR in (1)–(2). But the diamond operators

on µr−1 are tautologically given by the cyclotomic character.

For the action on R1 ΨF , this is again local. But locally the discussion in (3) shows

that R1 ΨF is a constant sheaf, so the triviality of the action of the diamond operators is

clear.

Proposition 3.7. Suppose χ 6= χ0, and denote by 〈 〉=χ the χ-isotypic component for the

action of the diamond operators. Then for any i, there is a canonical isomorphism of

Gal(η/η)-modules

Hi(Y m,F )〈 〉=χ ⊕Hi
c((Y

e
0 )red, L[χ])

'−→ Hi(XD(Γ1)η,F )〈 〉=χ.

Proof. Indeed, in (3.4), the diamond operators act trivially on the term Hi((Y a)red,F )

and coincide with inertia on L[χ], inducing an isomorphism

Hi(XD(Γ1)s,R
0 ΨF )〈 〉=χ

'−→ Hi(Y m,F )〈 〉=χ ⊕Hi
c(Y

e
0 , L[χ]).

Similarly, the diamond operators act trivially on the Hi−1((Y a)red,R
1 ΨF [χ0]) term in

(3.4).

4. Hecke rings and modular Galois representations

Let N ≥ 1 be a square-free integer. We let Γ0(N) be the subgroup of SL2(Z) consisting

of elements
(
a b
Nc d

)
. For all ` - N , the Hecke operators T` acting on Sk(Γ0(N)) generate

a Z-algebra T. Let f ∈ Sk(Γ0(N)) be an eigen cusp newform of weight k ≥ 2. We fix a

prime p > 5 not dividing N . Let K be the p-adic field generated by the Fourier coefficients

of f , let O be the ring of integers of K, and let F be its residue field. We consider the

attached character λf : T → K and assume that f is ordinary ; that is, λf (Tp) ∈ O×K .

We are interested in the Galois representation ρf : GQ → GL2(K) attached to f . Let

p = ker(λf ) and let mf be the unique maximal ideal of T containing p + pT.

Suppose that

(H1) 2 ≤ k < p;
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(H2) mf ⊂ T is non-Eisenstein;

(H3) the residual representation ρf : GQ → GL2(F) is minimally ramified at primes

dividing pN ;

(H4) ρf |Ip =
(
χk−1
p ∗
0 1

)
with ∗ 6= 0.

Consider a finite set of primes Q = {q2, . . . , q2m} of odd cardinality such that ρf is

unramified at primes in Q, qi 6≡ ±1 mod p for qi ∈ Q, and such that Tr(ρf (Frobqi)) =

±(qi+1) for qi ∈ Q. Let D =
∏
q∈Q q. We write Ñ = pND, and we fix a prime q1 dividing

pN .

For 0 ≤ s ≤ m, let Qs = {q1, q2, . . . , q2m−2s} and let Bs be the indefinite quaternion

algebra ramified on Qs. Let Ds =
∏m−s
i=1 qi and Ms = Ñ/Ds and for 0 ≤ s ≤ m. Choose

an Eichler order RMs,Ds of level Ms in Bs. Denote the corresponding Shimura curve by

XDs(Ms).

Let A be a Zp-algebra, and let Λk(A) = Symk−2 Z2
p ⊗Zp A. Notice that if k < p and A

is a Zp-flat algebra, H1(XDs(Ms),Λk(A)) is a torsion-free A-module. If A = Zp, we simply

write it Λk or Λ. The `th-Hecke correspondence T` defines an endomorphism, still denoted

by T`, of H1(XDs(Ms),Λk(A)) for all ` - Ñ . The Hecke algebra TDs
Q is the A-algebra

generated by these endomorphisms T` for all primes ` - Ñ . For A = W , we drop the A

in the notation and we simply write TDs
Q . We also have the minimal Hecke algebra T∅

generated over W by Hecke operators T` on the corresponding modular curve X(Γ̂0(Np))

for all primes ` such that (`, Ñ) = 1.

For any 0 ≤ s ≤ m, we have obvious surjective W -algebra homomorphisms

TDs
Q → T∅ → T.

We let mQ be the preimage of mf under the map TDs
Q → T, and denote the completion of

the Hecke algebra TDs
Q at mQ by T̂Ds

Q . Note that for any 0 ≤ s ≤ m, the Hecke algebra

T̂Ds
Q is finite flat over W .

Lemma 4.1. (i) We have Galois representations

ρDs
Q,mod : GQ → GL2(T̂Ds

Q ) (resp. ρ∅,mod : GQ → GL2(T̂mf
))

which are unramified outside S ∪Q such that for ` /∈ S ∪Q,

Tr ρDs
Q,mod(Frob`) = T` and Tr ρ∅,mod(Frob`) = T`.

They arise by uniquely determined specializations of the universal representations

ρDs
Q : GQ → GL2(RDs

Q ) (resp. ρ∅ : GQ → GL2(R∅)).
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(ii) They satisfy

ρDs
Q,mod ∈ DDs

Q,O(T̂Ds
Q ) (resp. ρ∅,mod ∈ DO(T̂mf

)).

(iii) The local O-algebra homomorphisms defined by the universal property

RDs
Q ⊗W O → T̂Ds

Q (resp. R∅ ⊗W O → T̂mf
)

are surjective.

Proof. By the irreducibility of the residual representations, we can apply the theorem of

Carayol [8] and Nyssen [16] to construct a representation using pseudo-representations on

T̂Ds
Q and T̂Ds

Q ⊗Q. By definition of the representation, it satisfies the local conditions; also

by [8], the same holds for its integral structure.

According to Carayol [7], the representations ρDs
Q,mod | Gq and ρ∅,mod | Gq are of the

form

±

χp ∗
0 1

 .

Hence, the existence of the specialization map follows from the universal property of

deformation ring RDs
Q .

Lemma 4.1 says that we have a surjective W -homomorphism RDQ � T̂DQ , and since the

algebra T̂DQ is finite flat over W , we see that the map RDQ � T̂DQ is injective. Hence, by

Corollary 2.5, we deduce the following:

Proposition 4.2. Let 2 ≤ k < p. Then for D =
∏
q∈Q q we have isomorphisms of local

W -algebras

W ' RDQ
∼−→ T̂DQ .

We call such set Q a Khare-Ramakrishna system or a Khare-Ramakrishna set.

A new proof the following theorem, that will be deduced from Proposition 4.2, will be

given in the next section.

Theorem 4.3. Let N be a square-free positive integer, p > 5 be a prime not dividing

N , and 2 ≤ k < p be an integer. Suppose that f ∈ Sk(Γ0(N)) is a cusp newform and

let ρ = ρf : GQ → GL2(F) be the modp Galois representation attached to f . Assume ρ

satisfies conditions (H1)–(H4). Then the universal deformation ring R associated to ρ is

canonically isomorphic to T̂∅ (' T̂).

Remark 4.4. The analogue result has been proven by Taylor-Wiles in weight 2 case using

the Taylor-Wiles systems method; it has been generalized by Ramakrishna [17] following

a similar method. In weight 2, it has been reproved by Khare; for higher weights, we will

prove the theorem stated above by following the ideas of Khare.
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4.1. The auxiliary prime r

For technical reasons — mostly to assure that the q-adic uniformizations occurring in our

proof involve only torsion-free hyperbolic groups, we shall need to introduce an auxiliary

prime r. Its goal is to get rid of the possible torsion of the various arithmetic groups that

we consider without creating any new ramification in the modular Galois representations

considered.

Let us consider the following condition on a prime r:

UR(r) : r - Ñ , r 6≡ 1 mod p, and the ratio of the eigenvalues of ρ(Frobr)

is not congruent to 1 or r±1 mod p.

The existence of a prime r satisfying UR(r) follows from Čebotarev’s density theorem.

We fix such a prime r in the sequel. For any 0 ≤ s ≤ m, let Γ1(Ms; r) = R̂×Ms,Ds
∩

Γ̂Ds
1 (r) and Γ0(Ms; r) = R̂×Ms,Ds

∩ Γ̂Ds
0 (r). Denote the corresponding Shimura curves

by XDs(Ms; r). Let A be a Zp-algebra. Applying the Jacquet-Langlands correspon-

dence, we denote by TrQs

Q the Hecke algebra generated by Hecke correspondences T` on

H1(XDs(Ms; r),Λk(A)) for all ` - Ñ for primes ` - Ñ . Note that if s = m, we also have the

minimal Hecke algebra T∅ generated by Hecke operators T` on the corresponding moduli

curve X(Γ̂0(Np) ∩ Γ̂1(r)) for primes ` such that (`, Ñ) = 1.

To simplify our notations, we set Γ1 = R̂×Ms,Ds
∩ Γ̂Ds

1 (r) and Γ0 = R̂×Ms,Ds
∩ Γ̂Ds

0 (r),

and let XDs(Γ1) and XDs(Γ0) be the corresponding Shimura curves for each 0 ≤ s ≤ m.

Let m(r) = m+ (Tr −αr − βr, rSr −αrβr). If π′ occurs in H1(XDs(Γ1),Λ)Tr≡αr
m(r)

is special,

then it occurs in H1(XDs(Γ0),Λ)Tr≡αr
m(r)

. By the weight monodromy conjecture for curves,

the eigenvalues of Frobr on ρπ′ ⊂ H1(XDs(Γ0),Λ)Tr≡αr
m(r)

are of the form α′r, rα
′
r. (See also

Carayol [7].) However, we have

ρπ(Frobr) ∼

αr 0

0 βr


which implies that αr/βr ≡ r±1 modulo p, and deduces a contradiction. Hence, π′r
belongs to the ramified principal series and there exists a non-trivial character χ of

(Z/rZ)× such that the diamond operator acts on π′r by χ. In particular, π′ occurs in

H1(XDs(Γ1)η,Λ)
〈 〉=χ
m(r)

. Then by Proposition 3.7, we see that

ρπ′ |Ir ∼

1 0

0 χ

 .

Since r 6≡ 1 mod p, this implies that ρπ′ = ρ is also ramified at r which is a contradiction.

Therefore, ρπ′ is unramified.
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Remark 4.5. Since the associated Galois representations of the Hecke algebras T̂rDs
Q are

unramified at r, we still have the surjective specialization maps of local W -algebras RDs
Q →

T̂rDs
Q for 0 ≤ s ≤ m. Hence we will ignore the auxiliary prime r in the sequel to reduce

our notations.

5. Proof of Theorem 4.3

The strategy of the proof of Theorem 4.3 is to deduce from it from Proposition 4.2 using

the Numerical Criterion and the higher weight version of level-lowering method [19] to

compute change of η-invariants when we relax the conditions of Q on the deformation and

Hecke rings two primes at a time.

5.1. A numerical inequality

As in Wiles’ method, the proof of modularity is based on a numerical inequality relating

the length of a congruence module to the cardinality of a Selmer group. We recall a

numerical criterion due to Lenstra which refines a result of Wiles.

Theorem 5.1 (Numerical Criterion). Let R, T ∈ CNLW . Suppose that T is finite flat as

W -module and φ : R→ T is a surjective local W -algebra homomorphism. Let π : T → W

be a homomorphism of local W -algebras, and set Φ(R) = ker(πφ)/ ker(πφ)2 and ηT =

π(AnnT (ker(π))). Then we have the following:

(i) |W/ηT | ≤ |Φ(R)|.

(ii) Assume that ηT is not zero. Then the following are equivalent:

• The equality |W/ηT | = |Φ(R)| is satisfied.

• The rings R and T are complete intersections and φ is an isomorphism.

In our case, we let φ : RαQ → T̂αQ and π : T̂αQ → T̂DQ . For any prime q ∈ Q, let tq

generate the unique Zp quotient of Iq. Then ρDs
Q (tq) is of the form1 xq

0 1


for some xq ∈ W \ {0}, and (xq) does not depend on the choice of an integral model for

ρDQ . Note that xq 6= 0. Indeed, if xq = 0 then ρDQ is unramified at q, and as RDQ ' T̂DQ we

have Tr ρDQ(Frobq) = ±(q + 1) which contradicts the Ramanujan bound.

We obtain an upper bound for Φ(RαQ) by identifying Φ(RαQ) with the dual of Selmer

group, and thus we have the following result which is proved in [14, Lemma 16]:
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Proposition 5.2. For any subset α ⊂ Q, we have∣∣Φ(RαQ)
∣∣ ≤ ∏

q∈Q\α

|W/(xq)|.

Remark 5.3. For any α ⊂ Q, the invariant Φ(RαQ) can be thought of as the cotangent

space of the scheme Spec(RαQ) at the point ker(πφ).

5.2. Ribet’s short exact sequence

5.2.1. Residual characteristic divides the level

Suppose that the prime q does not divide the discriminant D of the indefinite quater-

nion algebra B/Q. Let Γ = ΓqΓ
q = Γ̂0(qM) ∩ Γ̂D1 (r) be an open compact subgroup

of B̂×. We have defined the Shimura curves XD(qM ; r) associated to Γ. Let V0(q) ={(
a b
c d

)
∈ GL2(Zq)

∣∣ c ≡ 0 mod q
}

.

Let µ be the normalization map for the special fiber Y of X = XD(qM ; r) over Zq. Let

TqM ;r denote the Hecke algebra generated over Zq by the endomorphisms T` (` -Mqr) of

H1(XD(qM ; r),Λ). We will write Xq(qM ; r) (resp. X̌q(qM ; r)) instead of X(Λ) (resp. X̌(Λ))

in order to emphasis the level structure.

Proposition 5.4. If m is a non-Eisenstein maximal ideal of TqM ;r, then we have:

(i) im(θ)m = 0, and we have a canonical isomorphism X̌q(qM ; r)m '
(⊕

x∈Σ1
Gx
)
m

.

(ii) In the exact sequence of specialization, after localization at m, the map⊕
x∈Σ1

(
R1 Φ(Λ)

)
x
→ ker(sp)

is the zero map, i.e., Xq(qM ; r)m '
(⊕

x∈Σ1

(
R1 Φ(Λ)

)
x

)
m

.

(iii) From (i) and (ii), we deduce the following

X̌q(qM ; r)m '

⊕
x∈Σ1

Gx


m

(1)
'

⊕
x∈Σ1

(
R1 Φ(Λ)

)
x


m

' Xq(qM ; r)m,

where (1) is induced from the monodromy logarithm Nx at each x.

Proof. (i) Note that the normalization map

µ : XD(M ; r)⊗ Fq tXD(M ; r)⊗ Fq → XD(qM ; r)⊗ Fq

is a finite morphism. We thus have an isomorphism

H0(XD(qM ; r)⊗ Fq, µ∗µ∗F ) ' H0(XD(M ; r)⊗ Fq,F )2.
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In Carayol [6, §2], we have that

π0(XD(M ; r)⊗ Fq) ' Q×+ \ (A∞)×/Nm(Γ̂0(M) ∩ Γ̂D1 (r))

= (Z(q))
×
+ \ (Aq∞)×/Nm(Γ̂0(M)q ∩ Γ̂D1 (r)q),

where we write Z(q) for Q ∩ Zq. Then G(Aq∞) acts on the set of components through via

reduced norm (see [6, §1.3]). But the maximal ideals in Tqq′M lying in the support of X̌
must correspond to the one-dimensional automorphic representations, as cuspidal repre-

sentations on quaternion groups admit infinite-dimensional components at almost every

place, and thus do not factor through the norm (see [7, §4.4]). However, the automor-

phic representations in im(θ) factor through the norm. By Proposition 3.1, we deduce

X̌q(qM ; r)m '
(⊕

x∈Σ1
Gx
)
m

.

(ii) Since G concentrates at points, its cohomology groups vanish in degree greater

than one. Hence, we also have an isomorphism induced from the normalization map µ:

H2(XD(qM ; r)⊗ Fq,F ) ' H2(XD(qM ; r)⊗ Fq, µ∗µ∗F ).

On the other hand, we may regard the latter group as H2(XD(M ; r)⊗ Fq,F )2, and this

is Poincaré dual to the group H0(XD(M ; r) ⊗ Fq, F̌ (1))2. Using similar analysis in (i),

the second point follows as before.

(iii) The homomorphisms Nx are isomorphisms for any regular model for X over Zq.
The third point (iii) follows from this together with the first and the second assertions.

5.2.2. Ribet’s short exact sequence

We let X = XD(M ; r) and assume that qq′ | D. Let Γ ⊂ B̂× be the group of level M

defining X. We write Γ = ΓqΓ
q, where Γq = O×Bq

and Γq is an open compact subgroup of

B×(Aq). We also insist that Γq′ = O×Bq′
. Let GL2(Qq)+ (resp. GL2(Qq)+) be the subset

of elements in GL2(Qq) whose reduced norm has even (resp. odd) valuation. Let B′ be

the definite quaternion of discriminant D/q obtaining from B by exchanging the local

invariants at q and∞. The Čerednik-Drinfel’d uniformization theorem gives a description

of the dual graph G of the special fiber Y of X at q.

The set of edges of G is Ed(G) = V0(q)Γq \ B̂′×/B′×. Let us introduce

V+ := GL2(Qq)+ \ (PGL2(Qq)+/PGL2(Zq)× ZΓ)

and

V− := GL2(Qq)+ \ (PGL2(Qq)−/PGL2(Zq)× ZΓ)

where ZΓ = Γq \ B̂′×/B′×. Then the set of vertices of G is Ver(G) = V+ t V−.

Define V := GL2(Oq)Γq \B̂′×/B′× = GL2(Oq)\ZΓ. Note that we have two degeneracy

maps α, β from Ed(G) to V corresponding to the inclusion of V0(q)Γq into GL2(Oq)Γq
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and the conjugation by Wq =
(

1 0
0 q

)
. We have bijections between V and V+, and V and

V−. Each edge e connects α(e) in F+ to β(e) in V−. In fact, we have

1: V → V+, [x] 7→ (1, x)

Wq : V → V−, [x] 7→ (Wq,Wqx).

To simplify the notations and state Carayol’s result in the sequel, we make the following

assumptions: Let B1 be an indefinite quaternion algebra over Q with discriminant D1,

p - D1, M1 ≥ 4, and let XD1(M1; r) = G(Q)\G(A∞)×H∞/Z(A∞)Ξ where Ξ = Γ̂D1
0 (M1)∩

Γ̂D1
1 (r) ⊂ G(A∞). We denote by K the restricted product of (B1 ⊗Qv)

× for v 6= p.

Proposition 5.5. [5,6] Let ΣM1;r be the set of supersingular points of XD1(M1; r) modulo

p. Then the group K ×Q×p acts transitively on ΣM1;r. For each x ∈ ΣM1;r, the stabilizer

of x is conjugate in K×Q×p to Z(Q)G′(Q) where G′ = B×2 obtaining from B1 by changing

the local invariants at p and ∞ and Z(Q) is the closure of Z(Q) in Z(A∞).

Apply these information to our cases with M1 = qq′M , D1 = D/qq′, p = q′, B =

B1 and B′ = B2. Let Ξ = Γ̂0(qq′M) ∩ Γ̂1(r); consider the modulo q′ reduction of

XD/qq′(qq′M ; r), notice that
(

Γ̂0(qq′M) ∩ Γ̂1(r)
)q′
×O×

B′
q′
' V0(q)Γq, and this gives a one-

to-one correspondence between Ed(G) and the set of singular points of XD/qq′(qq′M ; r)

modulo q′.

Ed(G) : the edges of the dual graph of XD(M ; r) mod q

⇐⇒ Σqq′M ;r : singular points of XD/qq′(qq′M ; r) mod q′.

Similarly, for vertices of the dual graph of the Shimura curve XD(M ; r) we use

Carayol’s formula for L = Γ̂0(q′M) ∩ Γ̂1(r). We find that(
Γ̂0(q′M) ∩ Γ̂1(r)

)q′
×O×

B′
q′
' GL2(Oq)Γq.

The correspondence provides a bijection for V? (? = ∅,+,−):

V? (? = ∅,+,−) ⇐⇒ Σq′M ;r: singular points of XD/qq′(q′M ; r) mod q′.

Therefore, the map 1∗ (resp. Wq,∗) will correspond to α (resp. β).

The number of irreducible components of the normalization is equal to the number of

the vertices of the dual graph of the special fiber. Hence, for the lisse sheaf Λ we let ζ be

the composition of two Hecke-equivariant maps (1) and (2)

ζ : H0(Xs, µ∗µ
∗Λ)

(1)
' 1∗

 ⊕
y∈Σq′M ;r

Gy

⊕Wq,∗

 ⊕
y∈Σq′M ;r

Gy


(2)
� 1∗X̌q′(q′M ; r)⊕Wq,∗X̌q′(q′M ; r),
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where (1) follows from Proposition 5.4 and (2) follows Proposition 3.1. We let J = ker(ζ).

Following from Proposition 5.4, H0(Xs, µ∗µ
∗Λ)/J ' im(ζ) is a Tqq′M ;r-module. The

Hecke-equivariant injection H0(Y,Λ)→ H0(Y, µ∗µ
∗Λ) induces an injection of H0(Y,Λ)/(J∩

H0(Y,Λ) into H0(Xs, µ∗µ
∗Λ)/J . Hence, this map induces a Tqq′M ;r-module structure on

H0(Y,Λ)/(J ∩H0(Y,Λ)).

Lemma 5.6. We have
(
H0(Y,Λ)/J ∩H0(Y,Λ)

)
m

= 0.

Proof. Since the restriction of Λ to each irreducible component of Y is constant, H0(Y,Λ)

is isomorphic to a direct sum of Λy’s, each corresponding to a connected component of Y .

Hence, as the connected components of X ⊗Q are defined over Qab, the Gal(Q/Q)-action

on H0(X⊗Q,Λ) factors through Gal(Qab
/Q). This gives rise to a reducible representation.

So H0(Y,Λ)/J ∩H0(Y,Λ) is Eisenstein.

By Proposition 3.1, we also have a surjective homomorphism of Zp-modules

η : H0(Y,G )→ X̌q(qq′M ; r).

Let J = ker(η). On H0(Y,G )/J , we have a T̂qq′M ;r-module structure. By the previ-

ous lemma, we may identify
(
H0(Y, µ∗µ

∗Λ)/J
)
m

with
(
H0(Y, µ∗µ

∗Λ)/θ−1J
)
m

. By the

definition of Y̌q(q′M ; r), we have the following exact sequence of T̂qq′M ;r-modules

0→
(
H0(Y, µ∗µ

∗Λ)/J
)
m
→
(
H0(Y,G )/J

)
m
→ Y̌q(q′M ; r)→ 0.

Finally, we obtain the following exact sequence

0 −→ X̌q′(q′M ; r)2
m

1∗⊕Wq,∗−→ X̌q′(qq′M ; r)m −→ Y̌q(q′M ; r) −→ 0.

We see H2(Y,Λ) ' H2(Y, µ∗µ
∗Λ) and H2(Y, µ∗µ

∗Λ) = H2(Ỹ , µ∗Λ). Since the compo-

nents of Y correspond to a disjoint union of two copies of Σq′M ;r, H2(Ỹ , µ∗Λ) is isomorphic

as a Zp-module to the direct sum of two copies of
⊕

x∈Σq′M ;r
R Φ(Λ)x. Therefore, we have

two injective homomorphisms of Zp-modules

f1 : Xq′(q′M ; r)2 ↪→

 ⊕
x∈Σq′M ;r

R Φ(Λ)x

2

(1) ' H0(Y,Λ)(1)

and

f2 : Xq′(qq′M ; r) ↪→
⊕

x∈Σqq′M ;r

R Φ(Λ)x(1) '
⊕
x∈Σ1

R Φ(Λ)x(1).

Using similar argument above, we finally get the following exact sequence

0→ Yq(q′M ; r)m → Xq′(qq′M ; r)m → Xq′(q′M ; r)2
m → 0.

Since monodromy pairings are Hecke-equivariant, we deduce:
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Proposition 5.7. We have the following commutative diagram of T̂qq′M ;r-modules where

the rows are exact and the vertical maps come from monodromy pairings:

0 // X̌q′(q′M ; r)2
m

1∗⊕Wq,∗ // X̌q′(qq′M ; r)m // Y̌q(M ; r)m // 0

0 Xq′(q′M ; r)2
m

oo

OO

Xq′(qq′M ; r)m
1∗⊕W ∗q

oo

λ′
q′

OO

Yq(M ; r)m

λq

OO

ι
oo 0oo

In our application, we will ignore the auxiliary prime r in the proposition, since it is

immaterial in our calculations below (cf. Remark 4.5).

For a T-module L, we will denote by Lm,W the module L localized at m and then

tensored with W .

5.3. The level-lowering

We apply Ribet’s short exact sequence to our descending induction by increasing s via

posing:

q′ = q2m−2s q = q2m−2s−1

P = ker
(
π : T̂Ds

Q → T̂DQ 'W
)

ξ : Yq(M)m[P]→ Y̌q(M)m ξ∗ dual of ξ

ξ′ : Xq′(qq′M)m[P]→ X̌q′(qq′M)m ξ′∗ dual of ξ′.

The maps ξ∗ξ and ξ′∗ξ′ commute with the W [GQ]-action and can be regarded as given by

multiplication by elements of W . We denote the corresponding ideals of W by (ξ∗ξ) and

(ξ′∗ξ′).

Let L := Xq′(qq′M)m[P] and L ′ := Yq(M)m[P]. Via the map ι in the Ribet’s short

exact sequence, we may identify L with L ′: Since L ∩ Yq(M)m,W is of rank one and

the Ribet’s short exact sequence shows that L in Xq′(qM)2
m,W is finite. In fact, it is zero

since Xq′(qM)2
m,W is torsion-free by the assumption k < p.

The following lemma and proposition are crucial in the proofs of the Theorem 4.3.

Lemma 5.8. (i) | coker(λq)| = |W/(xq)| for any q ∈ Q.

(ii) For any ` | Np, | coker(λ`)| = 1.

(iii) [Xq′(qq′M)m : L ] = |xq′ |−1.

(iv) [Yq(M)m : L ] = 1.

Proof. (i) We see that the monodromy pairing acts from Yq(M)m to Y̌q(M)m as σ− 1 for

σ ∈ I. Hence | coker(λq)| = |W/(xq)| for any q ∈ Q.
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(ii) Since we assume the minimality in our deformation of representations, for any

` | N the generator of the pro-p part of the inertia at ` acts by
(

1 x`
0 1

)
with x` ∈ W× so

that coker(λ`) is trivial. For ` = p, since we assume ρ|Ip is not split, the generator of the

pro-p part of the inertia at p acts by
(
χk−1
p xp
0 1

)
with xp ∈W×. Hence coker(λp) is trivial

as well.

(iii) We have a surjection ξ′∗ : Xq′(qq′M)m → Xq′(qq′M)m[P]. Using the monodromy

parings, we have

0 // Xq′(qq′M)m //

ξ′∗
��

HomW (Xq′(qq′M)m,W ) //

f

��

coker(λ′q′)
//

g

��

0

0 // Xq′(qq′M)m[P] // HomW (Xq′(qq′M)m[P],W ) // coker(λq′) // 0

This implies the order of coker(g) equals to the order of coker(f). But the order of coker(f)

is the order of the torsion subgroup of coker((Xq′(qq′M)m[P] → (Xq′(qq′M)m). This

derives that
∣∣∣coker(coker(λ′q′)→ coker(λq′))

∣∣∣ = [Xq′(qq′M)m : L ]. Recall that Xq′(qq′M)m

is self-dual; thus coker(λ′q′) = 1 and the result is deduced from (ii).

(iv) The fourth assertion is proved analogously.

Proposition 5.9. We have

(ξ′∗ξ′) = (ξ∗ξ)(xqxq′),

where when s = m− 1 we declare xq to be a unit.

Proof. Take a generator α of Xq′(qq′M)m[P] and let (τ) = 〈α, α〉. Let β = ι−1(α). By

the adjoint property of ξ′ with respect to the monodromy pairing, we have

(ξ′∗ξ′)(〈α, α〉) = (ξ′∗ξ′)(xq) = (〈ξ′(α), ξ′(α)〉) =
(

[Xq′(qq′M)m : L ]1/d
)2
· (τ)

where d = rankZp(W ). Similarly, we have (〈β, β〉) = (τ) and

(ξ∗ξ)(xq) = (〈ξ′(α), ξ′(α)〉) =
(

[Yq(M)m : L ]1/d
)2
· (τ).

The result now follows easily from the previous lemma.

5.4. End of proof

Using Proposition 5.9 inductively, we obtain

(ξ∗mξm) ⊂
∏
q∈Q

xq.

Let L := Y[ker(π)], where Y = Yq1(N). By Lemma 5.8, we see that

[Y : L ] = 1,
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and this deduces a map ξm from L to Y with torsion-free cokernel. Let x be a generator

of the free rank one W -module L . By the adjoint property of monodromy pairing and

Lemma 5.8, we see that ξ∗r (x) generates L and that

(〈ξm(x), ξm(x)〉) = ((ξ∗mξm)〈x, x〉) = (ξ∗mξm).

Define I := AnnTQ
(ker(π)) and ηTQ

:= π(I). Since Y/Y[I] ' HomW (L ,W ) we have

Y/(Y[ker(π)] + Y[I]) ' coker(L → HomW (L ,W ))

as W/ηTQ
-modules. Note that Y/(Y[ker(π)] + Y[I]) is also annihilated by ηTQ

. Since we

have

|W/ηTQ
| ≥ |Y/(Y[ker(π)] + Y[I])| = |coker(L → HomW (L ,W ))| ,

this implies ηTQ
⊂ (ξ∗mξm) ⊂ (

∏
q∈Q xq).

Applying the Numerical Criterion (Theorem 5.1) and Proposition 5.2, we thus deduce

the isomorphism

RQ ' T̂Q.

Finally, an argument of Böckle [2, Theorem 1] implies that:

R∅ ' T̂∅

is an isomorphism of complete intersection rings. This completes the proof.
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